Self-Assembly of Photosynthetic Membranes
Bacterial photosynthetic membranes, also known as chromatophores, are tightly packed with integral membrane proteins that work together to carry out photosynthesis. Chromatophores display a wide range of cellular morphologies; spherical, tubular, and lamellar chromatophores have all been observed in...
Gespeichert in:
Veröffentlicht in: | Chemphyschem 2010-04, Vol.11 (6), p.1154-1159 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1159 |
---|---|
container_issue | 6 |
container_start_page | 1154 |
container_title | Chemphyschem |
container_volume | 11 |
creator | Hsin, Jen Chandler, Danielle E. Gumbart, James Harrison, Christopher B. Sener, Melih Strumpfer, Johan Schulten, Klaus |
description | Bacterial photosynthetic membranes, also known as chromatophores, are tightly packed with integral membrane proteins that work together to carry out photosynthesis. Chromatophores display a wide range of cellular morphologies; spherical, tubular, and lamellar chromatophores have all been observed in different bacterial species, or with different protein constituents. Through recent computational modeling and simulation, it has been demonstrated that the light‐harvesting complexes abundant in chromatophores induce local membrane curvature via multiple mechanisms. These protein complexes assemble to generate a global curvature and sculpt the chromatophores into various cellular‐scale architectures.
Seeing the light: The overall architecture of chromatophores, the simplest prototype of photosynthetic machinery (see picture), is considered and the computational methods used to address how their distinct shapes arise are examined. The light‐harvesting protein complexes abundant in chromatophores induce local membrane curvature via multiple mechanisms. |
doi_str_mv | 10.1002/cphc.200900911 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3086839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733914524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5071-899bcf93162af9681a9af153ef584e5907f2ca6170cdf6d8a8374cef1461e7273</originalsourceid><addsrcrecordid>eNqFkMlLAzEYxYMoWperR-lFxMPU7MtFqIO2iktxwWNI08SOTmfqZKr2vzeltdaTEEjg-733vTwA9hFsIQjxiR0PbQtDqOJBaA00ECUqEZyi9cWbYsK2wHYIrxBCCQXaBFsYIkkkZQ1w_OByn7RDcKN-Pm2WvtkblnUZpkU9dHVmmzdxUJnChV2w4U0e3N7i3gFPF-ePaTe5vutcpu3rxLJonkil-tYrgjg2XnGJjDIeMeI8k9QxBYXH1nAkoB14PpBGEkGt84hy5AQWZAeczn3Hk_7IDawr6srkelxlI1NNdWky_XdSZEP9Un5oAiWXREWDo4VBVb5PXKj1KAvW5Xn8RTkJWhCiEGWYRrI1J21VhlA5v9yCoJ7Vq2f16mW9UXCwmm2J__QZgcMFYII1uY_N2Sz8clhwQvkso5pzn1nupv-s1Wmvm66GSObaLNTua6k11Zvmggimn287-ow9p_dXnSvdId_YUKLR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733914524</pqid></control><display><type>article</type><title>Self-Assembly of Photosynthetic Membranes</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hsin, Jen ; Chandler, Danielle E. ; Gumbart, James ; Harrison, Christopher B. ; Sener, Melih ; Strumpfer, Johan ; Schulten, Klaus</creator><creatorcontrib>Hsin, Jen ; Chandler, Danielle E. ; Gumbart, James ; Harrison, Christopher B. ; Sener, Melih ; Strumpfer, Johan ; Schulten, Klaus</creatorcontrib><description>Bacterial photosynthetic membranes, also known as chromatophores, are tightly packed with integral membrane proteins that work together to carry out photosynthesis. Chromatophores display a wide range of cellular morphologies; spherical, tubular, and lamellar chromatophores have all been observed in different bacterial species, or with different protein constituents. Through recent computational modeling and simulation, it has been demonstrated that the light‐harvesting complexes abundant in chromatophores induce local membrane curvature via multiple mechanisms. These protein complexes assemble to generate a global curvature and sculpt the chromatophores into various cellular‐scale architectures.
