Vascular Endoluminal Delivery of Mesenchymal Stem Cells Using Acoustic Radiation Force

Restoration of functional endothelium is a requirement for preventing late stent thrombosis. We propose a novel method for targeted delivery of stem cells to a site of arterial injury using ultrasound-generated acoustic radiation force. Mesenchymal stem cells (MSCs) were surface-coated electrostatic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tissue engineering. Part A 2011-05, Vol.17 (9-10), p.1457-1464
Hauptverfasser: Toma, Catalin, Fisher, Andrew, Wang, Jianjun, Chen, Xucai, Grata, Michelle, Leeman, Jonathan, Winston, Brion, Kaya, Mehmet, Fu, Huili, Lavery, Linda, Fischer, David, Wagner, William R., Villanueva, Flordeliza S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1464
container_issue 9-10
container_start_page 1457
container_title Tissue engineering. Part A
container_volume 17
creator Toma, Catalin
Fisher, Andrew
Wang, Jianjun
Chen, Xucai
Grata, Michelle
Leeman, Jonathan
Winston, Brion
Kaya, Mehmet
Fu, Huili
Lavery, Linda
Fischer, David
Wagner, William R.
Villanueva, Flordeliza S.
description Restoration of functional endothelium is a requirement for preventing late stent thrombosis. We propose a novel method for targeted delivery of stem cells to a site of arterial injury using ultrasound-generated acoustic radiation force. Mesenchymal stem cells (MSCs) were surface-coated electrostatically with cationic gas-filled lipid microbubbles (mb-MSC). mb-MSC was characterized microscopically and by flow cytometry. The effect of ultrasound (5 MHz) on directing mb-MSC movement toward the vessel wall under physiologic flow conditions was tested in vitro in a vessel phantom. In vivo testing of acoustic radiation force-mediated delivery of mb-MSCs to balloon-injured aorta was performed in rabbits using intravascular ultrasound (1.7 MHz) during intra-aortic infusion of mb-MSCs. Application of ultrasound led to marginalization and adhesion of mb-MSCs to the vessel phantom wall, whereas no effect was observed on mb-MSCs in the absence of ultrasound. The effect was maximal when there were 7±1 microbubbles/cell ( n =6). In rabbits ( n =6), adherent MSCs were observed in the ultrasound-treated aortic segment 20 min after the injection (334±137 MSCs/cm 2 ), whereas minimal adhesion was observed in control segments not exposed to ultrasound (2±1 MSCs/cm 2 , p
doi_str_mv 10.1089/ten.tea.2010.0539
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3079165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A256171505</galeid><sourcerecordid>A256171505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-95faeb1408e9165e47c033fb2f340f4fdd2328135e85321ea2d78db8197a54d13</originalsourceid><addsrcrecordid>eNqNUl1rFDEUHUSxtfUH-CKDPvi0az4mk8yLsKytCi1CtcW3kElutimZpE1mCvvvzbB1scUHCSHh5JxzuTenqt5gtMRIdB9HCMsR1JKggiBGu2fVIe4oX1DKfj3f3xt8UL3K-QahFrWcv6wOCCYNpw09rK6uVNaTV6k-CSb6aXBB-fozeHcPaVtHW59DhqCvt0PBf4ww1GvwPteX2YVNvdJxyqPT9YUyTo0uhvo0Jg3H1QurfIbXD-dRdXl68nP9dXH2_cu39epsoVuCxkXHrIIeN0hAh1sGDdeIUtsTSxtkG2sMoURgykAwSjAoYrgwvcAdV6wxmB5Vn3a-t1M_gNEQxqS8vE1uUGkro3Ly8Utw13IT7yVFfK5YDD48GKR4N0Ee5eCyLh2qAKU1KdqOCY45Kcx3T5g3cUplWjOJCCbKlxTS-x1pozxIF2wsVfVsKVeEtZhjhuaiy3-wyjIwOB0DWFfwRwK8E-gUc05g9x1iJOcoyBKFspWcoyDnKBTN279Hs1f8-ftC4DvCDKsQvIMe0vgf1r8B1PjCoQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862858108</pqid></control><display><type>article</type><title>Vascular Endoluminal Delivery of Mesenchymal Stem Cells Using Acoustic Radiation Force</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Toma, Catalin ; Fisher, Andrew ; Wang, Jianjun ; Chen, Xucai ; Grata, Michelle ; Leeman, Jonathan ; Winston, Brion ; Kaya, Mehmet ; Fu, Huili ; Lavery, Linda ; Fischer, David ; Wagner, William R. ; Villanueva, Flordeliza S.