Self-Assembly of Photosynthetic Membranes

Bacterial photosynthetic membranes, also known as chromatophores, are tightly packed with integral membrane proteins that work together to carry out photosynthesis. Chromatophores display a wide range of cellular morphologies; spherical, tubular, and lamellar chromatophores have all been observed in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemphyschem 2010-04, Vol.11 (6), p.1154-1159
Hauptverfasser: Hsin, Jen, Chandler, Danielle E., Gumbart, James, Harrison, Christopher B., Sener, Melih, Strumpfer, Johan, Schulten, Klaus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1159
container_issue 6
container_start_page 1154
container_title Chemphyschem
container_volume 11
creator Hsin, Jen
Chandler, Danielle E.
Gumbart, James
Harrison, Christopher B.
Sener, Melih
Strumpfer, Johan
Schulten, Klaus
description Bacterial photosynthetic membranes, also known as chromatophores, are tightly packed with integral membrane proteins that work together to carry out photosynthesis. Chromatophores display a wide range of cellular morphologies; spherical, tubular, and lamellar chromatophores have all been observed in different bacterial species, or with different protein constituents. Through recent computational modeling and simulation, it has been demonstrated that the light‐harvesting complexes abundant in chromatophores induce local membrane curvature via multiple mechanisms. These protein complexes assemble to generate a global curvature and sculpt the chromatophores into various cellular‐scale architectures. Seeing the light: The overall architecture of chromatophores, the simplest prototype of photosynthetic machinery (see picture), is considered and the computational methods used to address how their distinct shapes arise are examined. The light‐harvesting protein complexes abundant in chromatophores induce local membrane curvature via multiple mechanisms.
doi_str_mv 10.1002/cphc.200900911
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3086839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733914524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5071-899bcf93162af9681a9af153ef584e5907f2ca6170cdf6d8a8374cef1461e7273</originalsourceid><addsrcrecordid>eNqFkMlLAzEYxYMoWperR-lFxMPU7MtFqIO2iktxwWNI08SOTmfqZKr2vzeltdaTEEjg-733vTwA9hFsIQjxiR0PbQtDqOJBaA00ECUqEZyi9cWbYsK2wHYIrxBCCQXaBFsYIkkkZQ1w_OByn7RDcKN-Pm2WvtkblnUZpkU9dHVmmzdxUJnChV2w4U0e3N7i3gFPF-ePaTe5vutcpu3rxLJonkil-tYrgjg2XnGJjDIeMeI8k9QxBYXH1nAkoB14PpBGEkGt84hy5AQWZAeczn3Hk_7IDawr6srkelxlI1NNdWky_XdSZEP9Un5oAiWXREWDo4VBVb5PXKj1KAvW5Xn8RTkJWhCiEGWYRrI1J21VhlA5v9yCoJ7Vq2f16mW9UXCwmm2J__QZgcMFYII1uY_N2Sz8clhwQvkso5pzn1nupv-s1Wmvm66GSObaLNTua6k11Zvmggimn287-ow9p_dXnSvdId_YUKLR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733914524</pqid></control><display><type>article</type><title>Self-Assembly of Photosynthetic Membranes</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hsin, Jen ; Chandler, Danielle E. ; Gumbart, James ; Harrison, Christopher B. ; Sener, Melih ; Strumpfer, Johan ; Schulten, Klaus</creator><creatorcontrib>Hsin, Jen ; Chandler, Danielle E. ; Gumbart, James ; Harrison, Christopher B. ; Sener, Melih ; Strumpfer, Johan ; Schulten, Klaus</creatorcontrib><description>Bacterial photosynthetic membranes, also known as chromatophores, are tightly packed with integral membrane proteins that work together to carry out photosynthesis. Chromatophores display a wide range of cellular morphologies; spherical, tubular, and lamellar chromatophores have all been observed in different bacterial species, or with different protein constituents. Through recent computational modeling and simulation, it has been demonstrated that the light‐harvesting complexes abundant in chromatophores induce local membrane curvature via multiple mechanisms. These protein complexes assemble to generate a global curvature and sculpt the chromatophores into various cellular‐scale architectures. Seeing the light: The overall architecture of chromatophores, the simplest prototype of photosynthetic machinery (see picture), is considered and the computational methods used to address how their distinct shapes arise are examined. The light‐harvesting protein complexes abundant in chromatophores induce local membrane curvature via multiple mechanisms.