Conditional HIF-1 induction produces multistage neovascularization with stage-specific sensitivity to VEGFR inhibitors and myeloid cell independence

Neovascularization is a crucial component of tumor growth and ischemia. Although prior work primarily used disease models, delineation of neovascularization in the absence of disease can reveal intrinsic mechanisms of microvessel regulation amenable to manipulation in illness. We created a condition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2011-04, Vol.117 (15), p.4142-4153
Hauptverfasser: Oladipupo, Sunday S., Hu, Song, Santeford, Andrea C., Yao, Junjie, Kovalski, Joanna R., Shohet, Ralph V., Maslov, Konstantin, Wang, Lihong V., Arbeit, Jeffrey M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4153
container_issue 15
container_start_page 4142
container_title Blood
container_volume 117
creator Oladipupo, Sunday S.
Hu, Song
Santeford, Andrea C.
Yao, Junjie
Kovalski, Joanna R.
Shohet, Ralph V.
Maslov, Konstantin
Wang, Lihong V.
Arbeit, Jeffrey M.
description Neovascularization is a crucial component of tumor growth and ischemia. Although prior work primarily used disease models, delineation of neovascularization in the absence of disease can reveal intrinsic mechanisms of microvessel regulation amenable to manipulation in illness. We created a conditional model of epithelial HIF-1 induction in adult mice (TetON-HIF-1 mice). Longitudinal photoacoustic microscopy (L-PAM) was coincidentally developed for noninvasive, label-free serial imaging of red blood cell-perfused vasculature in the same mouse for weeks to months. TetON-HIF-1 mice evidenced 3 stages of neovascularization: development, maintenance, and transgene-dependent regression. Regression occurred despite extensive and tight pericyte coverage. L-PAM mapped microvascular architecture and quantified volumetric changes in neocapillary morphogenesis, arteriovenous remodeling, and microvessel regression. Developmental stage endothelial proliferation down-regulation was associated with a DNA damage checkpoint consisting of p53, p21, and endothelial γ-H2AX induction. The neovasculature was temporally responsive to VEGFR2 immuno-blockade, with the developmental stage sensitive, and the maintenance stage resistant, to DC101 treatment. L-PAM analysis also pinpointed microvessels ablated or resistant to VEGFR2 immuno-blockade. HIF-1–recruited myeloid cells did not mediate VEGFR2 inhibitor resistance. Thus, HIF-1 neovascularization in the absence of disease is self-regulated via cell autonomous endothelial checkpoints, and resistant to angiogenesis inhibitors independent of myeloid cells.
doi_str_mv 10.1182/blood-2010-09-307538
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3087536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000649712045284X</els_id><sourcerecordid>862270114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-68bb77f17d5db01b040f3ef8bc247917c1c07f41abc67b189a1110ef86225ccd3</originalsourceid><addsrcrecordid>eNp9UU2LFDEQDaK44-g_EMlFPLVW0t8XQYad3YUFQdRrSCfpnZLupE3SI-Pv8Aebnhl39eIlCalX71W9R8hLBm8Za_i7bnBOZxwYZNBmOdRl3jwiK1byJgPg8JisAKDKirZmF-RZCN8AWJHz8im54Czh85avyK-NsxojOisHen2zzRhFq2e1_NDJu_Q0gY7zEDFEeWeoNW4vg5oH6fGnPMJ-YNzRYzULk1HYo6LB2JBo9xgPNDr69fJq-ykx77DD6Hyg0mo6HszgUFNlhmFRNZNJh1XmOXnSyyGYF-d7Tb5sLz9vrrPbj1c3mw-3mSpaHrOq6bq67lmtS90B66CAPjd90yle1C2rFVNQ9wWTnarqjjWtZIxBAlScl0rpfE3en3inuRuNVsZGLwcxeRylPwgnUfxbsbgTd24vcmiS3VUieHMm8O77bEIUI4ZlHZlsmoNYlGpgyfY1KU5I5V0I3vT3KgzEkqc45imWPAW04pRnanv194T3TX8CTIDXZ0AKRQ69l1ZheMAV0BRl1T6sapKfezReBIWL1xq9UVFoh_-f5DeB48Ot</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862270114</pqid></control><display><type>article</type><title>Conditional HIF-1 induction produces multistage neovascularization with stage-specific sensitivity to VEGFR inhibitors and myeloid cell independence</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Oladipupo, Sunday S. ; Hu, Song ; Santeford, Andrea C. ; Yao, Junjie ; Kovalski, Joanna R. ; Shohet, Ralph V. ; Maslov, Konstantin ; Wang, Lihong V. ; Arbeit, Jeffrey M.