Seeing the light: The overall architecture of chromatophores, the simplest prototype of photosynthetic machinery (see picture), is considered and the computational methods used to address how their distinct shapes arise are examined. The light‐harvesting protein complexes abundant in chromatophores induce local membrane curvature via multiple mechanisms.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.200900911</identifier><identifier>PMID: 20183845</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Bacterial Proteins - chemistry ; Biological and medical sciences ; Chemistry ; chromatophores ; Chromatophores - chemistry ; Colloidal state and disperse state ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General and physical chemistry ; Light-Harvesting Protein Complexes - chemistry ; membrane curvature ; Membrane Proteins - chemistry ; Membranes ; Molecular biophysics ; Molecular Dynamics Simulation ; Photosynthesis ; Protein Structure, Tertiary ; self-assembly</subject><ispartof>Chemphyschem, 2010-04, Vol.11 (6), p.1154-1159</ispartof><rights>Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5071-899bcf93162af9681a9af153ef584e5907f2ca6170cdf6d8a8374cef1461e7273</citedby><cites>FETCH-LOGICAL-c5071-899bcf93162af9681a9af153ef584e5907f2ca6170cdf6d8a8374cef1461e7273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcphc.200900911$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcphc.200900911$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22763469$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20183845$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hsin, Jen</creatorcontrib><creatorcontrib>Chandler, Danielle E.</creatorcontrib><creatorcontrib>Gumbart, James</creatorcontrib><creatorcontrib>Harrison, Christopher B.</creatorcontrib><creatorcontrib>Sener, Melih</creatorcontrib><creatorcontrib>Strumpfer, Johan</creatorcontrib><creatorcontrib>Schulten, Klaus</creatorcontrib><title>Self-Assembly of Photosynthetic Membranes</title><title>Chemphyschem</title><addtitle>ChemPhysChem</addtitle><description>Bacterial photosynthetic membranes, also known as chromatophores, are tightly packed with integral membrane proteins that work together to carry out photosynthesis. Chromatophores display a wide range of cellular morphologies; spherical, tubular, and lamellar chromatophores have all been observed in different bacterial species, or with different protein constituents. Through recent computational modeling and simulation, it has been demonstrated that the light‐harvesting complexes abundant in chromatophores induce local membrane curvature via multiple mechanisms. These protein complexes assemble to generate a global curvature and sculpt the chromatophores into various cellular‐scale architectures.
Seeing the light: The overall architecture of chromatophores, the simplest prototype of photosynthetic machinery (see picture), is considered and the computational methods used to address how their distinct shapes arise are examined. The light‐harvesting protein complexes abundant in chromatophores induce local membrane curvature via multiple mechanisms.</description><subject>Bacterial Proteins - chemistry</subject><subject>Biological and medical sciences</subject><subject>Chemistry</subject><subject>chromatophores</subject><subject>Chromatophores - chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General and physical chemistry</subject><subject>Light-Harvesting Protein Complexes - chemistry</subject><subject>membrane curvature</subject><subject>Membrane Proteins - chemistry</subject><subject>Membranes</subject><subject>Molecular biophysics</subject><subject>Molecular Dynamics Simulation</subject><subject>Photosynthesis</subject><subject>Protein Structure, Tertiary</subject><subject>self-assembly</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMlLAzEYxYMoWperR-lFxMPU7MtFqIO2iktxwWNI08SOTmfqZKr2vzeltdaTEEjg-733vTwA9hFsIQjxiR0PbQtDqOJBaA00ECUqEZyi9cWbYsK2wHYIrxBCCQXaBFsYIkkkZQ1w_OByn7RDcKN-Pm2WvtkblnUZpkU9dHVmmzdxUJnChV2w4U0e3N7i3gFPF-ePaTe5vutcpu3rxLJonkil-tYrgjg2XnGJjDIeMeI8k9QxBYXH1nAkoB14PpBGEkGt84hy5AQWZAeczn3Hk_7IDawr6srkelxlI1NNdWky_XdSZEP9Un5oAiWXREWDo4VBVb5PXKj1KAvW5Xn8RTkJWhCiEGWYRrI1J21VhlA5v9yCoJ7Vq2f16mW9UXCwmm2J__QZgcMFYII1uY_N2Sz8clhwQvkso5pzn1nupv-s1Wmvm66GSObaLNTua6k11Zvmggimn287-ow9p_dXnSvdId_YUKLR</recordid><startdate>20100426</startdate><enddate>20100426</enddate><creator>Hsin, Jen</creator><creator>Chandler, Danielle E.</creator><creator>Gumbart, James</creator><creator>Harrison, Christopher B.