Conditional HIF-1 induction produces multistage neovascularization with stage-specific sensitivity to VEGFR inhibitors and myeloid cell independence
Neovascularization is a crucial component of tumor growth and ischemia. Although prior work primarily used disease models, delineation of neovascularization in the absence of disease can reveal intrinsic mechanisms of microvessel regulation amenable to manipulation in illness. We created a condition...
Gespeichert in:
Veröffentlicht in: | Blood 2011-04, Vol.117 (15), p.4142-4153 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4153 |
---|---|
container_issue | 15 |
container_start_page | 4142 |
container_title | Blood |
container_volume | 117 |
creator | Oladipupo, Sunday S. Hu, Song Santeford, Andrea C. Yao, Junjie Kovalski, Joanna R. Shohet, Ralph V. Maslov, Konstantin Wang, Lihong V. Arbeit, Jeffrey M. |
description | Neovascularization is a crucial component of tumor growth and ischemia. Although prior work primarily used disease models, delineation of neovascularization in the absence of disease can reveal intrinsic mechanisms of microvessel regulation amenable to manipulation in illness. We created a conditional model of epithelial HIF-1 induction in adult mice (TetON-HIF-1 mice). Longitudinal photoacoustic microscopy (L-PAM) was coincidentally developed for noninvasive, label-free serial imaging of red blood cell-perfused vasculature in the same mouse for weeks to months. TetON-HIF-1 mice evidenced 3 stages of neovascularization: development, maintenance, and transgene-dependent regression. Regression occurred despite extensive and tight pericyte coverage. L-PAM mapped microvascular architecture and quantified volumetric changes in neocapillary morphogenesis, arteriovenous remodeling, and microvessel regression. Developmental stage endothelial proliferation down-regulation was associated with a DNA damage checkpoint consisting of p53, p21, and endothelial γ-H2AX induction. The neovasculature was temporally responsive to VEGFR2 immuno-blockade, with the developmental stage sensitive, and the maintenance stage resistant, to DC101 treatment. L-PAM analysis also pinpointed microvessels ablated or resistant to VEGFR2 immuno-blockade. HIF-1–recruited myeloid cells did not mediate VEGFR2 inhibitor resistance. Thus, HIF-1 neovascularization in the absence of disease is self-regulated via cell autonomous endothelial checkpoints, and resistant to angiogenesis inhibitors independent of myeloid cells. |
doi_str_mv | 10.1182/blood-2010-09-307538 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3087536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000649712045284X</els_id><sourcerecordid>862270114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-68bb77f17d5db01b040f3ef8bc247917c1c07f41abc67b189a1110ef86225ccd3</originalsourceid><addsrcrecordid>eNp9UU2LFDEQDaK44-g_EMlFPLVW0t8XQYad3YUFQdRrSCfpnZLupE3SI-Pv8Aebnhl39eIlCalX71W9R8hLBm8Za_i7bnBOZxwYZNBmOdRl3jwiK1byJgPg8JisAKDKirZmF-RZCN8AWJHz8im54Czh85avyK-NsxojOisHen2zzRhFq2e1_NDJu_Q0gY7zEDFEeWeoNW4vg5oH6fGnPMJ-YNzRYzULk1HYo6LB2JBo9xgPNDr69fJq-ykx77DD6Hyg0mo6HszgUFNlhmFRNZNJh1XmOXnSyyGYF-d7Tb5sLz9vrrPbj1c3mw-3mSpaHrOq6bq67lmtS90B66CAPjd90yle1C2rFVNQ9wWTnarqjjWtZIxBAlScl0rpfE3en3inuRuNVsZGLwcxeRylPwgnUfxbsbgTd24vcmiS3VUieHMm8O77bEIUI4ZlHZlsmoNYlGpgyfY1KU5I5V0I3vT3KgzEkqc45imWPAW04pRnanv194T3TX8CTIDXZ0AKRQ69l1ZheMAV0BRl1T6sapKfezReBIWL1xq9UVFoh_-f5DeB48Ot</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862270114</pqid></control><display><type>article</type><title>Conditional HIF-1 induction produces multistage neovascularization with stage-specific sensitivity to VEGFR inhibitors and myeloid cell independence</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Oladipupo, Sunday S. ; Hu, Song ; Santeford, Andrea C. ; Yao, Junjie ; Kovalski, Joanna R. ; Shohet, Ralph V. ; Maslov, Konstantin ; Wang, Lihong V. ; Arbeit, Jeffrey M.