</creator><creatorcontrib>Oladipupo, Sunday S. ; Hu, Song ; Santeford, Andrea C. ; Yao, Junjie ; Kovalski, Joanna R. ; Shohet, Ralph V. ; Maslov, Konstantin ; Wang, Lihong V. ; Arbeit, Jeffrey M.</creatorcontrib><description>Neovascularization is a crucial component of tumor growth and ischemia. Although prior work primarily used disease models, delineation of neovascularization in the absence of disease can reveal intrinsic mechanisms of microvessel regulation amenable to manipulation in illness. We created a conditional model of epithelial HIF-1 induction in adult mice (TetON-HIF-1 mice). Longitudinal photoacoustic microscopy (L-PAM) was coincidentally developed for noninvasive, label-free serial imaging of red blood cell-perfused vasculature in the same mouse for weeks to months. TetON-HIF-1 mice evidenced 3 stages of neovascularization: development, maintenance, and transgene-dependent regression. Regression occurred despite extensive and tight pericyte coverage. L-PAM mapped microvascular architecture and quantified volumetric changes in neocapillary morphogenesis, arteriovenous remodeling, and microvessel regression. Developmental stage endothelial proliferation down-regulation was associated with a DNA damage checkpoint consisting of p53, p21, and endothelial γ-H2AX induction. The neovasculature was temporally responsive to VEGFR2 immuno-blockade, with the developmental stage sensitive, and the maintenance stage resistant, to DC101 treatment. L-PAM analysis also pinpointed microvessels ablated or resistant to VEGFR2 immuno-blockade. HIF-1–recruited myeloid cells did not mediate VEGFR2 inhibitor resistance. Thus, HIF-1 neovascularization in the absence of disease is self-regulated via cell autonomous endothelial checkpoints, and resistant to angiogenesis inhibitors independent of myeloid cells.</description><identifier>ISSN: 0006-4971</identifier><identifier>EISSN: 1528-0020</identifier><identifier>DOI: 10.1182/blood-2010-09-307538</identifier><identifier>PMID: 21307392</identifier><language>eng</language><publisher>Washington, DC: Elsevier Inc</publisher><subject>Angiogenesis Inhibitors - pharmacology ; Animals ; Biological and medical sciences ; Endothelium, Vascular - cytology ; Endothelium, Vascular - physiology ; Hematologic and hematopoietic diseases ; Hemodynamics - physiology ; Hypoxia-Inducible Factor 1, alpha Subunit - genetics ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Medical sciences ; Mice ; Mice, Transgenic ; Microcirculation - physiology ; Myeloid Cells - physiology ; Neovascularization, Pathologic - drug therapy ; Neovascularization, Pathologic - metabolism ; Neovascularization, Pathologic - physiopathology ; Neovascularization, Physiologic - drug effects ; Neovascularization, Physiologic - physiology ; Pericytes - physiology ; Signal Transduction - physiology ; Transcriptional Activation - physiology ; Tumor Microenvironment - physiology ; Vascular Biology ; Vascular Endothelial Growth Factor Receptor-1 - antagonists &amp; inhibitors ; Vascular Endothelial Growth Factor Receptor-1 - metabolism ; Vascular Endothelial Growth Factor Receptor-2 - antagonists &amp; inhibitors ; Vascular Endothelial Growth Factor Receptor-2 - metabolism</subject><ispartof>Blood, 2011-04, Vol.117 (15), p.4142-4153</ispartof><rights>2011 American Society of Hematology</rights><rights>2015 INIST-CNRS</rights><rights>2011 by The American Society of Hematology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-68bb77f17d5db01b040f3ef8bc247917c1c07f41abc67b189a1110ef86225ccd3</citedby><cites>FETCH-LOGICAL-c492t-68bb77f17d5db01b040f3ef8bc247917c1c07f41abc67b189a1110ef86225ccd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24084569$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21307392$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oladipupo, Sunday S.