</creator><creator>Sener, Melih</creator><creator>Strumpfer, Johan</creator><creator>Schulten, Klaus</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100426</creationdate><title>Self-Assembly of Photosynthetic Membranes</title><author>Hsin, Jen ; Chandler, Danielle E. ; Gumbart, James ; Harrison, Christopher B. ; Sener, Melih ; Strumpfer, Johan ; Schulten, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5071-899bcf93162af9681a9af153ef584e5907f2ca6170cdf6d8a8374cef1461e7273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bacterial Proteins - chemistry</topic><topic>Biological and medical sciences</topic><topic>Chemistry</topic><topic>chromatophores</topic><topic>Chromatophores - chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General and physical chemistry</topic><topic>Light-Harvesting Protein Complexes - chemistry</topic><topic>membrane curvature</topic><topic>Membrane Proteins - chemistry</topic><topic>Membranes</topic><topic>Molecular biophysics</topic><topic>Molecular Dynamics Simulation</topic><topic>Photosynthesis</topic><topic>Protein Structure, Tertiary</topic><topic>self-assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsin, Jen</creatorcontrib><creatorcontrib>Chandler, Danielle E.</creatorcontrib><creatorcontrib>Gumbart, James</creatorcontrib><creatorcontrib>Harrison, Christopher B.</creatorcontrib><creatorcontrib>Sener, Melih</creatorcontrib><creatorcontrib>Strumpfer, Johan</creatorcontrib><creatorcontrib>Schulten, Klaus</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsin, Jen</au><au>Chandler, Danielle E.</au><au>Gumbart, James</au><au>Harrison, Christopher B.</au><au>Sener, Melih</au><au>Strumpfer, Johan</au><au>Schulten, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Assembly of Photosynthetic Membranes</atitle><jtitle>Chemphyschem</jtitle><addtitle>ChemPhysChem</addtitle><date>2010-04-26</date><risdate>2010</risdate><volume>11</volume><issue>6</issue><spage>1154</spage><epage>1159</epage><pages>1154-1159</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>Bacterial photosynthetic membranes, also known as chromatophores, are tightly packed with integral membrane proteins that work together to carry out photosynthesis. Chromatophores display a wide range of cellular morphologies; spherical, tubular, and lamellar chromatophores have all been observed in different bacterial species, or with different protein constituents. Through recent computational modeling and simulation, it has been demonstrated that the light‐harvesting complexes abundant in chromatophores induce local membrane curvature via multiple mechanisms. These protein complexes assemble to generate a global curvature and sculpt the chromatophores into various cellular‐scale architectures.
Seeing the light: The overall architecture of chromatophores, the simplest prototype of photosynthetic machinery (see picture), is considered and the computational methods used to address how their distinct shapes arise are examined. The light‐harvesting protein complexes abundant in chromatophores induce local membrane curvature via multiple mechanisms.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>20183845</pmid><doi>10.1002/cphc.200900911</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-4235 |
ispartof | Chemphyschem, 2010-04, Vol.11 (6), p.1154-1159 |
issn | 1439-4235 1439-7641 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3086839 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Bacterial Proteins - chemistry Biological and medical sciences Chemistry chromatophores Chromatophores - chemistry Colloidal state and disperse state Exact sciences and technology Fundamental and applied biological sciences. Psychology General and physical chemistry Light-Harvesting Protein Complexes - chemistry membrane curvature Membrane Proteins - chemistry Membranes Molecular biophysics Molecular Dynamics Simulation Photosynthesis Protein Structure, Tertiary self-assembly |
title | Self-Assembly of Photosynthetic Membranes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A42%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Assembly%20of%20Photosynthetic%20Membranes&rft.jtitle=Chemphyschem&rft.au=Hsin,%20Jen&rft.date=2010-04-26&rft.volume=11&rft.issue=6&rft.spage=1154&rft.epage=1159&rft.pages=1154-1159&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.200900911&rft_dat=%3Cproquest_pubme%3E733914524%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733914524&rft_id=info:pmid/20183845&rfr_iscdi=true |