Pepper Mannose-Binding Lectin Gene CaMBL1 Is Required to Regulate Cell Death and Defense Responses to Microbial Pathogens
Plant mannose-binding lectins (MBLs) are crucial for plant defense signaling during pathogen attack by recognizing specific carbohydrates on pathogen surfaces. In this study, we isolated and functionally characterized a novel pepper (Capsicum annuum) MBL gene, CaMBL1, from pepper leaves infected wit...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2011-01, Vol.155 (1), p.447-463 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 463 |
---|---|
container_issue | 1 |
container_start_page | 447 |
container_title | Plant physiology (Bethesda) |
container_volume | 155 |
creator | Hwang, In Sun Hwang, Byung Kook |
description | Plant mannose-binding lectins (MBLs) are crucial for plant defense signaling during pathogen attack by recognizing specific carbohydrates on pathogen surfaces. In this study, we isolated and functionally characterized a novel pepper (Capsicum annuum) MBL gene, CaMBL1, from pepper leaves infected with Xanthomonas campestris pv vesicatoria (Xcv). The CaMBL1 gene contains a predicted Galanthus nivalis agglutinin-related lectin domain responsible for the recognition of high-mannose N-glycans but lacks a middle S-locus glycoprotein domain and a carboxyl-terminal PAN-Apple domain. The CaMBL1 protein exhibits binding specificity for mannose and is mainly localized to the plasma membrane. Immunoblotting using a CaMBL1-specific antibody revealed that CaMBL1 is strongly expressed and accumulates in pepper leaves during avirulent Xcv infection. The transient expression of CaMBL1 induces the accumulation of salicylic acid (SA), the activation of defense-related genes, and the cell death phenotype in pepper. The G. nivalis agglutinin-related lectin domain of CaMBL1 is responsible for cell death induction. CaMBL1-silenced pepper plants are more susceptible to virulent or avirulent Xcv infection compared with unsilenced control plants, a phenotype that is accompanied by lowered reactive oxygen species accumulation, reduced expression of downstream SA target genes, and a concomitant decrease in SA accumulation. In contrast, CaMBL1 overexpression in Arabidopsis (Arabidopsis thaliana) confers enhanced resistance to Pseudomonas syringae pv tomato and Alternaria brassicicola infection. Together, these data suggest that CaMBL1 plays a key role in the regulation of plant cell death and defense responses through the induction of downstream defense-related genes and SA accumulation after the recognition of microbial pathogens. |
doi_str_mv | 10.1104/pp.110.164848 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3075774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41434015</jstor_id><sourcerecordid>41434015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-83e815636f023c941c2d28d322579c78d6267501864584e64033afc080f07b13</originalsourceid><addsrcrecordid>eNqFkktv1DAUhS0EosPAkiXgDWKVcv1I7Gwq0SmUSjOigrK2PI4zdZWxUztB6r-vowwDrFjdI51Px_dhhF4TOCUE-Me-n-opqbjk8glakJLRgpZcPkULgKxByvoEvUjpDgAII_w5OqGEQlkxukAP17bvbcQb7X1Itjh3vnF-h9fWDM7jS-stXunN-Zrgq4S_2_vRRdvgIWS9Gzs9ZNt2Hb6werjF2jdZtdYnm_3UhyzSBG-ciWHrdIevMxd2mXiJnrW6S_bVoS7RzZfPN6uvxfrb5dXq07owZQVDIZmVJPdatUCZqTkxtKGyYZSWojZCNhWtRAlEVryU3FYcGNOtAQktiC1hS3Q2x_bjdm8bY_0Qdaf66PY6PqignfrX8e5W7cIvxUCUQvAc8OEQEMP9aNOg9i6ZPLP2NoxJSZG3WWf0_ySlAmrOpqaKmcxbSSna9tgPATWdVfX9VNV81sy__XuII_37jhl4fwB0Mrpro_bGpT8cExwknx5-M3N3aQjx6HPCGYf8dZbo3ey3Oii9iznj5w-avw2QmvGK1uwRTka7wA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>822709431</pqid></control><display><type>article</type><title>Pepper Mannose-Binding Lectin Gene CaMBL1 Is Required to Regulate Cell Death and Defense Responses to Microbial Pathogens</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hwang, In Sun ; Hwang, Byung Kook</creator><creatorcontrib>Hwang, In Sun ; Hwang, Byung Kook</creatorcontrib><description>Plant mannose-binding lectins (MBLs) are crucial for plant defense signaling during pathogen attack by recognizing specific carbohydrates on pathogen surfaces. In this study, we isolated and functionally characterized a novel pepper (Capsicum annuum) MBL gene, CaMBL1, from pepper leaves infected with Xanthomonas campestris pv vesicatoria (Xcv). The CaMBL1 gene contains a predicted Galanthus nivalis agglutinin-related lectin domain responsible for the recognition of high-mannose N-glycans but lacks a middle S-locus glycoprotein domain and a carboxyl-terminal PAN-Apple domain. The CaMBL1 protein