</creator><creatorcontrib>Toma, Catalin ; Fisher, Andrew ; Wang, Jianjun ; Chen, Xucai ; Grata, Michelle ; Leeman, Jonathan ; Winston, Brion ; Kaya, Mehmet ; Fu, Huili ; Lavery, Linda ; Fischer, David ; Wagner, William R. ; Villanueva, Flordeliza S.</creatorcontrib><description>Restoration of functional endothelium is a requirement for preventing late stent thrombosis. We propose a novel method for targeted delivery of stem cells to a site of arterial injury using ultrasound-generated acoustic radiation force. Mesenchymal stem cells (MSCs) were surface-coated electrostatically with cationic gas-filled lipid microbubbles (mb-MSC). mb-MSC was characterized microscopically and by flow cytometry. The effect of ultrasound (5 MHz) on directing mb-MSC movement toward the vessel wall under physiologic flow conditions was tested in vitro in a vessel phantom. In vivo testing of acoustic radiation force-mediated delivery of mb-MSCs to balloon-injured aorta was performed in rabbits using intravascular ultrasound (1.7 MHz) during intra-aortic infusion of mb-MSCs. Application of ultrasound led to marginalization and adhesion of mb-MSCs to the vessel phantom wall, whereas no effect was observed on mb-MSCs in the absence of ultrasound. The effect was maximal when there were 7±1 microbubbles/cell ( n =6). In rabbits ( n =6), adherent MSCs were observed in the ultrasound-treated aortic segment 20 min after the injection (334±137 MSCs/cm 2 ), whereas minimal adhesion was observed in control segments not exposed to ultrasound (2±1 MSCs/cm 2 , p &lt;0.05). At 24 h after mb-MSC injection and ultrasound treatment, the engrafted MSCs persisted and spread out on the luminal surface of the artery. The data demonstrate proof of principle that acoustic radiation force can target delivery of therapeutic cells to a specific endovascular treatment site. This approach may be used for endoluminal cellular paving and could provide a powerful tool for cell-based re-endothelialization of injured arterial segments.</description><identifier>ISSN: 1937-3341</identifier><identifier>EISSN: 1937-335X</identifier><identifier>DOI: 10.1089/ten.tea.2010.0539</identifier><identifier>PMID: 21247343</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Acoustic properties ; Acoustics ; Animals ; Aorta - injuries ; Aortic Diseases - therapy ; Biomedical engineering ; Blood clot ; Care and treatment ; Cell adhesion &amp; migration ; Endothelium ; Graft Survival ; Mesenchymal Stem Cell Transplantation - methods ; Mesenchymal Stromal Cells ; Microbubbles ; Original ; Original Articles ; Physiological aspects ; Rabbits ; Radiation ; Rats ; Stem cells ; Thrombosis ; Tissue engineering ; Transplantation, Homologous ; Ultrasonics</subject><ispartof>Tissue engineering. Part A, 2011-05, Vol.17 (9-10), p.1457-1464</ispartof><rights>2011, Mary Ann Liebert, Inc.</rights><rights>COPYRIGHT 2011 Mary Ann Liebert, Inc.</rights><rights>(©) Copyright 2011, Mary Ann Liebert, Inc.