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.200900911</identifier><identifier>PMID: 20183845</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Bacterial Proteins - chemistry ; Biological and medical sciences ; Chemistry ; chromatophores ; Chromatophores - chemistry ; Colloidal state and disperse state ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General and physical chemistry ; Light-Harvesting Protein Complexes - chemistry ; membrane curvature ; Membrane Proteins - chemistry ; Membranes ; Molecular biophysics ; Molecular Dynamics Simulation ; Photosynthesis ; Protein Structure, Tertiary ; self-assembly</subject><ispartof>Chemphyschem, 2010-04, Vol.11 (6), p.1154-1159</ispartof><rights>Copyright © 2010 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5071-899bcf93162af9681a9af153ef584e5907f2ca6170cdf6d8a8374cef1461e7273</citedby><cites>FETCH-LOGICAL-c5071-899bcf93162af9681a9af153ef584e5907f2ca6170cdf6d8a8374cef1461e7273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcphc.200900911$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcphc.200900911$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22763469$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20183845$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hsin, Jen</creatorcontrib><creatorcontrib>Chandler, Danielle E.</creatorcontrib><creatorcontrib>Gumbart, James</creatorcontrib><creatorcontrib>Harrison, Christopher B.</creatorcontrib><creatorcontrib>Sener, Melih</creatorcontrib><creatorcontrib>Strumpfer, Johan</creatorcontrib><creatorcontrib>Schulten, Klaus</creatorcontrib><title>Self-Assembly of Photosynthetic Membranes</title><title>Chemphyschem</title><addtitle>ChemPhysChem</addtitle><description>Bacterial photosynthetic membranes, also known as chromatophores, are tightly packed with integral membrane proteins that work together to carry out photosynthesis. Chromatophores display a wide range of cellular morphologies; spherical, tubular, and lamellar chromatophores have all been observed in different bacterial species, or with different protein constituents. Through recent computational modeling and simulation, it has been demonstrated that the light‐harvesting complexes abundant in chromatophores induce local membrane curvature via multiple mechanisms. These protein complexes assemble to generate a global curvature and sculpt the chromatophores into various cellular‐scale architectures. Seeing the light: The overall architecture of chromatophores, the simplest prototype of photosynthetic machinery (see picture), is considered and the computational methods used to address how their distinct shapes arise are examined. The light‐harvesting protein complexes abundant in chromatophores induce local membrane curvature via multiple mechanisms.</description><subject>Bacterial Proteins - chemistry</subject><subject>Biological and medical sciences</subject><subject>Chemistry</subject><subject>chromatophores</subject><subject>Chromatophores - chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General and physical chemistry</subject><subject>Light-Harvesting Protein Complexes - chemistry</subject><subject>membrane curvature</subject><subject>Membrane Proteins - chemistry</subject><subject>Membranes</subject><subject>Molecular biophysics</subject><subject>Molecular Dynamics Simulation</subject><subject>Photosynthesis</subject><subject>Protein Structure, Tertiary</subject><subject>self-assembly</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMlLAzEYxYMoWperR-lFxMPU7MtFqIO2iktxwWNI08SOTmfqZKr2vzeltdaTEEjg-733vTwA9hFsIQjxiR0PbQtDqOJBaA00ECUqEZyi9cWbYsK2wHYIrxBCCQXaBFsYIkkkZQ1w_OByn7RDcKN-Pm2WvtkblnUZpkU9dHVmmzdxUJnChV2w4U0e3N7i3gFPF-ePaTe5vutcpu3rxLJonkil-tYrgjg2XnGJjDIeMeI8k9QxBYXH1nAkoB14PpBGEkGt84hy5AQWZAeczn3Hk_7IDawr6srkelxlI1NNdWky_XdSZEP9Un5oAiWXREWDo4VBVb5PXKj1KAvW5Xn8RTkJWhCiEGWYRrI1J21VhlA5v9yCoJ7Vq2f16mW9UXCwmm2J__QZgcMFYII1uY_N2Sz8clhwQvkso5pzn1nupv-s1Wmvm66GSObaLNTua6k11Zvmggimn287-ow9p_dXnSvdId_YUKLR</recordid><startdate>20100426</startdate><enddate>20100426</enddate><creator>Hsin, Jen</creator><creator>Chandler, Danielle E.</creator><creator>Gumbart, James</creator><creator>Harrison, Christopher B.