Stochastic modeling of animal epidemics using data collected over three different spatial scales

Abstract A stochastic, spatial, discrete-time, SEIR model of avian influenza epidemics among poultry farms in Pennsylvania is formulated. Using three different spatial scales wherein all the birds within a single farm, ZIP code, or county are clustered into a single point, we obtain three different...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Epidemics 2011-06, Vol.3 (2), p.61-70
Hauptverfasser: Rorres, Chris, Pelletier, Sky T.K, Smith, Gary
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 70
container_issue 2
container_start_page 61
container_title Epidemics
container_volume 3
creator Rorres, Chris
Pelletier, Sky T.K
Smith, Gary
description Abstract A stochastic, spatial, discrete-time, SEIR model of avian influenza epidemics among poultry farms in Pennsylvania is formulated. Using three different spatial scales wherein all the birds within a single farm, ZIP code, or county are clustered into a single point, we obtain three different views of the epidemics. For each spatial scale, two parameters within the viral-transmission kernel of the model are estimated using simulated epidemic data. We show that simulated epidemics modeled using data collected on the farm and ZIP-code levels behave similar to the actual underlying epidemics, but this is not true using data collected on the county level. Such analyses of data collected on different spatial scales are useful in formulating intervention strategies to control an ongoing epidemic (e.g., vaccination schedules and culling policies).
doi_str_mv 10.1016/j.epidem.2011.02.003
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3087212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1755436511000077</els_id><sourcerecordid>869571901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-a35d1f04fd3a16a2dcc5251ae19d3bd7d6cd9ad8353162e9a94ef90be9e95bd63</originalsourceid><addsrcrecordid>eNqFUk1v1DAQtRCIlsI_QMg3TgkeO46TCxKqyodUqYe2Z-O1J10vSbzYzkr99zjaUqAXfLHlmffezLwh5C2wGhi0H3Y17r3DqeYMoGa8Zkw8I6fQqa5irFXPy1tJWTWilSfkVUq78tsAiJfkhIOUXCh2Sr5f52C3JmVv6RQcjn6-o2GgZvaTGelRwttEl7RGnMmG2jCOaDM6Gg4Yad5GROr8MGDEOdO0N9kXbLJmxPSavBjMmPDNw31Gbj9f3Jx_rS6vvnw7_3RZWQkqV0ZIBwNrBicMtIY7ayWXYBB6JzZOuda63rhOSAEtx970DQ4922CPvdy4VpyRj0fe_bKZ0NlSSTSj3sfSR7zXwXj9b2T2W30XDlqwTnHgheD9A0EMPxdMWU8-WRxHM2NYku7aXiroGZTM5phpY0gp4vCoAkyv3uidPg5Or95oxnXxpsDe_V3hI-i3GX9awDKng8eok_U4W3Q-lnlrF_z_FJ4S2OKnLz78wHtMu7DEuXigQacC0NfrfqzrAcDKUUr8AuGvufE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869571901</pqid></control><display><type>article</type><title>Stochastic modeling of animal epidemics using data collected over three different spatial scales</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Rorres, Chris ; Pelletier, Sky T.K ; Smith, Gary</creator><creatorcontrib>Rorres, Chris ; Pelletier, Sky T.K ; Smith, Gary</creatorcontrib><description>Abstract A stochastic, spatial, discrete-time, SEIR model of avian influenza epidemics among poultry farms in Pennsylvania is formulated. Using three different spatial scales wherein all the birds within a single farm, ZIP code, or county are clustered into a single point, we obtain three different views of the epidemics. For each spatial scale, two parameters within the viral-transmission kernel of the model are estimated using simulated epidemic data. We show that simulated epidemics modeled using data collected on the farm and ZIP-code levels behave similar to the actual underlying epidemics, but this is not true using data collected on the county level. Such analyses of data collected on different spatial scales are useful in formulating intervention strategies to control an ongoing epidemic (e.g., vaccination schedules and culling policies).