</creatorcontrib><creatorcontrib>Hu, Song</creatorcontrib><creatorcontrib>Santeford, Andrea C.</creatorcontrib><creatorcontrib>Yao, Junjie</creatorcontrib><creatorcontrib>Kovalski, Joanna R.</creatorcontrib><creatorcontrib>Shohet, Ralph V.</creatorcontrib><creatorcontrib>Maslov, Konstantin</creatorcontrib><creatorcontrib>Wang, Lihong V.</creatorcontrib><creatorcontrib>Arbeit, Jeffrey M.</creatorcontrib><title>Conditional HIF-1 induction produces multistage neovascularization with stage-specific sensitivity to VEGFR inhibitors and myeloid cell independence</title><title>Blood</title><addtitle>Blood</addtitle><description>Neovascularization is a crucial component of tumor growth and ischemia. Although prior work primarily used disease models, delineation of neovascularization in the absence of disease can reveal intrinsic mechanisms of microvessel regulation amenable to manipulation in illness. We created a conditional model of epithelial HIF-1 induction in adult mice (TetON-HIF-1 mice). Longitudinal photoacoustic microscopy (L-PAM) was coincidentally developed for noninvasive, label-free serial imaging of red blood cell-perfused vasculature in the same mouse for weeks to months. TetON-HIF-1 mice evidenced 3 stages of neovascularization: development, maintenance, and transgene-dependent regression. Regression occurred despite extensive and tight pericyte coverage. L-PAM mapped microvascular architecture and quantified volumetric changes in neocapillary morphogenesis, arteriovenous remodeling, and microvessel regression. Developmental stage endothelial proliferation down-regulation was associated with a DNA damage checkpoint consisting of p53, p21, and endothelial γ-H2AX induction. The neovasculature was temporally responsive to VEGFR2 immuno-blockade, with the developmental stage sensitive, and the maintenance stage resistant, to DC101 treatment. L-PAM analysis also pinpointed microvessels ablated or resistant to VEGFR2 immuno-blockade. HIF-1–recruited myeloid cells did not mediate VEGFR2 inhibitor resistance. Thus, HIF-1 neovascularization in the absence of disease is self-regulated via cell autonomous endothelial checkpoints, and resistant to angiogenesis inhibitors independent of myeloid cells.</description><subject>Angiogenesis Inhibitors - pharmacology</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Endothelium, Vascular - cytology</subject><subject>Endothelium, Vascular - physiology</subject><subject>Hematologic and hematopoietic diseases</subject><subject>Hemodynamics - physiology</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Microcirculation - physiology</subject><subject>Myeloid Cells - physiology</subject><subject>Neovascularization, Pathologic - drug therapy</subject><subject>Neovascularization, Pathologic - metabolism</subject><subject>Neovascularization, Pathologic - physiopathology</subject><subject>Neovascularization, Physiologic - drug effects</subject><subject>Neovascularization, Physiologic - physiology</subject><subject>Pericytes - physiology</subject><subject>Signal Transduction - physiology</subject><subject>Transcriptional Activation - physiology</subject><subject>Tumor Microenvironment - physiology</subject><subject>Vascular Biology</subject><subject>Vascular Endothelial Growth Factor Receptor-1 - antagonists &amp; inhibitors</subject><subject>Vascular Endothelial Growth Factor Receptor-1 - metabolism</subject><subject>Vascular Endothelial Growth Factor Receptor-2 - antagonists &amp; inhibitors</subject><subject>Vascular Endothelial Growth Factor Receptor-2 - metabolism</subject><issn>0006-4971</issn><issn>1528-0020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU2LFDEQDaK44-g_EMlFPLVW0t8XQYad3YUFQdRrSCfpnZLupE3SI-Pv8Aebnhl39eIlCalX71W9R8hLBm8Za_i7bnBOZxwYZNBmOdRl3jwiK1byJgPg8JisAKDKirZmF-RZCN8AWJHz8im54Czh85avyK-NsxojOisHen2zzRhFq2e1_NDJu_Q0gY7zEDFEeWeoNW4vg5oH6fGnPMJ-YNzRYzULk1HYo6LB2JBo9xgPNDr69fJq-ykx77DD6Hyg0mo6HszgUFNlhmFRNZNJh1XmOXnSyyGYF-d7Tb5sLz9vrrPbj1c3mw-3mSpaHrOq6bq67lmtS90B66CAPjd90yle1C2rFVNQ9wWTnarqjjWtZIxBAlScl0rpfE3en3inuRuNVsZGLwcxeRylPwgnUfxbsbgTd24vcmiS3VUieHMm8O77bEIUI4ZlHZlsmoNYlGpgyfY1KU5I5V0I3vT3KgzEkqc45imWPAW04pRnanv194T3TX8CTIDXZ0AKRQ69l1ZheMAV0BRl1T6sapKfezReBIWL1xq9UVFoh_-f5DeB48Ot</recordid><startdate>20110414</startdate><enddate>20110414</enddate><creator>Oladipupo, Sunday S.