Genetic mapping of the interface between the ArsD metallochaperone and the ArsA ATPase

The ArsD metallochaperone delivers trivalent metalloids, As(III) or Sb(III), to the ArsA ATPase, the catalytic subunit of the ArsAB As(III) efflux pump. Transfer of As(III) increases the affinity of ArsA for As(III), allowing resistance to environmental arsenic concentrations. As(III) transfer is ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 2011-02, Vol.79 (4), p.872-881
Hauptverfasser: Yang, Jianbo, Abdul Salam, Abdul Ajees, Rosen, Barry P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 881
container_issue 4
container_start_page 872
container_title Molecular microbiology
container_volume 79
creator Yang, Jianbo
Abdul Salam, Abdul Ajees
Rosen, Barry P
description The ArsD metallochaperone delivers trivalent metalloids, As(III) or Sb(III), to the ArsA ATPase, the catalytic subunit of the ArsAB As(III) efflux pump. Transfer of As(III) increases the affinity of ArsA for As(III), allowing resistance to environmental arsenic concentrations. As(III) transfer is channelled from chaperone to ATPase, implying that ArsD and ArsA form an interface at their metal binding sites. A genetic approach was used to test this hypothesis. Thirteen ArsD mutants exhibiting either weaker or stronger interaction with ArsA were selected by either repressed transactivator yeast two-hybrid or reverse yeast two-hybrid assays. Additionally, Lys-37 and Lys-62 were identified as being involved in ArsD function by site-directed mutagenesis and chemical modification. Substitution at either position with arginine was tolerated, suggesting participation of a positive charge. By yeast two-hybrid analysis K37A and K62A mutants lost interaction with ArsA. All 15 mutations were mapped on the surface of the ArsD structure, and their locations are consistent with a structural model generated by in silico docking. Four are close to metalloid binding site residues Cys-12, Cys-13 and Cys-18, and seven are on the surface of helix 1. These results suggest that the interface involves one surface of helix 1 and the metalloid binding site.
doi_str_mv 10.1111/j.1365-2958.2010.07494.x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3079357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>893263324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5864-955c08b26b2318023a9359f0627f1d99ee78ad2735973fb5c400f00b58edb2353</originalsourceid><addsrcrecordid>eNqNkl1v0zAUhi0EYmXwFyBCQlyl-COO7QuQqgFj0iaQ2BB3luMct6lSO9gp2_49ztqVjyt8Y-uc5z0feo1QQfCc5PNmPSes5iVVXM4pzlEsKlXNbx6g2SHxEM2w4rhkkn4_Qk9SWmNMGK7ZY3RECVWqrqoZ-nYKHsbOFhszDJ1fFsEV4wqKzo8QnbFQNDBeA_i76CKm98UGRtP3wa7MADF4KIxv77OLYnH5xSR4ih450yd4tr-P0dXHD5cnn8rzz6dnJ4vz0nJZV6Xi3GLZ0LqhjEhMmVGMK4drKhxplQIQ0rRU5KBgruG2wthh3HAJbZZwdoze7eoO22YDrQU_RtPrIXYbE291MJ3-O-O7lV6Gn5phkVuJXOD1vkAMP7aQRr3pkoW-Nx7CNmmpGK0Zo1UmX_5DrsM2-rydlpxJQYWY5pE7yMaQUgR3GIVgPVmn13pySE8O6ck6fWedvsnS53-uchDee5WBV3vAJGt6F423XfrNMcmrWuLMvd1x110Pt_89gL64OJteWf9ip3cmaLOMucfVVzr9HaIqUuctfwEc2byv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>853872775</pqid></control><display><type>article</type><title>Genetic mapping of the interface between the ArsD metallochaperone and the ArsA ATPase</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yang, Jianbo ; Abdul Salam, Abdul Ajees ; Rosen, Barry P</creator><creatorcontrib>Yang, Jianbo ; Abdul Salam, Abdul Ajees ; Rosen, Barry P</creatorcontrib><description>The ArsD metallochaperone delivers trivalent metalloids, As(III) or Sb(III), to the ArsA ATPase, the catalytic subunit of the ArsAB As(III) efflux pump. Transfer of As(III) increases the affinity of ArsA for As(III), allowing resistance to environmental arsenic concentrations. As(III) transfer is channelled from chaperone to ATPase, implying that ArsD and ArsA form an interface at their metal binding sites. A genetic approach was used to test this hypothesis. Thirteen ArsD mutants exhibiting either weaker or stronger interaction with ArsA were selected by either repressed transactivator yeast two-hybrid or reverse yeast two-hybrid assays. Additionally, Lys-37 and Lys-62 were identified as being involved in ArsD function by site-directed mutagenesis and chemical modification. Substitution at either position with arginine was tolerated, suggesting participation of a positive charge. By yeast two-hybrid analysis K37A and K62A mutants lost interaction with ArsA. All 15 mutations were mapped on the surface of the ArsD structure, and their locations are consistent with a structural model generated by in silico docking. Four are close to metalloid binding site residues Cys-12, Cys-13 and Cys-18, and seven are on the surface of helix 1. These results suggest that the interface involves one surface of helix 1 and the metalloid binding site.