</creator><creatorcontrib>Oladipupo, Sunday S. ; Hu, Song ; Santeford, Andrea C. ; Yao, Junjie ; Kovalski, Joanna R. ; Shohet, Ralph V. ; Maslov, Konstantin ; Wang, Lihong V. ; Arbeit, Jeffrey M.</creatorcontrib><description>Neovascularization is a crucial component of tumor growth and ischemia. Although prior work primarily used disease models, delineation of neovascularization in the absence of disease can reveal intrinsic mechanisms of microvessel regulation amenable to manipulation in illness. We created a conditional model of epithelial HIF-1 induction in adult mice (TetON-HIF-1 mice). Longitudinal photoacoustic microscopy (L-PAM) was coincidentally developed for noninvasive, label-free serial imaging of red blood cell-perfused vasculature in the same mouse for weeks to months. TetON-HIF-1 mice evidenced 3 stages of neovascularization: development, maintenance, and transgene-dependent regression. Regression occurred despite extensive and tight pericyte coverage. L-PAM mapped microvascular architecture and quantified volumetric changes in neocapillary morphogenesis, arteriovenous remodeling, and microvessel regression. Developmental stage endothelial proliferation down-regulation was associated with a DNA damage checkpoint consisting of p53, p21, and endothelial γ-H2AX induction. The neovasculature was temporally responsive to VEGFR2 immuno-blockade, with the developmental stage sensitive, and the maintenance stage resistant, to DC101 treatment. L-PAM analysis also pinpointed microvessels ablated or resistant to VEGFR2 immuno-blockade. HIF-1–recruited myeloid cells did not mediate VEGFR2 inhibitor resistance. Thus, HIF-1 neovascularization in the absence of disease is self-regulated via cell autonomous endothelial checkpoints, and resistant to angiogenesis inhibitors independent of myeloid cells.</description><identifier>ISSN: 0006-4971</identifier><identifier>EISSN: 1528-0020</identifier><identifier>DOI: 10.1182/blood-2010-09-307538</identifier><identifier>PMID: 21307392</identifier><language>eng</language><publisher>Washington, DC: Elsevier Inc</publisher><subject>Angiogenesis Inhibitors - pharmacology ; Animals ; Biological and medical sciences ; Endothelium, Vascular - cytology ; Endothelium, Vascular - physiology ; Hematologic and hematopoietic diseases ; Hemodynamics - physiology ; Hypoxia-Inducible Factor 1, alpha Subunit - genetics ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Medical sciences ; Mice ; Mice, Transgenic ; Microcirculation - physiology ; Myeloid Cells - physiology ; Neovascularization, Pathologic - drug therapy ; Neovascularization, Pathologic - metabolism ; Neovascularization, Pathologic - physiopathology ; Neovascularization, Physiologic - drug effects ; Neovascularization, Physiologic - physiology ; Pericytes - physiology ; Signal Transduction - physiology ; Transcriptional Activation - physiology ; Tumor Microenvironment - physiology ; Vascular Biology ; Vascular Endothelial Growth Factor Receptor-1 - antagonists & inhibitors ; Vascular Endothelial Growth Factor Receptor-1 - metabolism ; Vascular Endothelial Growth Factor Receptor-2 - antagonists & inhibitors ; Vascular Endothelial Growth Factor Receptor-2 - metabolism</subject><ispartof>Blood, 2011-04, Vol.117 (15), p.4142-4153</ispartof><rights>2011 American Society of Hematology</rights><rights>2015 INIST-CNRS</rights><rights>2011 by The American Society of Hematology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-68bb77f17d5db01b040f3ef8bc247917c1c07f41abc67b189a1110ef86225ccd3</citedby><cites>FETCH-LOGICAL-c492t-68bb77f17d5db01b040f3ef8bc247917c1c07f41abc67b189a1110ef86225ccd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24084569$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21307392$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oladipupo, Sunday S.