</creator><creator>Hu, Song</creator><creator>Santeford, Andrea C.</creator><creator>Yao, Junjie</creator><creator>Kovalski, Joanna R.</creator><creator>Shohet, Ralph V.</creator><creator>Maslov, Konstantin</creator><creator>Wang, Lihong V.</creator><creator>Arbeit, Jeffrey M.</creator><general>Elsevier Inc</general><general>Americain Society of Hematology</general><general>American Society of Hematology</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110414</creationdate><title>Conditional HIF-1 induction produces multistage neovascularization with stage-specific sensitivity to VEGFR inhibitors and myeloid cell independence</title><author>Oladipupo, Sunday S. ; Hu, Song ; Santeford, Andrea C. ; Yao, Junjie ; Kovalski, Joanna R. ; Shohet, Ralph V. ; Maslov, Konstantin ; Wang, Lihong V. ; Arbeit, Jeffrey M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-68bb77f17d5db01b040f3ef8bc247917c1c07f41abc67b189a1110ef86225ccd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Angiogenesis Inhibitors - pharmacology</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Endothelium, Vascular - cytology</topic><topic>Endothelium, Vascular - physiology</topic><topic>Hematologic and hematopoietic diseases</topic><topic>Hemodynamics - physiology</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Microcirculation - physiology</topic><topic>Myeloid Cells - physiology</topic><topic>Neovascularization, Pathologic - drug therapy</topic><topic>Neovascularization, Pathologic - metabolism</topic><topic>Neovascularization, Pathologic - physiopathology</topic><topic>Neovascularization, Physiologic - drug effects</topic><topic>Neovascularization, Physiologic - physiology</topic><topic>Pericytes - physiology</topic><topic>Signal Transduction - physiology</topic><topic>Transcriptional Activation - physiology</topic><topic>Tumor Microenvironment - physiology</topic><topic>Vascular Biology</topic><topic>Vascular Endothelial Growth Factor Receptor-1 - antagonists &amp; inhibitors</topic><topic>Vascular Endothelial Growth Factor Receptor-1 - metabolism</topic><topic>Vascular Endothelial Growth Factor Receptor-2 - antagonists &amp; inhibitors</topic><topic>Vascular Endothelial Growth Factor Receptor-2 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oladipupo, Sunday S.</creatorcontrib><creatorcontrib>Hu, Song</creatorcontrib><creatorcontrib>Santeford, Andrea C.</creatorcontrib><creatorcontrib>Yao, Junjie</creatorcontrib><creatorcontrib>Kovalski, Joanna R.</creatorcontrib><creatorcontrib>Shohet, Ralph V.</creatorcontrib><creatorcontrib>Maslov, Konstantin</creatorcontrib><creatorcontrib>Wang, Lihong V.</creatorcontrib><creatorcontrib>Arbeit, Jeffrey M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Blood</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oladipupo, Sunday S.</au><au>Hu, Song</au><au>Santeford, Andrea C.</au><au>Yao, Junjie</au><au>Kovalski, Joanna R.</au><au>Shohet, Ralph V.</au><au>Maslov, Konstantin</au><au>Wang, Lihong V.