</description><identifier>ISSN: 1755-4365</identifier><identifier>EISSN: 1878-0067</identifier><identifier>DOI: 10.1016/j.epidem.2011.02.003</identifier><identifier>PMID: 21552370</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animal Husbandry ; Animals ; Avian influenza ; Computer Simulation ; Disease Models, Animal ; Disease Outbreaks ; Estimators ; Geography ; Infectious Disease ; Influenza in Birds - epidemiology ; Influenza in Birds - transmission ; Internal Medicine ; Likelihood Functions ; Mathematical models ; Models, Biological ; Parameter estimation ; Pennsylvania - epidemiology ; Poultry ; Stochastic Processes ; ZIP-codes</subject><ispartof>Epidemics, 2011-06, Vol.3 (2), p.61-70</ispartof><rights>Elsevier B.V.</rights><rights>2010 Elsevier B.V.</rights><rights>2011 Elsevier B.V. All rights reserved. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-a35d1f04fd3a16a2dcc5251ae19d3bd7d6cd9ad8353162e9a94ef90be9e95bd63</citedby><cites>FETCH-LOGICAL-c517t-a35d1f04fd3a16a2dcc5251ae19d3bd7d6cd9ad8353162e9a94ef90be9e95bd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.epidem.2011.02.003$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21552370$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rorres, Chris</creatorcontrib><creatorcontrib>Pelletier, Sky T.K</creatorcontrib><creatorcontrib>Smith, Gary</creatorcontrib><title>Stochastic modeling of animal epidemics using data collected over three different spatial scales</title><title>Epidemics</title><addtitle>Epidemics</addtitle><description>Abstract A stochastic, spatial, discrete-time, SEIR model of avian influenza epidemics among poultry farms in Pennsylvania is formulated. Using three different spatial scales wherein all the birds within a single farm, ZIP code, or county are clustered into a single point, we obtain three different views of the epidemics. For each spatial scale, two parameters within the viral-transmission kernel of the model are estimated using simulated epidemic data. We show that simulated epidemics modeled using data collected on the farm and ZIP-code levels behave similar to the actual underlying epidemics, but this is not true using data collected on the county level. Such analyses of data collected on different spatial scales are useful in formulating intervention strategies to control an ongoing epidemic (e.g., vaccination schedules and culling policies).</description><subject>Animal Husbandry</subject><subject>Animals</subject><subject>Avian influenza</subject><subject>Computer Simulation</subject><subject>Disease Models, Animal</subject><subject>Disease Outbreaks</subject><subject>Estimators</subject><subject>Geography</subject><subject>Infectious Disease</subject><subject>Influenza in Birds - epidemiology</subject><subject>Influenza in Birds - transmission</subject><subject>Internal Medicine</subject><subject>Likelihood Functions</subject><subject>Mathematical models</subject><subject>Models, Biological</subject><subject>Parameter estimation</subject><subject>Pennsylvania - epidemiology</subject><subject>Poultry</subject><subject>Stochastic Processes</subject><subject>ZIP-codes</subject><issn>1755-4365</issn><issn>1878-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUk1v1DAQtRCIlsI_QMg3TgkeO46TCxKqyodUqYe2Z-O1J10vSbzYzkr99zjaUqAXfLHlmffezLwh5C2wGhi0H3Y17r3DqeYMoGa8Zkw8I6fQqa5irFXPy1tJWTWilSfkVUq78tsAiJfkhIOUXCh2Sr5f52C3JmVv6RQcjn6-o2GgZvaTGelRwttEl7RGnMmG2jCOaDM6Gg4Yad5GROr8MGDEOdO0N9kXbLJmxPSavBjMmPDNw31Gbj9f3Jx_rS6vvnw7_3RZWQkqV0ZIBwNrBicMtIY7ayWXYBB6JzZOuda63rhOSAEtx970DQ4922CPvdy4VpyRj0fe_bKZ0NlSSTSj3sfSR7zXwXj9b2T2W30XDlqwTnHgheD9A0EMPxdMWU8-WRxHM2NYku7aXiroGZTM5phpY0gp4vCoAkyv3uidPg5Or95oxnXxpsDe_V3hI-i3GX9awDKng8eok_U4W3Q-lnlrF_z_FJ4S2OKnLz78wHtMu7DEuXigQacC0NfrfqzrAcDKUUr8AuGvufE</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Rorres, Chris</creator><creator>Pelletier, Sky T.K</creator><creator>Smith, Gary</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110601</creationdate><title>Stochastic modeling of animal epidemics using data collected over three