</creatorcontrib><creatorcontrib>Hu, Song</creatorcontrib><creatorcontrib>Santeford, Andrea C.</creatorcontrib><creatorcontrib>Yao, Junjie</creatorcontrib><creatorcontrib>Kovalski, Joanna R.</creatorcontrib><creatorcontrib>Shohet, Ralph V.</creatorcontrib><creatorcontrib>Maslov, Konstantin</creatorcontrib><creatorcontrib>Wang, Lihong V.</creatorcontrib><creatorcontrib>Arbeit, Jeffrey M.</creatorcontrib><title>Conditional HIF-1 induction produces multistage neovascularization with stage-specific sensitivity to VEGFR inhibitors and myeloid cell independence</title><title>Blood</title><addtitle>Blood</addtitle><description>Neovascularization is a crucial component of tumor growth and ischemia. Although prior work primarily used disease models, delineation of neovascularization in the absence of disease can reveal intrinsic mechanisms of microvessel regulation amenable to manipulation in illness. We created a conditional model of epithelial HIF-1 induction in adult mice (TetON-HIF-1 mice). Longitudinal photoacoustic microscopy (L-PAM) was coincidentally developed for noninvasive, label-free serial imaging of red blood cell-perfused vasculature in the same mouse for weeks to months. TetON-HIF-1 mice evidenced 3 stages of neovascularization: development, maintenance, and transgene-dependent regression. Regression occurred despite extensive and tight pericyte coverage. L-PAM mapped microvascular architecture and quantified volumetric changes in neocapillary morphogenesis, arteriovenous remodeling, and microvessel regression. Developmental stage endothelial proliferation down-regulation was associated with a DNA damage checkpoint consisting of p53, p21, and endothelial γ-H2AX induction. The neovasculature was temporally responsive to VEGFR2 immuno-blockade, with the developmental stage sensitive, and the maintenance stage resistant, to DC101 treatment. L-PAM analysis also pinpointed microvessels ablated or resistant to VEGFR2 immuno-blockade. HIF-1–recruited myeloid cells did not mediate VEGFR2 inhibitor resistance. Thus, HIF-1 neovascularization in the absence of disease is self-regulated via cell autonomous endothelial checkpoints, and resistant to angiogenesis inhibitors independent of myeloid cells.</description><subject>Angiogenesis Inhibitors - pharmacology</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Endothelium, Vascular - cytology</subject><subject>Endothelium, Vascular - physiology</subject><subject>Hematologic and hematopoietic diseases</subject><subject>Hemodynamics - physiology</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Microcirculation - physiology</subject><subject>Myeloid Cells - physiology</subject><subject>Neovascularization, Pathologic - drug therapy</subject><subject>Neovascularization, Pathologic - metabolism</subject><subject>Neovascularization, Pathologic - physiopathology</subject><subject>Neovascularization, Physiologic - drug effects</subject><subject>Neovascularization, Physiologic - physiology</subject><subject>Pericytes - physiology</subject><subject>Signal Transduction - physiology</subject><subject>Transcriptional Activation - physiology</subject><subject>Tumor Microenvironment - physiology</subject><subject>Vascular Biology</subject><subject>Vascular Endothelial Growth Factor Receptor-1 - antagonists & inhibitors</subject><subject>Vascular Endothelial Growth Factor Receptor-1 - metabolism</subject><subject>Vascular Endothelial Growth Factor Receptor-2 - antagonists & inhibitors</subject><subject>Vascular Endothelial Growth Factor Receptor-2 - metabolism</subject><issn>0006-4971</issn><issn>1528-0020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU2LFDEQDaK44-g_EMlFPLVW0t8XQYad3YUFQdRrSCfpnZLupE3SI-Pv8Aebnhl39eIlCalX71W9R8hLBm8Za_i7bnBOZxwYZNBmOdRl3jwiK1byJgPg8JisAKDKirZmF-RZCN8AWJHz8im54Czh85avyK-NsxojOisHen2zzRhFq2e1_NDJu_Q0gY7zEDFEeWeoNW4vg5oH6fGnPMJ-YNzRYzULk1HYo6LB2JBo9xgPNDr69fJq-ykx77DD6Hyg0mo6HszgUFNlhmFRNZNJh1XmOXnSyyGYF-d7Tb5sLz9vrrPbj1c3mw-3mSpaHrOq6bq67lmtS90B66CAPjd90yle1C2rFVNQ9wWTnarqjjWtZIxBAlScl0rpfE3en3inuRuNVsZGLwcxeRylPwgnUfxbsbgTd24vcmiS3VUieHMm8O77bEIUI4ZlHZlsmoNYlGpgyfY1KU5I5V0I3vT3KgzEkqc45imWPAW04pRnanv194T3TX8CTIDXZ0AKRQ69l1ZheMAV0BRl1T6sapKfezReBIWL1xq9UVFoh_-f5DeB48Ot</recordid><startdate>20110414</startdate><enddate>20110414</enddate><creator>Oladipupo, Sunday S.