</au><au>Arbeit, Jeffrey M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conditional HIF-1 induction produces multistage neovascularization with stage-specific sensitivity to VEGFR inhibitors and myeloid cell independence</atitle><jtitle>Blood</jtitle><addtitle>Blood</addtitle><date>2011-04-14</date><risdate>2011</risdate><volume>117</volume><issue>15</issue><spage>4142</spage><epage>4153</epage><pages>4142-4153</pages><issn>0006-4971</issn><eissn>1528-0020</eissn><abstract>Neovascularization is a crucial component of tumor growth and ischemia. Although prior work primarily used disease models, delineation of neovascularization in the absence of disease can reveal intrinsic mechanisms of microvessel regulation amenable to manipulation in illness. We created a conditional model of epithelial HIF-1 induction in adult mice (TetON-HIF-1 mice). Longitudinal photoacoustic microscopy (L-PAM) was coincidentally developed for noninvasive, label-free serial imaging of red blood cell-perfused vasculature in the same mouse for weeks to months. TetON-HIF-1 mice evidenced 3 stages of neovascularization: development, maintenance, and transgene-dependent regression. Regression occurred despite extensive and tight pericyte coverage. L-PAM mapped microvascular architecture and quantified volumetric changes in neocapillary morphogenesis, arteriovenous remodeling, and microvessel regression. Developmental stage endothelial proliferation down-regulation was associated with a DNA damage checkpoint consisting of p53, p21, and endothelial γ-H2AX induction. The neovasculature was temporally responsive to VEGFR2 immuno-blockade, with the developmental stage sensitive, and the maintenance stage resistant, to DC101 treatment. L-PAM analysis also pinpointed microvessels ablated or resistant to VEGFR2 immuno-blockade. HIF-1–recruited myeloid cells did not mediate VEGFR2 inhibitor resistance. Thus, HIF-1 neovascularization in the absence of disease is self-regulated via cell autonomous endothelial checkpoints, and resistant to angiogenesis inhibitors independent of myeloid cells.</abstract><cop>Washington, DC</cop><pub>Elsevier Inc</pub><pmid>21307392</pmid><doi>10.1182/blood-2010-09-307538</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-4971
ispartof Blood, 2011-04, Vol.117 (15), p.4142-4153
issn 0006-4971
1528-0020
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3087536
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Angiogenesis Inhibitors - pharmacology
Animals
Biological and medical sciences
Endothelium, Vascular - cytology
Endothelium, Vascular - physiology
Hematologic and hematopoietic diseases
Hemodynamics - physiology
Hypoxia-Inducible Factor 1, alpha Subunit - genetics
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
Medical sciences
Mice
Mice, Transgenic
Microcirculation - physiology
Myeloid Cells - physiology
Neovascularization, Pathologic - drug therapy
Neovascularization, Pathologic - metabolism
Neovascularization, Pathologic - physiopathology
Neovascularization, Physiologic - drug effects
Neovascularization, Physiologic - physiology
Pericytes - physiology
Signal Transduction - physiology
Transcriptional Activation - physiology
Tumor Microenvironment - physiology
Vascular Biology
Vascular Endothelial Growth Factor Receptor-1 - antagonists & inhibitors
Vascular Endothelial Growth Factor Receptor-1 - metabolism
Vascular Endothelial Growth Factor Receptor-2 - antagonists & inhibitors
Vascular Endothelial Growth Factor Receptor-2 - metabolism
title Conditional HIF-1 induction produces multistage neovascularization with stage-specific sensitivity to VEGFR inhibitors and myeloid cell independence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A36%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conditional%20HIF-1%20induction%20produces%20multistage%20neovascularization%20with%20stage-specific%20sensitivity%20to%20VEGFR%20inhibitors%20and%20myeloid%20cell%20independence&rft.jtitle=Blood&rft.au=Oladipupo,%20Sunday%20S.&rft.date=2011-04-14&rft.volume=117&rft.issue=15&rft.spage=4142&rft.epage=4153&rft.pages=4142-4153&rft.issn=0006-4971&rft.eissn=1528-0020&rft_id=info:doi/10.1182/blood-2010-09-307538&rft_dat=%3Cproquest_pubme%3E862270114%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862270114&rft_id=info:pmid/21307392&rft_els_id=S000649712045284X&rfr_iscdi=true