A self-assembly pathway to aligned monodomain gels

Aggregates of charged amphiphilic molecules have been found to access a structure at elevated temperature that templates alignment of supramolecular fibrils over macroscopic scales. The thermal pathway leads to a lamellar plaque structure with fibrous texture that breaks on cooling into large arrays...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nat. Mater 2010-07, Vol.9 (7), p.594-601
Hauptverfasser: Zhang, Shuming, Greenfield, Megan A., Mata, Alvaro, Palmer, Liam C., Bitton, Ronit, Mantei, Jason R., Aparicio, Conrado, de la Cruz, Monica Olvera, Stupp, Samuel I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 601
container_issue 7
container_start_page 594
container_title Nat. Mater
container_volume 9
creator Zhang, Shuming
Greenfield, Megan A.
Mata, Alvaro
Palmer, Liam C.
Bitton, Ronit
Mantei, Jason R.
Aparicio, Conrado
de la Cruz, Monica Olvera
Stupp, Samuel I.
description Aggregates of charged amphiphilic molecules have been found to access a structure at elevated temperature that templates alignment of supramolecular fibrils over macroscopic scales. The thermal pathway leads to a lamellar plaque structure with fibrous texture that breaks on cooling into large arrays of aligned nanoscale fibres and forms a strongly birefringent liquid. By manually dragging this liquid crystal from a pipette onto salty media, it is possible to extend this alignment over centimetres in noodle-shaped viscoelastic strings. Using this approach, the solution of supramolecular filaments can be mixed with cells at physiological temperatures to form monodomain gels of aligned cells and filaments. The nature of the self-assembly process and its biocompatibility would allow formation of cellular wires in situ that have any length and customized peptide compositions for use in biological applications. Peptide-based molecules that self-assemble into lamellar plaques with fibrous texture on heating, subsequently break on cooling to form long-range aligned bundles of nanofibres. This thermal route to monodomain gels is compatible for living cells and allows the formation of noodle-like viscoelastic strings of any length.
doi_str_mv 10.1038/nmat2778
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3084632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>753649720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-7d1923385135fee240485a7122978c15fb8d883e287743dfde11fe09794420dc3</originalsourceid><addsrcrecordid>eNqFkUtLxDAUhYMovsFfIMWNuqjm2aQbQcQXDLjRdciktzOVNhmbjDL_3kjHGcWFqxu4H-fcnIPQEcEXBDN16ToTqZRqA-0SLoucFwXeXL4JoXQH7YXwijElQhTbaIdiwZlixS6i11mAts5NCNCN20U2M3H6YRZZ9Jlpm4mDKuu885XvTOOyCbThAG3Vpg1wuJz76OXu9vnmIR893T_eXI9yK4SMuaxISRlTgjBRA1COuRJGpmtKqSwR9VhVSjGgSkrOqroCQmrApSw5p7iybB9dDbqz-biDyoKLvWn1rG860y-0N43-vXHNVE_8u2ZY8YLRJHAyCPgQGx1sE8FOrXcObNQkpcGlStDp0qX3b3MIUXdNsNC2xoGfBy0FK3gpKf6fZIxjXDK8Nl6Rr37euxSWFqkCRQbobIBs70PooV79jGD91ar-bjWhxz-TWIHfNSbgfABCWrkJ9GvDP2KfC9eo2A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>521581930</pqid></control><display><type>article</type><title>A self-assembly pathway to aligned monodomain gels</title><source>MEDLINE</source><source>Springer Journals</source><source>Nature</source><creator>Zhang, Shuming ; Greenfield, Megan A. ; Mata, Alvaro ; Palmer, Liam C. ; Bitton, Ronit ; Mantei, Jason R. ; Aparicio, Conrado ; de la Cruz, Monica Olvera ; Stupp, Samuel I.</creator><creatorcontrib>Zhang, Shuming ; Greenfield, Megan A. ; Mata, Alvaro ; Palmer, Liam C. ; Bitton, Ronit ; Mantei, Jason R. ; Aparicio, Conrado ; de la Cruz, Monica Olvera ; Stupp, Samuel I. ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Aggregates of charged amphiphilic molecules have been found to access a structure at elevated temperature that templates alignment of supramolecular fibrils over macroscopic scales. The thermal pathway leads to a lamellar plaque structure with fibrous texture that breaks on cooling into large arrays of aligned nanoscale fibres and forms a strongly birefringent liquid. By manually dragging this liquid crystal from a pipette onto salty media, it is possible to extend this alignment over centimetres in noodle-shaped viscoelastic strings. Using this approach, the solution of supramolecular filaments can be mixed with cells at physiological temperatures to form monodomain gels of aligned cells and filaments. The nature of the self-assembly process and its biocompatibility would allow formation of cellular wires in situ that have any length and customized peptide compositions for use in biological applications. Peptide-based molecules that self-assemble into lamellar plaques with fibrous texture on heating, subsequently break on cooling to form long-range aligned bundles of nanofibres. This thermal route to monodomain gels is compatible for living cells and allows the formation of noodle-like viscoelastic strings of any length.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat2778</identifier><identifier>PMID: 20543836</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/54/990 ; 639/301/923/1027 ; 639/301/923/919 ; 639/301/923/966 ; Aggregates ; ALIGNMENT ; Biocompatible Materials - chemistry ; Biomaterials ; Calcium Chloride - chemistry ; Cellular biology ; Chemistry and Materials Science ; Condensed Matter Physics ; Cooling ; Crystallization ; ENVIRONMENTAL SCIENCES ; Fibers ; Filaments ; Gels ; High temperature ; Hot Temperature ; Humans ; Lamellar structure ; LIQUID CRYSTALS ; Materials Science ; Materials Testing ; Microscopy, Electron, Scanning ; Models, Statistical ; Molecular structure ; Nanomaterials ; Nanostructure ; Nanotechnology ; Optical and Electronic Materials ; Pathways ; PEPTIDES ; Peptides - chemistry ; Physiology ; Protein Structure, Tertiary ; Regenerative Medicine - methods ; Self assembly ; Temperature ; TEXTURE</subject><ispartof>Nat. Mater, 2010-07, Vol.9 (7), p.594-601</ispartof><rights>Springer Nature Limited 2010</rights><rights>Copyright Nature Publishing Group Jul 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-7d1923385135fee240485a7122978c15fb8d883e287743dfde11fe09794420dc3</citedby><cites>FETCH-LOGICAL-c557t-7d1923385135fee240485a7122978c15fb8d883e287743dfde11fe09794420dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat2778$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat2778$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20543836$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1002478$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Shuming</creatorcontrib><creatorcontrib>Greenfield, Megan A.</creatorcontrib><creatorcontrib>Mata, Alvaro</creatorcontrib><creatorcontrib>Palmer, Liam C.</creatorcontrib><creatorcontrib>Bitton, Ronit</creatorcontrib><creatorcontrib>Mantei, Jason R.</creatorcontrib><creatorcontrib>Aparicio, Conrado</creatorcontrib><creatorcontrib>de la Cruz, Monica Olvera</creatorcontrib><creatorcontrib>Stupp, Samuel I.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>A self-assembly pathway to aligned monodomain gels</title><title>Nat. Mater</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Aggregates of charged amphiphilic molecules have been found to access a structure at elevated temperature that templates alignment of supramolecular fibrils over macroscopic scales. The thermal pathway leads to a lamellar plaque structure with fibrous texture that breaks on cooling into large arrays of aligned nanoscale fibres and forms a strongly birefringent liquid. By manually dragging this liquid crystal from a pipette onto salty media, it is possible to extend this alignment over centimetres in noodle-shaped viscoelastic strings. Using this approach, the solution of supramolecular filaments can be mixed with cells at physiological temperatures to form monodomain gels of aligned cells and filaments. The nature of the self-assembly process and its biocompatibility would allow formation of cellular wires in situ that have any length and customized peptide compositions for use in biological applications. Peptide-based molecules that self-assemble into lamellar plaques with fibrous texture on heating, subsequently break on cooling to form long-range aligned bundles of nanofibres. This thermal route to monodomain gels is compatible for living cells and allows the formation of noodle-like viscoelastic strings of any length.