</rights><rights>Copyright 2011, Mary Ann Liebert, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-95faeb1408e9165e47c033fb2f340f4fdd2328135e85321ea2d78db8197a54d13</citedby><cites>FETCH-LOGICAL-c620t-95faeb1408e9165e47c033fb2f340f4fdd2328135e85321ea2d78db8197a54d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21247343$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Toma, Catalin</creatorcontrib><creatorcontrib>Fisher, Andrew</creatorcontrib><creatorcontrib>Wang, Jianjun</creatorcontrib><creatorcontrib>Chen, Xucai</creatorcontrib><creatorcontrib>Grata, Michelle</creatorcontrib><creatorcontrib>Leeman, Jonathan</creatorcontrib><creatorcontrib>Winston, Brion</creatorcontrib><creatorcontrib>Kaya, Mehmet</creatorcontrib><creatorcontrib>Fu, Huili</creatorcontrib><creatorcontrib>Lavery, Linda</creatorcontrib><creatorcontrib>Fischer, David</creatorcontrib><creatorcontrib>Wagner, William R.</creatorcontrib><creatorcontrib>Villanueva, Flordeliza S.</creatorcontrib><title>Vascular Endoluminal Delivery of Mesenchymal Stem Cells Using Acoustic Radiation Force</title><title>Tissue engineering. Part A</title><addtitle>Tissue Eng Part A</addtitle><description>Restoration of functional endothelium is a requirement for preventing late stent thrombosis. We propose a novel method for targeted delivery of stem cells to a site of arterial injury using ultrasound-generated acoustic radiation force. Mesenchymal stem cells (MSCs) were surface-coated electrostatically with cationic gas-filled lipid microbubbles (mb-MSC). mb-MSC was characterized microscopically and by flow cytometry. The effect of ultrasound (5 MHz) on directing mb-MSC movement toward the vessel wall under physiologic flow conditions was tested in vitro in a vessel phantom. In vivo testing of acoustic radiation force-mediated delivery of mb-MSCs to balloon-injured aorta was performed in rabbits using intravascular ultrasound (1.7 MHz) during intra-aortic infusion of mb-MSCs. Application of ultrasound led to marginalization and adhesion of mb-MSCs to the vessel phantom wall, whereas no effect was observed on mb-MSCs in the absence of ultrasound. The effect was maximal when there were 7±1 microbubbles/cell ( n =6). In rabbits ( n =6), adherent MSCs were observed in the ultrasound-treated aortic segment 20 min after the injection (334±137 MSCs/cm 2 ), whereas minimal adhesion was observed in control segments not exposed to ultrasound (2±1 MSCs/cm 2 , p &lt;0.05). At 24 h after mb-MSC injection and ultrasound treatment, the engrafted MSCs persisted and spread out on the luminal surface of the artery. The data demonstrate proof of principle that acoustic radiation force can target delivery of therapeutic cells to a specific endovascular treatment site. This approach may be used for endoluminal cellular paving and could provide a powerful tool for cell-based re-endothelialization of injured arterial segments.</description><subject>Acoustic properties</subject><subject>Acoustics</subject><subject>Animals</subject><subject>Aorta - injuries</subject><subject>Aortic Diseases - therapy</subject><subject>Biomedical engineering</subject><subject>Blood clot</subject><subject>Care and treatment</subject><subject>Cell adhesion &amp; migration</subject><subject>Endothelium</subject><subject>Graft Survival</subject><subject>Mesenchymal Stem Cell Transplantation - methods</subject><subject>Mesenchymal Stromal Cells</subject><subject>Microbubbles</subject><subject>Original</subject><subject>Original Articles</subject><subject>Physiological aspects</subject><subject>Rabbits</subject><subject>Radiation</subject><subject>Rats</subject><subject>Stem cells</subject><subject>Thrombosis</subject><subject>Tissue