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/j.1365-2958.2010.07494.x</identifier><identifier>PMID: 21299644</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Acetylation ; Adenosine triphosphatase ; Adenosine Triphosphatases - metabolism ; Amino Acid Substitution ; Arsenic - metabolism ; Binding Sites ; Biochemistry ; Biological and medical sciences ; Catalysis ; Chromosome Mapping ; Cloning, Molecular ; DNA, Bacterial - genetics ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Fundamental and applied biological sciences. Psychology ; Genetics ; Metabolism ; Metallochaperones - genetics ; Metallochaperones - metabolism ; Metalloids - metabolism ; Microbiology ; Molecular biology ; Mutagenesis, Site-Directed ; Mutation ; Protein Structure, Tertiary ; Two-Hybrid System Techniques</subject><ispartof>Molecular microbiology, 2011-02, Vol.79 (4), p.872-881</ispartof><rights>2010 Blackwell Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><rights>2010 Blackwell Publishing Ltd.</rights><rights>Copyright Blackwell Publishing Ltd. Feb 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5864-955c08b26b2318023a9359f0627f1d99ee78ad2735973fb5c400f00b58edb2353</citedby><cites>FETCH-LOGICAL-c5864-955c08b26b2318023a9359f0627f1d99ee78ad2735973fb5c400f00b58edb2353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2958.2010.07494.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2958.2010.07494.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23854680$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21299644$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Jianbo</creatorcontrib><creatorcontrib>Abdul Salam, Abdul Ajees</creatorcontrib><creatorcontrib>Rosen, Barry P</creatorcontrib><title>Genetic mapping of the interface between the ArsD metallochaperone and the ArsA ATPase</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>The ArsD metallochaperone delivers trivalent metalloids, As(III) or Sb(III), to the ArsA ATPase, the catalytic subunit of the ArsAB As(III) efflux pump. Transfer of As(III) increases the affinity of ArsA for As(III), allowing resistance to environmental arsenic concentrations. As(III) transfer is channelled from chaperone to ATPase, implying that ArsD and ArsA form an interface at their metal binding sites. A genetic approach was used to test this hypothesis. Thirteen ArsD mutants exhibiting either weaker or stronger interaction with ArsA were selected by either repressed transactivator yeast two-hybrid or reverse yeast two-hybrid assays. Additionally, Lys-37 and Lys-62 were identified as being involved in ArsD function by site-directed mutagenesis and chemical modification. Substitution at either position with arginine was tolerated, suggesting participation of a positive charge. By yeast two-hybrid analysis K37A and K62A mutants lost interaction with ArsA. All 15 mutations were mapped on the surface of the ArsD structure, and their locations are consistent with a structural model generated by in silico docking. Four are close to metalloid binding site residues Cys-12, Cys-13 and Cys-18, and seven are on the surface of helix 1. These results suggest that the interface involves one surface of helix 1 and the metalloid binding site.</description><subject>Acetylation</subject><subject>Adenosine triphosphatase</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Amino Acid Substitution</subject><subject>Arsenic - metabolism</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Catalysis</subject><subject>Chromosome Mapping</subject><subject>Cloning, Molecular</subject><subject>DNA, Bacterial - genetics</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetics</subject><subject>Metabolism</subject><subject>Metallochaperones - genetics</subject><subject>Metallochaperones - metabolism</subject><subject>Metalloids - metabolism</subject><subject>Microbiology</subject><subject>Molecular biology</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Protein Structure, Tertiary</subject><subject>Two-Hybrid System Techniques</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkl1v0zAUhi0EYmXwFyBCQlyl-COO7QuQqgFj0iaQ2BB3luMct6lSO9gp2_49ztqVjyt8Y-uc5z0feo1QQfCc5PNmPSes5iVVXM4pzlEsKlXNbx6g2SHxEM2w4rhkkn4_Qk9SWmNMGK7ZY3RECVWqrqoZ-nYKHsbOFhszDJ1fFsEV4wqKzo8QnbFQNDBeA_i76CKm98UGRtP3wa7MADF4KIxv77OLYnH5xSR4ih450yd4tr-P0dXHD5cnn8rzz6dnJ4vz0nJZV6Xi3GLZ0LqhjEhMmVGMK4drKhxplQIQ0rRU5KBgruG2wthh3HAJbZZwdoze7eoO22YDrQU_RtPrIXYbE291MJ3-O-O7lV6Gn5phkVuJXOD1vkAMP7aQRr3pkoW-Nx7CNmmpGK0Zo1UmX_5DrsM2-rydlpxJQYWY5pE7yMaQUgR3GIVgPVmn13pySE8O6ck6fWedvsnS53-uchDee5WBV3vAJGt6F423XfrNMcmrWuLMvd1x110Pt_89gL64OJteWf9ip3cmaLOMucfVVzr9HaIqUuctfwEc2byv</recordid><startdate>201102</startdate><enddate>201102</enddate><creator>Yang, Jianbo</creator><creator>Abdul Salam, Abdul Ajees</creator><creator>Rosen, Barry