Genetic mapping of the interface between the ArsD metallochaperone and the ArsA ATPase
The ArsD metallochaperone delivers trivalent metalloids, As(III) or Sb(III), to the ArsA ATPase, the catalytic subunit of the ArsAB As(III) efflux pump. Transfer of As(III) increases the affinity of ArsA for As(III), allowing resistance to environmental arsenic concentrations. As(III) transfer is ch...
Gespeichert in:
Veröffentlicht in: | Molecular microbiology 2011-02, Vol.79 (4), p.872-881 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 881 |
---|---|
container_issue | 4 |
container_start_page | 872 |
container_title | Molecular microbiology |
container_volume | 79 |
creator | Yang, Jianbo Abdul Salam, Abdul Ajees Rosen, Barry P |
description | The ArsD metallochaperone delivers trivalent metalloids, As(III) or Sb(III), to the ArsA ATPase, the catalytic subunit of the ArsAB As(III) efflux pump. Transfer of As(III) increases the affinity of ArsA for As(III), allowing resistance to environmental arsenic concentrations. As(III) transfer is channelled from chaperone to ATPase, implying that ArsD and ArsA form an interface at their metal binding sites. A genetic approach was used to test this hypothesis. Thirteen ArsD mutants exhibiting either weaker or stronger interaction with ArsA were selected by either repressed transactivator yeast two-hybrid or reverse yeast two-hybrid assays. Additionally, Lys-37 and Lys-62 were identified as being involved in ArsD function by site-directed mutagenesis and chemical modification. Substitution at either position with arginine was tolerated, suggesting participation of a positive charge. By yeast two-hybrid analysis K37A and K62A mutants lost interaction with ArsA. All 15 mutations were mapped on the surface of the ArsD structure, and their locations are consistent with a structural model generated by in silico docking. Four are close to metalloid binding site residues Cys-12, Cys-13 and Cys-18, and seven are on the surface of helix 1. These results suggest that the interface involves one surface of helix 1 and the metalloid binding site. |
doi_str_mv | 10.1111/j.1365-2958.2010.07494.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3079357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>893263324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5864-955c08b26b2318023a9359f0627f1d99ee78ad2735973fb5c400f00b58edb2353</originalsourceid><addsrcrecordid>eNqNkl1v0zAUhi0EYmXwFyBCQlyl-COO7QuQqgFj0iaQ2BB3luMct6lSO9gp2_49ztqVjyt8Y-uc5z0feo1QQfCc5PNmPSes5iVVXM4pzlEsKlXNbx6g2SHxEM2w4rhkkn4_Qk9SWmNMGK7ZY3RECVWqrqoZ-nYKHsbOFhszDJ1fFsEV4wqKzo8QnbFQNDBeA_i76CKm98UGRtP3wa7MADF4KIxv77OLYnH5xSR4ih450yd4tr-P0dXHD5cnn8rzz6dnJ4vz0nJZV6Xi3GLZ0LqhjEhMmVGMK4drKhxplQIQ0rRU5KBgruG2wthh3HAJbZZwdoze7eoO22YDrQU_RtPrIXYbE291MJ3-O-O7lV6Gn5phkVuJXOD1vkAMP7aQRr3pkoW-Nx7CNmmpGK0Zo1UmX_5DrsM2-rydlpxJQYWY5pE7yMaQUgR3GIVgPVmn13pySE8O6ck6fWedvsnS53-uchDee5WBV3vAJGt6F423XfrNMcmrWuLMvd1x110Pt_89gL64OJteWf9ip3cmaLOMucfVVzr9HaIqUuctfwEc2byv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>853872775</pqid></control><display><type>article</type><title>Genetic mapping of the interface between the ArsD metallochaperone and the ArsA ATPase</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yang, Jianbo ; Abdul Salam, Abdul Ajees ; Rosen, Barry P</creator><creatorcontrib>Yang, Jianbo ; Abdul Salam, Abdul Ajees ; Rosen, Barry P</creatorcontrib><description>The ArsD metallochaperone delivers trivalent metalloids, As(III) or Sb(III), to the ArsA ATPase, the catalytic subunit of the ArsAB As(III) efflux pump. Transfer of As(III) increases the affinity of ArsA for As(III), allowing resistance to environmental arsenic concentrations. As(III) transfer is channelled from chaperone to ATPase, implying that ArsD and ArsA form an interface at their metal binding sites. A genetic approach was used to test this hypothesis. Thirteen ArsD mutants exhibiting either weaker or stronger interaction with ArsA were selected by either repressed transactivator yeast two-hybrid or reverse yeast two-hybrid assays. Additionally, Lys-37 and Lys-62 were identified as being involved in ArsD function by site-directed mutagenesis and chemical modification. Substitution at either position with arginine was tolerated, suggesting participation of a positive charge. By yeast two-hybrid analysis K37A and K62A mutants lost interaction with ArsA. All 15 mutations were mapped on the surface of the ArsD structure, and their locations are consistent with a structural model generated by in silico docking. Four are close to metalloid binding site residues Cys-12, Cys-13 and Cys-18, and seven are on the surface of helix 1. These results suggest that the interface involves one surface of helix 1 and the metalloid binding site.