engineering</subject><subject>Transplantation, Homologous</subject><subject>Ultrasonics</subject><issn>1937-3341</issn><issn>1937-335X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNUl1rFDEUHUSxtfUH-CKDPvi0az4mk8yLsKytCi1CtcW3kElutimZpE1mCvvvzbB1scUHCSHh5JxzuTenqt5gtMRIdB9HCMsR1JKggiBGu2fVIe4oX1DKfj3f3xt8UL3K-QahFrWcv6wOCCYNpw09rK6uVNaTV6k-CSb6aXBB-fozeHcPaVtHW59DhqCvt0PBf4ww1GvwPteX2YVNvdJxyqPT9YUyTo0uhvo0Jg3H1QurfIbXD-dRdXl68nP9dXH2_cu39epsoVuCxkXHrIIeN0hAh1sGDdeIUtsTSxtkG2sMoURgykAwSjAoYrgwvcAdV6wxmB5Vn3a-t1M_gNEQxqS8vE1uUGkro3Ly8Utw13IT7yVFfK5YDD48GKR4N0Ee5eCyLh2qAKU1KdqOCY45Kcx3T5g3cUplWjOJCCbKlxTS-x1pozxIF2wsVfVsKVeEtZhjhuaiy3-wyjIwOB0DWFfwRwK8E-gUc05g9x1iJOcoyBKFspWcoyDnKBTN279Hs1f8-ftC4DvCDKsQvIMe0vgf1r8B1PjCoQ</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Toma, Catalin</creator><creator>Fisher, Andrew</creator><creator>Wang, Jianjun</creator><creator>Chen, Xucai</creator><creator>Grata, Michelle</creator><creator>Leeman, Jonathan</creator><creator>Winston, Brion</creator><creator>Kaya, Mehmet</creator><creator>Fu, Huili</creator><creator>Lavery, Linda</creator><creator>Fischer, David</creator><creator>Wagner, William R.</creator><creator>Villanueva, Flordeliza S.</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20110501</creationdate><title>Vascular Endoluminal Delivery of Mesenchymal Stem Cells Using Acoustic Radiation Force</title><author>Toma, Catalin ; Fisher, Andrew ; Wang, Jianjun ; Chen, Xucai ; Grata, Michelle ; Leeman, Jonathan ; Winston, Brion ; Kaya, Mehmet ; Fu, Huili ; Lavery, Linda ; Fischer, David ; Wagner, William R. ; Villanueva, Flordeliza S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-95faeb1408e9165e47c033fb2f340f4fdd2328135e85321ea2d78db8197a54d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acoustic properties</topic><topic>Acoustics</topic><topic>Animals</topic><topic>Aorta - injuries</topic><topic>Aortic Diseases - therapy</topic><topic>Biomedical engineering</topic><topic>Blood clot</topic><topic>Care and treatment</topic><topic>Cell adhesion &amp; migration</topic><topic>Endothelium</topic><topic>Graft Survival</topic><topic>Mesenchymal Stem Cell Transplantation - methods</topic><topic>Mesenchymal Stromal Cells</topic><topic>Microbubbles</topic><topic>Original</topic><topic>Original Articles</topic><topic>Physiological aspects</topic><topic>Rabbits</topic><topic>Radiation</topic><topic>Rats</topic><topic>Stem cells</topic><topic>Thrombosis</topic><topic>Tissue engineering</topic><topic>Transplantation, Homologous</topic><topic>Ultrasonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toma, Catalin</creatorcontrib><creatorcontrib>Fisher, Andrew</creatorcontrib><creatorcontrib>Wang, Jianjun</creatorcontrib><creatorcontrib>Chen, Xucai</creatorcontrib><creatorcontrib>Grata, Michelle</creatorcontrib><creatorcontrib>Leeman, Jonathan</creatorcontrib><creatorcontrib>Winston, Brion</creatorcontrib><creatorcontrib>Kaya, Mehmet</creatorcontrib><creatorcontrib>Fu, Huili</creatorcontrib><creatorcontrib>Lavery, Linda</creatorcontrib><creatorcontrib>Fischer, David</creatorcontrib><creatorcontrib>Wagner, William R.</creatorcontrib><creatorcontrib>Villanueva, Flordeliza S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Tissue engineering. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toma, Catalin</au><au>Fisher, Andrew</au><au>Wang, Jianjun</au><au>Chen, Xucai</au><au>Grata, Michelle</au><au>Leeman, Jonathan</au><au>Winston, Brion</au><au>Kaya, Mehmet</au><au>Fu, Huili</au><au>Lavery, Linda</au><au>Fischer, David</au><au>Wagner, William R.