</creator><creator>Hu, Song</creator><creator>Santeford, Andrea C.</creator><creator>Yao, Junjie</creator><creator>Kovalski, Joanna R.</creator><creator>Shohet, Ralph V.</creator><creator>Maslov, Konstantin</creator><creator>Wang, Lihong V.</creator><creator>Arbeit, Jeffrey M.</creator><general>Elsevier Inc</general><general>Americain Society of Hematology</general><general>American Society of Hematology</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110414</creationdate><title>Conditional HIF-1 induction produces multistage neovascularization with stage-specific sensitivity to VEGFR inhibitors and myeloid cell independence</title><author>Oladipupo, Sunday S. ; Hu, Song ; Santeford, Andrea C. ; Yao, Junjie ; Kovalski, Joanna R. ; Shohet, Ralph V. ; Maslov, Konstantin ; Wang, Lihong V. ; Arbeit, Jeffrey M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-68bb77f17d5db01b040f3ef8bc247917c1c07f41abc67b189a1110ef86225ccd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Angiogenesis Inhibitors - pharmacology</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Endothelium, Vascular - cytology</topic><topic>Endothelium, Vascular - physiology</topic><topic>Hematologic and hematopoietic diseases</topic><topic>Hemodynamics - physiology</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Microcirculation - physiology</topic><topic>Myeloid Cells - physiology</topic><topic>Neovascularization, Pathologic - drug therapy</topic><topic>Neovascularization, Pathologic - metabolism</topic><topic>Neovascularization, Pathologic - physiopathology</topic><topic>Neovascularization, Physiologic - drug effects</topic><topic>Neovascularization, Physiologic - physiology</topic><topic>Pericytes - physiology</topic><topic>Signal Transduction - physiology</topic><topic>Transcriptional Activation - physiology</topic><topic>Tumor Microenvironment - physiology</topic><topic>Vascular Biology</topic><topic>Vascular Endothelial Growth Factor Receptor-1 - antagonists & inhibitors</topic><topic>Vascular Endothelial Growth Factor Receptor-1 - metabolism</topic><topic>Vascular Endothelial Growth Factor Receptor-2 - antagonists & inhibitors</topic><topic>Vascular Endothelial Growth Factor Receptor-2 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oladipupo, Sunday S.</creatorcontrib><creatorcontrib>Hu, Song</creatorcontrib><creatorcontrib>Santeford, Andrea C.</creatorcontrib><creatorcontrib>Yao, Junjie</creatorcontrib><creatorcontrib>Kovalski, Joanna R.</creatorcontrib><creatorcontrib>Shohet, Ralph V.</creatorcontrib><creatorcontrib>Maslov, Konstantin</creatorcontrib><creatorcontrib>Wang, Lihong V.</creatorcontrib><creatorcontrib>Arbeit, Jeffrey M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Blood</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oladipupo, Sunday S.</au><au>Hu, Song</au><au>Santeford, Andrea C.</au><au>Yao, Junjie</au><au>Kovalski, Joanna R.</au><au>Shohet, Ralph V.</au><au>Maslov, Konstantin</au><au>Wang, Lihong V.