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/j.1365-2958.2010.07494.x</identifier><identifier>PMID: 21299644</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Acetylation ; Adenosine triphosphatase ; Adenosine Triphosphatases - metabolism ; Amino Acid Substitution ; Arsenic - metabolism ; Binding Sites ; Biochemistry ; Biological and medical sciences ; Catalysis ; Chromosome Mapping ; Cloning, Molecular ; DNA, Bacterial - genetics ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Fundamental and applied biological sciences. Psychology ; Genetics ; Metabolism ; Metallochaperones - genetics ; Metallochaperones - metabolism ; Metalloids - metabolism ; Microbiology ; Molecular biology ; Mutagenesis, Site-Directed ; Mutation ; Protein Structure, Tertiary ; Two-Hybrid System Techniques</subject><ispartof>Molecular microbiology, 2011-02, Vol.79 (4), p.872-881</ispartof><rights>2010 Blackwell Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><rights>2010 Blackwell Publishing Ltd.</rights><rights>Copyright Blackwell Publishing Ltd. Feb 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5864-955c08b26b2318023a9359f0627f1d99ee78ad2735973fb5c400f00b58edb2353</citedby><cites>FETCH-LOGICAL-c5864-955c08b26b2318023a9359f0627f1d99ee78ad2735973fb5c400f00b58edb2353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2958.2010.07494.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2958.2010.07494.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23854680$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21299644$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Jianbo</creatorcontrib><creatorcontrib>Abdul Salam, Abdul Ajees</creatorcontrib><creatorcontrib>Rosen, Barry P</creatorcontrib><title>Genetic mapping of the interface between the ArsD metallochaperone and the ArsA ATPase</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>The ArsD metallochaperone delivers trivalent metalloids, As(III) or Sb(III), to the ArsA ATPase, the catalytic subunit of the ArsAB As(III) efflux pump. Transfer of As(III) increases the affinity of ArsA for As(III), allowing resistance to environmental arsenic concentrations. As(III) transfer is channelled from chaperone to ATPase, implying that ArsD and ArsA form an interface at their metal binding sites. A genetic approach was used to test this hypothesis. Thirteen ArsD mutants exhibiting either weaker or stronger interaction with ArsA were selected by either repressed transactivator yeast two-hybrid or reverse yeast two-hybrid assays. Additionally, Lys-37 and Lys-62 were identified as being involved in ArsD function by site-directed mutagenesis and chemical modification. Substitution at either position with arginine was tolerated, suggesting participation of a positive charge. By yeast two-hybrid analysis K37A and K62A mutants lost interaction with ArsA. All 15 mutations were mapped on the surface of the ArsD structure, and their locations are consistent with a structural model generated by in silico docking. Four are close to metalloid binding site residues Cys-12, Cys-13 and Cys-18, and seven are on the surface of helix 1. These results suggest that the interface involves one surface of helix 1 and the metalloid binding site.</description><subject>Acetylation</subject><subject>Adenosine triphosphatase</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Amino Acid Substitution</subject><subject>Arsenic - metabolism</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Catalysis</subject><subject>Chromosome Mapping</subject><subject>Cloning, Molecular</subject><subject>DNA, Bacterial - genetics</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetics</subject><subject>Metabolism</subject><subject>Metallochaperones - genetics</subject><subject>Metallochaperones - metabolism</subject><subject>Metalloids - metabolism</subject><subject>Microbiology</subject><subject>Molecular biology</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Protein Structure, Tertiary</subject><subject>Two-Hybrid System Techniques</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkl1v0zAUhi0EYmXwFyBCQlyl-COO7QuQqgFj0iaQ2BB3luMct6lSO9gp2_49ztqVjyt8Y-uc5z0feo1QQfCc5PNmPSes5iVVXM4pzlEsKlXNbx6g2SHxEM2w4rhkkn4_Qk9SWmNMGK7ZY3RECVWqrqoZ-nYKHsbOFhszDJ1fFsEV4wqKzo8QnbFQNDBeA_i76CKm98UGRtP3wa7MADF4KIxv77OLYnH5xSR4ih450yd4tr-P0dXHD5cnn8rzz6dnJ4vz0nJZV6Xi3GLZ0LqhjEhMmVGMK4drKhxplQIQ0rRU5KBgruG2wthh3HAJbZZwdoze7eoO22YDrQU_RtPrIXYbE291MJ3-O-O7lV6Gn5phkVuJXOD1vkAMP7aQRr3pkoW-Nx7CNmmpGK0Zo1UmX_5DrsM2-rydlpxJQYWY5pE7yMaQUgR3GIVgPVmn13pySE8O6ck6fWedvsnS53-uchDee5WBV3vAJGt6F423XfrNMcmrWuLMvd1x110Pt_89gL64OJteWf9ip3cmaLOMucfVVzr9HaIqUuctfwEc2byv</recordid><startdate>201102</startdate><enddate>201102</enddate><creator>Yang, Jianbo</creator><creator>Abdul Salam, Abdul Ajees</creator><creator>Rosen, Barry