</au><au>Villanueva, Flordeliza S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vascular Endoluminal Delivery of Mesenchymal Stem Cells Using Acoustic Radiation Force</atitle><jtitle>Tissue engineering. Part A</jtitle><addtitle>Tissue Eng Part A</addtitle><date>2011-05-01</date><risdate>2011</risdate><volume>17</volume><issue>9-10</issue><spage>1457</spage><epage>1464</epage><pages>1457-1464</pages><issn>1937-3341</issn><eissn>1937-335X</eissn><abstract>Restoration of functional endothelium is a requirement for preventing late stent thrombosis. We propose a novel method for targeted delivery of stem cells to a site of arterial injury using ultrasound-generated acoustic radiation force. Mesenchymal stem cells (MSCs) were surface-coated electrostatically with cationic gas-filled lipid microbubbles (mb-MSC). mb-MSC was characterized microscopically and by flow cytometry. The effect of ultrasound (5 MHz) on directing mb-MSC movement toward the vessel wall under physiologic flow conditions was tested in vitro in a vessel phantom. In vivo testing of acoustic radiation force-mediated delivery of mb-MSCs to balloon-injured aorta was performed in rabbits using intravascular ultrasound (1.7 MHz) during intra-aortic infusion of mb-MSCs. Application of ultrasound led to marginalization and adhesion of mb-MSCs to the vessel phantom wall, whereas no effect was observed on mb-MSCs in the absence of ultrasound. The effect was maximal when there were 7±1 microbubbles/cell ( n =6). In rabbits ( n =6), adherent MSCs were observed in the ultrasound-treated aortic segment 20 min after the injection (334±137 MSCs/cm 2 ), whereas minimal adhesion was observed in control segments not exposed to ultrasound (2±1 MSCs/cm 2 , p &lt;0.05). At 24 h after mb-MSC injection and ultrasound treatment, the engrafted MSCs persisted and spread out on the luminal surface of the artery. The data demonstrate proof of principle that acoustic radiation force can target delivery of therapeutic cells to a specific endovascular treatment site. This approach may be used for endoluminal cellular paving and could provide a powerful tool for cell-based re-endothelialization of injured arterial segments.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>21247343</pmid><doi>10.1089/ten.tea.2010.0539</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1937-3341
ispartof Tissue engineering. Part A, 2011-05, Vol.17 (9-10), p.1457-1464
issn 1937-3341
1937-335X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3079165
source MEDLINE; Alma/SFX Local Collection
subjects Acoustic properties
Acoustics
Animals
Aorta - injuries
Aortic Diseases - therapy
Biomedical engineering
Blood clot
Care and treatment
Cell adhesion & migration
Endothelium
Graft Survival
Mesenchymal Stem Cell Transplantation - methods
Mesenchymal Stromal Cells
Microbubbles
Original
Original Articles
Physiological aspects
Rabbits
Radiation
Rats
Stem cells
Thrombosis
Tissue engineering
Transplantation, Homologous
Ultrasonics
title Vascular Endoluminal Delivery of Mesenchymal Stem Cells Using Acoustic Radiation Force
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A55%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vascular%20Endoluminal%20Delivery%20of%20Mesenchymal%20Stem%20Cells%20Using%20Acoustic%20Radiation%20Force&rft.jtitle=Tissue%20engineering.%20Part%20A&rft.au=Toma,%20Catalin&rft.date=2011-05-01&rft.volume=17&rft.issue=9-10&rft.spage=1457&rft.epage=1464&rft.pages=1457-1464&rft.issn=1937-3341&rft.eissn=1937-335X&rft_id=info:doi/10.1089/ten.tea.2010.0539&rft_dat=%3Cgale_pubme%3EA256171505%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862858108&rft_id=info:pmid/21247343&rft_galeid=A256171505&rfr_iscdi=true