</au><au>Arbeit, Jeffrey M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conditional HIF-1 induction produces multistage neovascularization with stage-specific sensitivity to VEGFR inhibitors and myeloid cell independence</atitle><jtitle>Blood</jtitle><addtitle>Blood</addtitle><date>2011-04-14</date><risdate>2011</risdate><volume>117</volume><issue>15</issue><spage>4142</spage><epage>4153</epage><pages>4142-4153</pages><issn>0006-4971</issn><eissn>1528-0020</eissn><abstract>Neovascularization is a crucial component of tumor growth and ischemia. Although prior work primarily used disease models, delineation of neovascularization in the absence of disease can reveal intrinsic mechanisms of microvessel regulation amenable to manipulation in illness. We created a conditional model of epithelial HIF-1 induction in adult mice (TetON-HIF-1 mice). Longitudinal photoacoustic microscopy (L-PAM) was coincidentally developed for noninvasive, label-free serial imaging of red blood cell-perfused vasculature in the same mouse for weeks to months. TetON-HIF-1 mice evidenced 3 stages of neovascularization: development, maintenance, and transgene-dependent regression. Regression occurred despite extensive and tight pericyte coverage. L-PAM mapped microvascular architecture and quantified volumetric changes in neocapillary morphogenesis, arteriovenous remodeling, and microvessel regression. Developmental stage endothelial proliferation down-regulation was associated with a DNA damage checkpoint consisting of p53, p21, and endothelial γ-H2AX induction. The neovasculature was temporally responsive to VEGFR2 immuno-blockade, with the developmental stage sensitive, and the maintenance stage resistant, to DC101 treatment. L-PAM analysis also pinpointed microvessels ablated or resistant to VEGFR2 immuno-blockade. HIF-1–recruited myeloid cells did not mediate VEGFR2 inhibitor resistance. Thus, HIF-1 neovascularization in the absence of disease is self-regulated via cell autonomous endothelial checkpoints, and resistant to angiogenesis inhibitors independent of myeloid cells.</abstract><cop>Washington, DC</cop><pub>Elsevier Inc</pub><pmid>21307392</pmid><doi>10.1182/blood-2010-09-307538</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-4971 |
ispartof | Blood, 2011-04, Vol.117 (15), p.4142-4153 |
issn | 0006-4971 1528-0020 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3087536 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Angiogenesis Inhibitors - pharmacology Animals Biological and medical sciences Endothelium, Vascular - cytology Endothelium, Vascular - physiology Hematologic and hematopoietic diseases Hemodynamics - physiology Hypoxia-Inducible Factor 1, alpha Subunit - genetics Hypoxia-Inducible Factor 1, alpha Subunit - metabolism Medical sciences Mice Mice, Transgenic Microcirculation - physiology Myeloid Cells - physiology Neovascularization, Pathologic - drug therapy Neovascularization, Pathologic - metabolism Neovascularization, Pathologic - physiopathology Neovascularization, Physiologic - drug effects Neovascularization, Physiologic - physiology Pericytes - physiology Signal Transduction - physiology Transcriptional Activation - physiology Tumor Microenvironment - physiology Vascular Biology Vascular Endothelial Growth Factor Receptor-1 - antagonists & inhibitors Vascular Endothelial Growth Factor Receptor-1 - metabolism Vascular Endothelial Growth Factor Receptor-2 - antagonists & inhibitors Vascular Endothelial Growth Factor Receptor-2 - metabolism |
title | Conditional HIF-1 induction produces multistage neovascularization with stage-specific sensitivity to VEGFR inhibitors and myeloid cell independence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A36%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conditional%20HIF-1%20induction%20produces%20multistage%20neovascularization%20with%20stage-specific%20sensitivity%20to%20VEGFR%20inhibitors%20and%20myeloid%20cell%20independence&rft.jtitle=Blood&rft.au=Oladipupo,%20Sunday%20S.&rft.date=2011-04-14&rft.volume=117&rft.issue=15&rft.spage=4142&rft.epage=4153&rft.pages=4142-4153&rft.issn=0006-4971&rft.eissn=1528-0020&rft_id=info:doi/10.1182/blood-2010-09-307538&rft_dat=%3Cproquest_pubme%3E862270114%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862270114&rft_id=info:pmid/21307392&rft_els_id=S000649712045284X&rfr_iscdi=true |