P</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>201102</creationdate><title>Genetic mapping of the interface between the ArsD metallochaperone and the ArsA ATPase</title><author>Yang, Jianbo ; Abdul Salam, Abdul Ajees ; Rosen, Barry P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5864-955c08b26b2318023a9359f0627f1d99ee78ad2735973fb5c400f00b58edb2353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acetylation</topic><topic>Adenosine triphosphatase</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Amino Acid Substitution</topic><topic>Arsenic - metabolism</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Catalysis</topic><topic>Chromosome Mapping</topic><topic>Cloning, Molecular</topic><topic>DNA, Bacterial - genetics</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetics</topic><topic>Metabolism</topic><topic>Metallochaperones - genetics</topic><topic>Metallochaperones - metabolism</topic><topic>Metalloids - metabolism</topic><topic>Microbiology</topic><topic>Molecular biology</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Protein Structure, Tertiary</topic><topic>Two-Hybrid System Techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jianbo</creatorcontrib><creatorcontrib>Abdul Salam, Abdul Ajees</creatorcontrib><creatorcontrib>Rosen, Barry P</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jianbo</au><au>Abdul Salam, Abdul Ajees</au><au>Rosen, Barry P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic mapping of the interface between the ArsD metallochaperone and the ArsA ATPase</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2011-02</date><risdate>2011</risdate><volume>79</volume><issue>4</issue><spage>872</spage><epage>881</epage><pages>872-881</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>The ArsD metallochaperone delivers trivalent metalloids, As(III) or Sb(III), to the ArsA ATPase, the catalytic subunit of the ArsAB As(III) efflux pump. Transfer of As(III) increases the affinity of ArsA for As(III), allowing resistance to environmental arsenic concentrations. As(III) transfer is channelled from chaperone to ATPase, implying that ArsD and ArsA form an interface at their metal binding sites. A genetic approach was used to test this hypothesis. Thirteen ArsD mutants exhibiting either weaker or stronger interaction with ArsA were selected by either repressed transactivator yeast two-hybrid or reverse yeast two-hybrid assays. Additionally, Lys-37 and Lys-62 were identified as being involved in ArsD function by site-directed mutagenesis and chemical modification. Substitution at either position with arginine was tolerated, suggesting participation of a positive charge. By yeast two-hybrid analysis K37A and K62A mutants lost interaction with ArsA. All 15 mutations were mapped on the surface of the ArsD structure, and their locations are consistent with a structural model generated by in silico docking. Four are close to metalloid binding site residues Cys-12, Cys-13 and Cys-18, and seven are on the surface of helix 1. These results suggest that the interface involves one surface of helix 1 and the metalloid binding site.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21299644</pmid><doi>10.1111/j.1365-2958.2010.07494.x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-382X |
ispartof | Molecular microbiology, 2011-02, Vol.79 (4), p.872-881 |
issn | 0950-382X 1365-2958 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3079357 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Acetylation Adenosine triphosphatase Adenosine Triphosphatases - metabolism Amino Acid Substitution Arsenic - metabolism Binding Sites Biochemistry Biological and medical sciences Catalysis Chromosome Mapping Cloning, Molecular DNA, Bacterial - genetics Escherichia coli - enzymology Escherichia coli - genetics Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Fundamental and applied biological sciences. Psychology Genetics Metabolism Metallochaperones - genetics Metallochaperones - metabolism Metalloids - metabolism Microbiology Molecular biology Mutagenesis, Site-Directed Mutation Protein Structure, Tertiary Two-Hybrid System Techniques |
title | Genetic mapping of the interface between the ArsD metallochaperone and the ArsA ATPase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A52%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20mapping%20of%20the%20interface%20between%20the%20ArsD%20metallochaperone%20and%20the%20ArsA%20ATPase&rft.jtitle=Molecular%20microbiology&rft.au=Yang,%20Jianbo&rft.date=2011-02&rft.volume=79&rft.issue=4&rft.spage=872&rft.epage=881&rft.pages=872-881&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/j.1365-2958.2010.07494.x&rft_dat=%3Cproquest_pubme%3E893263324%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=853872775&rft_id=info:pmid/21299644&rfr_iscdi=true |