</description><subject>639/301/54/990</subject><subject>639/301/923/1027</subject><subject>639/301/923/919</subject><subject>639/301/923/966</subject><subject>Aggregates</subject><subject>ALIGNMENT</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biomaterials</subject><subject>Calcium Chloride - chemistry</subject><subject>Cellular biology</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Cooling</subject><subject>Crystallization</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Fibers</subject><subject>Filaments</subject><subject>Gels</subject><subject>High temperature</subject><subject>Hot Temperature</subject><subject>Humans</subject><subject>Lamellar structure</subject><subject>LIQUID CRYSTALS</subject><subject>Materials Science</subject><subject>Materials Testing</subject><subject>Microscopy, Electron, Scanning</subject><subject>Models, Statistical</subject><subject>Molecular structure</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Pathways</subject><subject>PEPTIDES</subject><subject>Peptides - chemistry</subject><subject>Physiology</subject><subject>Protein Structure, Tertiary</subject><subject>Regenerative Medicine - methods</subject><subject>Self assembly</subject><subject>Temperature</subject><subject>TEXTURE</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkUtLxDAUhYMovsFfIMWNuqjm2aQbQcQXDLjRdciktzOVNhmbjDL_3kjHGcWFqxu4H-fcnIPQEcEXBDN16ToTqZRqA-0SLoucFwXeXL4JoXQH7YXwijElQhTbaIdiwZlixS6i11mAts5NCNCN20U2M3H6YRZZ9Jlpm4mDKuu885XvTOOyCbThAG3Vpg1wuJz76OXu9vnmIR893T_eXI9yK4SMuaxISRlTgjBRA1COuRJGpmtKqSwR9VhVSjGgSkrOqroCQmrApSw5p7iybB9dDbqz-biDyoKLvWn1rG860y-0N43-vXHNVE_8u2ZY8YLRJHAyCPgQGx1sE8FOrXcObNQkpcGlStDp0qX3b3MIUXdNsNC2xoGfBy0FK3gpKf6fZIxjXDK8Nl6Rr37euxSWFqkCRQbobIBs70PooV79jGD91ar-bjWhxz-TWIHfNSbgfABCWrkJ9GvDP2KfC9eo2A</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Zhang, Shuming</creator><creator>Greenfield, Megan A.</creator><creator>Mata, Alvaro</creator><creator>Palmer, Liam C.</creator><creator>Bitton, Ronit</creator><creator>Mantei, Jason R.</creator><creator>Aparicio, Conrado</creator><creator>de la Cruz, Monica Olvera</creator><creator>Stupp, Samuel I.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20100701</creationdate><title>A self-assembly pathway to aligned monodomain gels</title><author>Zhang, Shuming ; Greenfield, Megan A. ; Mata, Alvaro ; Palmer, Liam C. ; Bitton, Ronit ; Mantei, Jason R. ; Aparicio, Conrado ; de la Cruz, Monica Olvera ; Stupp, Samuel I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-7d1923385135fee240485a7122978c15fb8d883e287743dfde11fe09794420dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>639/301/54/990</topic><topic>639/301/923/1027</topic><topic>639/301/923/919</topic><topic>639/301/923/966</topic><topic>Aggregates</topic><topic>ALIGNMENT</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biomaterials</topic><topic>Calcium Chloride - chemistry</topic><topic>Cellular biology</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Cooling</topic><topic>Crystallization</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Fibers</topic><topic>Filaments</topic><topic>Gels</topic><topic>High temperature</topic><topic>Hot Temperature</topic><topic>Humans</topic><topic>Lamellar structure</topic><topic>LIQUID CRYSTALS</topic><topic>Materials Science</topic><topic>Materials Testing</topic><topic>Microscopy, Electron, Scanning</topic><topic>Models, Statistical</topic><topic>Molecular structure</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Pathways</topic><topic>PEPTIDES</topic><topic>Peptides - chemistry</topic><topic>Physiology</topic><topic>Protein Structure, Tertiary</topic><topic>Regenerative Medicine - methods</topic><topic>Self assembly</topic><topic>Temperature</topic><topic>TEXTURE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shuming</creatorcontrib><creatorcontrib>Greenfield, Megan A.