Directionally solidified biopolymer scaffolds: Mechanical properties and endothelial cell responses
Vascularization is a primary challenge in tissue engineering. To achieve it in a tissue scaffold, an environment with the appropriate structural, mechanical, and biochemical cues must be provided enabling endothelial cells to direct blood vessel growth. While biochemical stimuli such as growth facto...
Gespeichert in:
Veröffentlicht in: | JOM (1989) 2010-07, Vol.62 (7), p.71-75 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 75 |
---|---|
container_issue | 7 |
container_start_page | 71 |
container_title | JOM (1989) |
container_volume | 62 |
creator | Meghri, Nicholas W. Donius, Amalie E. Riblett, Benjamin W. Martin, Elizabeth J. Clyne, Alisa Morss Wegst, Ulrike G. K. |
description | Vascularization is a primary challenge in tissue engineering. To achieve it in a tissue scaffold, an environment with the appropriate structural, mechanical, and biochemical cues must be provided enabling endothelial cells to direct blood vessel growth. While biochemical stimuli such as growth factors can be added through the scaffold material, the culture medium, or both, a well-designed tissue engineering scaffold is required to provide the necessary local structural and mechanical cues. As chitosan is a well-known carrier for biochemical stimuli, the focus of this study was on structure-property correlations, to evaluate the effects of composition and processing conditions on the three-dimensional architecture and properties of freeze-cast scaffolds; to establish whether freeze-east scaffolds are promising candidates as constructs promoting vascularization; and to conduct initial tissue culture studies with endothelial cells on flat substrates of identical compositions as those of the scaffolds to test whether these are biocompatible and promote cell attachment and proliferation. |
doi_str_mv | 10.1007/s11837-010-0112-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3085457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835551861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-d7524d7e848cd7c0ad70993b7f104f6bff9a10043097fc1abccb16114e1852cb3</originalsourceid><addsrcrecordid>eNp1kU2LFDEQhoMo7of-AC_SePLSmupOOmkPwrK6Kqx40XNIJ5WdLJlOm-oR5t-bYdb1AzyEBOqpt_LWy9gz4K-Ac_WaAHSvWg68Huja8QE7BSn6FrSEh_XNhWqF7vUJOyO65bVHjPCYnXSVEl0nT5l7Fwu6NebZprRvKKfoY4jomynmJaf9FktDzoaQk6c3zWd0GztHZ1OzlLxgWSNSY2ff4OzzusEUa8lhSk1BWvJMSE_Yo2AT4dO7-5x9u3r_9fJje_3lw6fLi-vWiWFcW69kJ7xCLbTzynHrFR_HflKh-gjDFMJoq23R81EFB3ZyboIBQGC127mpP2dvj7rLbtqidzivxSazlLi1ZW-yjebvyhw35ib_MD3XUkhVBV7eCZT8fYe0mm2kgxc7Y96RqduWUoIeoKIv_kFv867UJZJRclBKA4wVgiPkSiYqGO7_AtwcEjTHBE1N0BwSNIee53-auO_4FVkFuiNAtTTfYPk9-f-qPwF2makC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>756778119</pqid></control><display><type>article</type><title>Directionally solidified biopolymer scaffolds: Mechanical properties and endothelial cell responses</title><source>Springer Nature - Complete Springer Journals</source><creator>Meghri, Nicholas W. ; Donius, Amalie E. ; Riblett, Benjamin W. ; Martin, Elizabeth J. ; Clyne, Alisa Morss ; Wegst, Ulrike G. K.</creator><creatorcontrib>Meghri, Nicholas W. ; Donius, Amalie E. ; Riblett, Benjamin W. ; Martin, Elizabeth J. ; Clyne, Alisa Morss ; Wegst, Ulrike G. K.</creatorcontrib><description>Vascularization is a primary challenge in tissue engineering. To achieve it in a tissue scaffold, an environment with the appropriate structural, mechanical, and biochemical cues must be provided enabling endothelial cells to direct blood vessel growth. While biochemical stimuli such as growth factors can be added through the scaffold material, the culture medium, or both, a well-designed tissue engineering scaffold is required to provide the necessary local structural and mechanical cues. As chitosan is a well-known carrier for biochemical stimuli, the focus of this study was on structure-property correlations, to evaluate the effects of composition and processing conditions on the three-dimensional architecture and properties of freeze-cast scaffolds; to establish whether freeze-east scaffolds are promising candidates as constructs promoting vascularization; and to conduct initial tissue culture studies with endothelial cells on flat substrates of identical compositions as those of the scaffolds to test whether these are biocompatible and promote cell attachment and proliferation.