P</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>201102</creationdate><title>Genetic mapping of the interface between the ArsD metallochaperone and the ArsA ATPase</title><author>Yang, Jianbo ; Abdul Salam, Abdul Ajees ; Rosen, Barry P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5864-955c08b26b2318023a9359f0627f1d99ee78ad2735973fb5c400f00b58edb2353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acetylation</topic><topic>Adenosine triphosphatase</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Amino Acid Substitution</topic><topic>Arsenic - metabolism</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Catalysis</topic><topic>Chromosome Mapping</topic><topic>Cloning, Molecular</topic><topic>DNA, Bacterial - genetics</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetics</topic><topic>Metabolism</topic><topic>Metallochaperones - genetics</topic><topic>Metallochaperones - metabolism</topic><topic>Metalloids - metabolism</topic><topic>Microbiology</topic><topic>Molecular biology</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Protein Structure, Tertiary</topic><topic>Two-Hybrid System Techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jianbo</creatorcontrib><creatorcontrib>Abdul Salam, Abdul Ajees</creatorcontrib><creatorcontrib>Rosen, Barry P</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jianbo</au><au>Abdul Salam, Abdul Ajees</au><au>Rosen, Barry P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic mapping of the interface between the ArsD metallochaperone and the ArsA ATPase</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2011-02</date><risdate>2011</risdate><volume>79</volume><issue>4</issue><spage>872</spage><epage>881</epage><pages>872-881</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>The ArsD metallochaperone delivers trivalent metalloids, As(III) or Sb(III), to the ArsA ATPase, the catalytic subunit of the ArsAB As(III) efflux pump. Transfer of As(III) increases the affinity of ArsA for As(III), allowing resistance to environmental arsenic concentrations. As(III) transfer is channelled from chaperone to ATPase, implying that ArsD and ArsA form an interface at their metal binding sites. A genetic approach was used to test this hypothesis. Thirteen ArsD mutants exhibiting either weaker or stronger interaction with ArsA were selected by either repressed transactivator yeast two-hybrid or reverse yeast two-hybrid assays. Additionally, Lys-37 and Lys-62 were identified as being involved in ArsD function by site-directed mutagenesis and chemical modification. Substitution at either position with arginine was tolerated, suggesting participation of a positive charge. By yeast two-hybrid analysis K37A and K62A mutants lost interaction with ArsA. All 15 mutations were mapped on the surface of the ArsD structure, and their locations are consistent with a structural model generated by in silico docking. Four are close to metalloid binding site residues Cys-12, Cys-13 and Cys-18, and seven are on the surface of helix 1. These results suggest that the interface involves one surface of helix 1 and the metalloid binding site.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21299644</pmid><doi>10.1111/j.1365-2958.2010.07494.x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2011-02, Vol.79 (4), p.872-881
issn 0950-382X
1365-2958
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3079357
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Acetylation
Adenosine triphosphatase
Adenosine Triphosphatases - metabolism
Amino Acid Substitution
Arsenic - metabolism
Binding Sites
Biochemistry
Biological and medical sciences
Catalysis
Chromosome Mapping
Cloning, Molecular
DNA, Bacterial - genetics
Escherichia coli - enzymology
Escherichia coli - genetics
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Fundamental and applied biological sciences. Psychology
Genetics
Metabolism
Metallochaperones - genetics
Metallochaperones - metabolism
Metalloids - metabolism
Microbiology
Molecular biology
Mutagenesis, Site-Directed
Mutation
Protein Structure, Tertiary
Two-Hybrid System Techniques
title Genetic mapping of the interface between the ArsD metallochaperone and the ArsA ATPase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A52%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20mapping%20of%20the%20interface%20between%20the%20ArsD%20metallochaperone%20and%20the%20ArsA%20ATPase&rft.jtitle=Molecular%20microbiology&rft.au=Yang,%20Jianbo&rft.date=2011-02&rft.volume=79&rft.issue=4&rft.spage=872&rft.epage=881&rft.pages=872-881&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/j.1365-2958.2010.07494.x&rft_dat=%3Cproquest_pubme%3E893263324%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=853872775&rft_id=info:pmid/21299644&rfr_iscdi=true