</creatorcontrib><creatorcontrib>Mata, Alvaro</creatorcontrib><creatorcontrib>Palmer, Liam C.</creatorcontrib><creatorcontrib>Bitton, Ronit</creatorcontrib><creatorcontrib>Mantei, Jason R.</creatorcontrib><creatorcontrib>Aparicio, Conrado</creatorcontrib><creatorcontrib>de la Cruz, Monica Olvera</creatorcontrib><creatorcontrib>Stupp, Samuel I.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nat. Mater</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shuming</au><au>Greenfield, Megan A.</au><au>Mata, Alvaro</au><au>Palmer, Liam C.</au><au>Bitton, Ronit</au><au>Mantei, Jason R.</au><au>Aparicio, Conrado</au><au>de la Cruz, Monica Olvera</au><au>Stupp, Samuel I.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A self-assembly pathway to aligned monodomain gels</atitle><jtitle>Nat. Mater</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2010-07-01</date><risdate>2010</risdate><volume>9</volume><issue>7</issue><spage>594</spage><epage>601</epage><pages>594-601</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Aggregates of charged amphiphilic molecules have been found to access a structure at elevated temperature that templates alignment of supramolecular fibrils over macroscopic scales. The thermal pathway leads to a lamellar plaque structure with fibrous texture that breaks on cooling into large arrays of aligned nanoscale fibres and forms a strongly birefringent liquid. By manually dragging this liquid crystal from a pipette onto salty media, it is possible to extend this alignment over centimetres in noodle-shaped viscoelastic strings. Using this approach, the solution of supramolecular filaments can be mixed with cells at physiological temperatures to form monodomain gels of aligned cells and filaments. The nature of the self-assembly process and its biocompatibility would allow formation of cellular wires in situ that have any length and customized peptide compositions for use in biological applications. Peptide-based molecules that self-assemble into lamellar plaques with fibrous texture on heating, subsequently break on cooling to form long-range aligned bundles of nanofibres. This thermal route to monodomain gels is compatible for living cells and allows the formation of noodle-like viscoelastic strings of any length.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>20543836</pmid><doi>10.1038/nmat2778</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nat. Mater, 2010-07, Vol.9 (7), p.594-601
issn 1476-1122
1476-4660
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3084632
source MEDLINE; Springer Journals; Nature
subjects 639/301/54/990
639/301/923/1027
639/301/923/919
639/301/923/966
Aggregates
ALIGNMENT
Biocompatible Materials - chemistry
Biomaterials
Calcium Chloride - chemistry
Cellular biology
Chemistry and Materials Science
Condensed Matter Physics
Cooling
Crystallization
ENVIRONMENTAL SCIENCES
Fibers
Filaments
Gels
High temperature
Hot Temperature
Humans
Lamellar structure
LIQUID CRYSTALS
Materials Science
Materials Testing
Microscopy, Electron, Scanning
Models, Statistical
Molecular structure
Nanomaterials
Nanostructure
Nanotechnology
Optical and Electronic Materials
Pathways
PEPTIDES
Peptides - chemistry
Physiology
Protein Structure, Tertiary
Regenerative Medicine - methods
Self assembly
Temperature
TEXTURE
title A self-assembly pathway to aligned monodomain gels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A18%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20self-assembly%20pathway%20to%20aligned%20monodomain%20gels&rft.jtitle=Nat.%20Mater&rft.au=Zhang,%20Shuming&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2010-07-01&rft.volume=9&rft.issue=7&rft.spage=594&rft.epage=601&rft.pages=594-601&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat2778&rft_dat=%3Cproquest_pubme%3E753649720%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=521581930&rft_id=info:pmid/20543836&rfr_iscdi=true