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-010-0112-9</identifier><identifier>PMID: 21544225</identifier><identifier>CODEN: JOMMER</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Biological and Biomedical Materials ; Biopolymers ; Blood vessels ; Cells ; Chemistry/Food Science ; Copper ; Density ; Directional solidification ; Earth Sciences ; Engineering ; Environment ; Geometry ; Growth factors ; Mechanical properties ; Morphology ; Physics ; Polymers ; Pore size ; Porosity ; Research Summary ; Solids ; Studies ; Tissue engineering</subject><ispartof>JOM (1989), 2010-07, Vol.62 (7), p.71-75</ispartof><rights>TMS 2010</rights><rights>Copyright Minerals, Metals & Materials Society Jul 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-d7524d7e848cd7c0ad70993b7f104f6bff9a10043097fc1abccb16114e1852cb3</citedby><cites>FETCH-LOGICAL-c469t-d7524d7e848cd7c0ad70993b7f104f6bff9a10043097fc1abccb16114e1852cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-010-0112-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-010-0112-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21544225$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meghri, Nicholas W.</creatorcontrib><creatorcontrib>Donius, Amalie E.</creatorcontrib><creatorcontrib>Riblett, Benjamin W.</creatorcontrib><creatorcontrib>Martin, Elizabeth J.</creatorcontrib><creatorcontrib>Clyne, Alisa Morss</creatorcontrib><creatorcontrib>Wegst, Ulrike G. K.</creatorcontrib><title>Directionally solidified biopolymer scaffolds: Mechanical properties and endothelial cell responses</title><title>JOM (1989)</title><addtitle>JOM</addtitle><addtitle>JOM (1989)</addtitle><description>Vascularization is a primary challenge in tissue engineering. To achieve it in a tissue scaffold, an environment with the appropriate structural, mechanical, and biochemical cues must be provided enabling endothelial cells to direct blood vessel growth. While biochemical stimuli such as growth factors can be added through the scaffold material, the culture medium, or both, a well-designed tissue engineering scaffold is required to provide the necessary local structural and mechanical cues. As chitosan is a well-known carrier for biochemical stimuli, the focus of this study was on structure-property correlations, to evaluate the effects of composition and processing conditions on the three-dimensional architecture and properties of freeze-cast scaffolds; to establish whether freeze-east scaffolds are promising candidates as constructs promoting vascularization; and to conduct initial tissue culture studies with endothelial cells on flat substrates of identical compositions as those of the scaffolds to test whether these are biocompatible and promote cell attachment and proliferation.</description><subject>Biological and Biomedical Materials</subject><subject>Biopolymers</subject><subject>Blood vessels</subject><subject>Cells</subject><subject>Chemistry/Food Science</subject><subject>Copper</subject><subject>Density</subject><subject>Directional solidification</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Environment</subject><subject>Geometry</subject><subject>Growth factors</subject><subject>Mechanical properties</subject><subject>Morphology</subject><subject>Physics</subject><subject>Polymers</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Research Summary</subject><subject>Solids</subject><subject>Studies</subject><subject>Tissue engineering</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU2LFDEQhoMo7of-AC_SePLSmupOOmkPwrK6Kqx40XNIJ5WdLJlOm-oR5t-bYdb1AzyEBOqpt_LWy9gz4K-Ac_WaAHSvWg68Huja8QE7BSn6FrSEh_XNhWqF7vUJOyO65bVHjPCYnXSVEl0nT5l7Fwu6NebZprRvKKfoY4jomynmJaf9FktDzoaQk6c3zWd0GztHZ1OzlLxgWSNSY2ff4OzzusEUa8lhSk1BWvJMSE_Yo2AT4dO7-5x9u3r_9fJje_3lw6fLi-vWiWFcW69kJ7xCLbTzynHrFR_HflKh-gjDFMJoq23R81EFB3ZyboIBQGC127mpP2dvj7rLbtqidzivxSazlLi1ZW-yjebvyhw35ib_MD3XUkhVBV7eCZT8fYe0mm2kgxc7Y96RqduWUoIeoKIv_kFv867UJZJRclBKA4wVgiPkSiYqGO7_AtwcEjTHBE1N0BwSNIee53-auO_4FVkFuiNAtTTfYPk9-f-qPwF2makC</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Meghri, Nicholas W.</creator><creator>Donius, Amalie E.</creator><creator>Riblett, Benjamin W.</creator><creator>Martin, Elizabeth J.</creator><creator>Clyne, Alisa Morss</creator><creator>Wegst, Ulrike G. K.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100701</creationdate><title>Directionally solidified biopolymer scaffolds: Mechanical properties and endothelial cell responses</title><author>Meghri, Nicholas W. ; Donius, Amalie E. ; Riblett, Benjamin W. ; Martin, Elizabeth J. ; Clyne, Alisa Morss ; Wegst, Ulrike G. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-d7524d7e848cd7c0ad70993b7f104f6bff9a10043097fc1abccb16114e1852cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biological and Biomedical Materials</topic><topic>Biopolymers</topic><topic>Blood vessels</topic><topic>Cells</topic><topic>Chemistry/Food Science</topic><topic>Copper</topic><topic>Density</topic><topic>Directional solidification</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Environment</topic><topic>Geometry</topic><topic>Growth factors</topic><topic>Mechanical properties</topic><topic>Morphology</topic><topic>Physics</topic><topic>Polymers</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Research Summary</topic><topic>Solids</topic><topic>Studies</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meghri, Nicholas W.</creatorcontrib><creatorcontrib>Donius, Amalie E.</creatorcontrib><creatorcontrib>Riblett, Benjamin W.</creatorcontrib><creatorcontrib>Martin, Elizabeth J.</creatorcontrib><creatorcontrib>Clyne, Alisa Morss</creatorcontrib><creatorcontrib>Wegst, Ulrike G. K.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade & Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade & Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meghri, Nicholas W.</au><au>Donius, Amalie E.</au><au>Riblett, Benjamin W.</au><au>Martin, Elizabeth J.</au><au>Clyne, Alisa Morss</au><au>Wegst, Ulrike G. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directionally solidified biopolymer scaffolds: Mechanical properties and endothelial cell responses</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><addtitle>JOM (1989)</addtitle><date>2010-07-01</date><risdate>2010</risdate><volume>62</volume><issue>7</issue><spage>71</spage><epage>75</epage><pages>71-75</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><coden>JOMMER</coden><abstract>Vascularization is a primary challenge in tissue engineering. To achieve it in a tissue scaffold, an environment with the appropriate structural, mechanical, and biochemical cues must be provided enabling endothelial cells to direct blood vessel growth. While biochemical stimuli such as growth factors can be added through the scaffold material, the culture medium, or both, a well-designed tissue engineering scaffold is required to provide the necessary local structural and mechanical cues. As chitosan is a well-known carrier for biochemical stimuli, the focus of this study was on structure-property correlations, to evaluate the effects of composition and processing conditions on the three-dimensional architecture and properties of freeze-cast scaffolds; to establish whether freeze-east scaffolds are promising candidates as constructs promoting vascularization; and to conduct initial tissue culture studies with endothelial cells on flat substrates of identical compositions as those of the scaffolds to test whether these are biocompatible and promote cell attachment and proliferation.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>21544225</pmid><doi>10.1007/s11837-010-0112-9</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-4838 |
ispartof | JOM (1989), 2010-07, Vol.62 (7), p.71-75 |
issn | 1047-4838 1543-1851 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3085457 |
source | Springer Nature - Complete Springer Journals |
subjects | Biological and Biomedical Materials Biopolymers Blood vessels Cells Chemistry/Food Science Copper Density Directional solidification Earth Sciences Engineering Environment Geometry Growth factors Mechanical properties Morphology Physics Polymers Pore size Porosity Research Summary Solids Studies Tissue engineering |
title | Directionally solidified biopolymer scaffolds: Mechanical properties and endothelial cell responses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A46%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directionally%20solidified%20biopolymer%20scaffolds:%20Mechanical%20properties%20and%20endothelial%20cell%20responses&rft.jtitle=JOM%20(1989)&rft.au=Meghri,%20Nicholas%20W.&rft.date=2010-07-01&rft.volume=62&rft.issue=7&rft.spage=71&rft.epage=75&rft.pages=71-75&rft.issn=1047-4838&rft.eissn=1543-1851&rft.coden=JOMMER&rft_id=info:doi/10.1007/s11837-010-0112-9&rft_dat=%3Cproquest_pubme%3E1835551861%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=756778119&rft_id=info:pmid/21544225&rfr_iscdi=true |