different spatial scales</title><author>Rorres, Chris ; Pelletier, Sky T.K ; Smith, Gary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-a35d1f04fd3a16a2dcc5251ae19d3bd7d6cd9ad8353162e9a94ef90be9e95bd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animal Husbandry</topic><topic>Animals</topic><topic>Avian influenza</topic><topic>Computer Simulation</topic><topic>Disease Models, Animal</topic><topic>Disease Outbreaks</topic><topic>Estimators</topic><topic>Geography</topic><topic>Infectious Disease</topic><topic>Influenza in Birds - epidemiology</topic><topic>Influenza in Birds - transmission</topic><topic>Internal Medicine</topic><topic>Likelihood Functions</topic><topic>Mathematical models</topic><topic>Models, Biological</topic><topic>Parameter estimation</topic><topic>Pennsylvania - epidemiology</topic><topic>Poultry</topic><topic>Stochastic Processes</topic><topic>ZIP-codes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rorres, Chris</creatorcontrib><creatorcontrib>Pelletier, Sky T.K</creatorcontrib><creatorcontrib>Smith, Gary</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Epidemics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rorres, Chris</au><au>Pelletier, Sky T.K</au><au>Smith, Gary</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic modeling of animal epidemics using data collected over three different spatial scales</atitle><jtitle>Epidemics</jtitle><addtitle>Epidemics</addtitle><date>2011-06-01</date><risdate>2011</risdate><volume>3</volume><issue>2</issue><spage>61</spage><epage>70</epage><pages>61-70</pages><issn>1755-4365</issn><eissn>1878-0067</eissn><abstract>Abstract A stochastic, spatial, discrete-time, SEIR model of avian influenza epidemics among poultry farms in Pennsylvania is formulated. Using three different spatial scales wherein all the birds within a single farm, ZIP code, or county are clustered into a single point, we obtain three different views of the epidemics. For each spatial scale, two parameters within the viral-transmission kernel of the model are estimated using simulated epidemic data. We show that simulated epidemics modeled using data collected on the farm and ZIP-code levels behave similar to the actual underlying epidemics, but this is not true using data collected on the county level. Such analyses of data collected on different spatial scales are useful in formulating intervention strategies to control an ongoing epidemic (e.g., vaccination schedules and culling policies).</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>21552370</pmid><doi>10.1016/j.epidem.2011.02.003</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-4365
ispartof Epidemics, 2011-06, Vol.3 (2), p.61-70
issn 1755-4365
1878-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3087212
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Animal Husbandry
Animals
Avian influenza
Computer Simulation
Disease Models, Animal
Disease Outbreaks
Estimators
Geography
Infectious Disease
Influenza in Birds - epidemiology
Influenza in Birds - transmission
Internal Medicine
Likelihood Functions
Mathematical models
Models, Biological
Parameter estimation
Pennsylvania - epidemiology
Poultry
Stochastic Processes
ZIP-codes
title Stochastic modeling of animal epidemics using data collected over three different spatial scales
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A39%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20modeling%20of%20animal%20epidemics%20using%20data%20collected%20over%20three%20different%20spatial%20scales&rft.jtitle=Epidemics&rft.au=Rorres,%20Chris&rft.date=2011-06-01&rft.volume=3&rft.issue=2&rft.spage=61&rft.epage=70&rft.pages=61-70&rft.issn=1755-4365&rft.eissn=1878-0067&rft_id=info:doi/10.1016/j.epidem.2011.02.003&rft_dat=%3Cproquest_pubme%3E869571901%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869571901&rft_id=info:pmid/21552370&rft_els_id=S1755436511000077&rfr_iscdi=true