</creator><creator>Sener, Melih</creator><creator>Strumpfer, Johan</creator><creator>Schulten, Klaus</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100426</creationdate><title>Self-Assembly of Photosynthetic Membranes</title><author>Hsin, Jen ; Chandler, Danielle E. ; Gumbart, James ; Harrison, Christopher B. ; Sener, Melih ; Strumpfer, Johan ; Schulten, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5071-899bcf93162af9681a9af153ef584e5907f2ca6170cdf6d8a8374cef1461e7273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bacterial Proteins - chemistry</topic><topic>Biological and medical sciences</topic><topic>Chemistry</topic><topic>chromatophores</topic><topic>Chromatophores - chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General and physical chemistry</topic><topic>Light-Harvesting Protein Complexes - chemistry</topic><topic>membrane curvature</topic><topic>Membrane Proteins - chemistry</topic><topic>Membranes</topic><topic>Molecular biophysics</topic><topic>Molecular Dynamics Simulation</topic><topic>Photosynthesis</topic><topic>Protein Structure, Tertiary</topic><topic>self-assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsin, Jen</creatorcontrib><creatorcontrib>Chandler, Danielle E.</creatorcontrib><creatorcontrib>Gumbart, James</creatorcontrib><creatorcontrib>Harrison, Christopher B.</creatorcontrib><creatorcontrib>Sener, Melih</creatorcontrib><creatorcontrib>Strumpfer, Johan</creatorcontrib><creatorcontrib>Schulten, Klaus</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsin, Jen</au><au>Chandler, Danielle E.</au><au>Gumbart, James</au><au>Harrison, Christopher B.</au><au>Sener, Melih</au><au>Strumpfer, Johan</au><au>Schulten, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Assembly of Photosynthetic Membranes</atitle><jtitle>Chemphyschem</jtitle><addtitle>ChemPhysChem</addtitle><date>2010-04-26</date><risdate>2010</risdate><volume>11</volume><issue>6</issue><spage>1154</spage><epage>1159</epage><pages>1154-1159</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>Bacterial photosynthetic membranes, also known as chromatophores, are tightly packed with integral membrane proteins that work together to carry out photosynthesis. Chromatophores display a wide range of cellular morphologies; spherical, tubular, and lamellar chromatophores have all been observed in different bacterial species, or with different protein constituents. Through recent computational modeling and simulation, it has been demonstrated that the light‐harvesting complexes abundant in chromatophores induce local membrane curvature via multiple mechanisms. These protein complexes assemble to generate a global curvature and sculpt the chromatophores into various cellular‐scale architectures. Seeing the light: The overall architecture of chromatophores, the simplest prototype of photosynthetic machinery (see picture), is considered and the computational methods used to address how their distinct shapes arise are examined. The light‐harvesting protein complexes abundant in chromatophores induce local membrane curvature via multiple mechanisms.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>20183845</pmid><doi>10.1002/cphc.200900911</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1439-4235
ispartof Chemphyschem, 2010-04, Vol.11 (6), p.1154-1159
issn 1439-4235
1439-7641
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3086839
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Bacterial Proteins - chemistry
Biological and medical sciences
Chemistry
chromatophores
Chromatophores - chemistry
Colloidal state and disperse state
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General and physical chemistry
Light-Harvesting Protein Complexes - chemistry
membrane curvature
Membrane Proteins - chemistry
Membranes
Molecular biophysics
Molecular Dynamics Simulation
Photosynthesis
Protein Structure, Tertiary
self-assembly
title Self-Assembly of Photosynthetic Membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A42%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Assembly%20of%20Photosynthetic%20Membranes&rft.jtitle=Chemphyschem&rft.au=Hsin,%20Jen&rft.date=2010-04-26&rft.volume=11&rft.issue=6&rft.spage=1154&rft.epage=1159&rft.pages=1154-1159&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.200900911&rft_dat=%3Cproquest_pubme%3E733914524%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733914524&rft_id=info:pmid/20183845&rfr_iscdi=true