exhibits binding specificity for mannose and is mainly localized to the plasma membrane. Immunoblotting using a CaMBL1-specific antibody revealed that CaMBL1 is strongly expressed and accumulates in pepper leaves during avirulent Xcv infection. The transient expression of CaMBL1 induces the accumulation of salicylic acid (SA), the activation of defense-related genes, and the cell death phenotype in pepper. The G. nivalis agglutinin-related lectin domain of CaMBL1 is responsible for cell death induction. CaMBL1-silenced pepper plants are more susceptible to virulent or avirulent Xcv infection compared with unsilenced control plants, a phenotype that is accompanied by lowered reactive oxygen species accumulation, reduced expression of downstream SA target genes, and a concomitant decrease in SA accumulation. In contrast, CaMBL1 overexpression in Arabidopsis (Arabidopsis thaliana) confers enhanced resistance to Pseudomonas syringae pv tomato and Alternaria brassicicola infection. Together, these data suggest that CaMBL1 plays a key role in the regulation of plant cell death and defense responses through the induction of downstream defense-related genes and SA accumulation after the recognition of microbial pathogens.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.110.164848</identifier><identifier>PMID: 21205632</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Alternaria brassicicola ; Arabidopsis - microbiology ; Arabidopsis thaliana ; Biological and medical sciences ; Capsicum - cytology ; Capsicum - genetics ; Capsicum - immunology ; Capsicum - microbiology ; Capsicum annuum ; Cell death ; Cell Death - genetics ; Directional control ; DNA, Complementary - genetics ; DNA, Complementary - isolation & purification ; Fundamental and applied biological sciences. Psychology ; Galanthus nivalis ; Gene Expression Regulation, Plant ; Gene Silencing ; Genes, Plant - genetics ; Infections ; Inoculation ; Leaves ; Lectins ; Lycopersicon esculentum ; Mannose - metabolism ; Mannose-Binding Lectin - chemistry ; Mannose-Binding Lectin - genetics ; Mannose-Binding Lectin - metabolism ; Models, Biological ; Molecular Sequence Data ; Pathogens ; Peppers ; Plant Diseases - microbiology ; Plant Leaves - cytology ; Plant Leaves - microbiology ; Plant physiology and development ; Plant Proteins - chemistry ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants ; PLANTS INTERACTING WITH OTHER ORGANISMS ; Protein Binding ; Protein Structure, Tertiary ; Protein Transport ; Proteins ; Pseudomonas syringae ; Pseudomonas syringae - physiology ; Subcellular Fractions - metabolism ; Xanthomonas campestris ; Xanthomonas campestris - physiology</subject><ispartof>Plant physiology (Bethesda), 2011-01, Vol.155 (1), p.447-463</ispartof><rights>2011 American Society of Plant Biologists</rights><rights>2015 INIST-CNRS</rights><rights>2011 American Society of Plant Biologists 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-83e815636f023c941c2d28d322579c78d6267501864584e64033afc080f07b13</citedby><cites>FETCH-LOGICAL-c560t-83e815636f023c941c2d28d322579c78d6267501864584e64033afc080f07b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41434015$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41434015$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23740841$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21205632$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hwang, In Sun</creatorcontrib><creatorcontrib>Hwang, Byung Kook</creatorcontrib><title>Pepper Mannose-Binding Lectin Gene CaMBL1 Is Required to Regulate Cell Death and Defense Responses to Microbial Pathogens</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Plant mannose-binding lectins (MBLs) are crucial for plant defense signaling during pathogen attack by recognizing specific carbohydrates on pathogen surfaces. In this study, we isolated and functionally characterized a novel pepper (Capsicum annuum) MBL gene, CaMBL1, from pepper leaves infected with Xanthomonas campestris pv vesicatoria (Xcv). The CaMBL1 gene contains a predicted Galanthus nivalis agglutinin-related lectin domain responsible for the recognition of high-mannose N-glycans but lacks a middle S-locus glycoprotein domain and a carboxyl-terminal PAN-Apple domain. The CaMBL1 protein exhibits binding specificity for mannose and is mainly localized to the plasma membrane. Immunoblotting using a CaMBL1-specific antibody revealed that CaMBL1 is strongly expressed and accumulates in pepper leaves during avirulent Xcv infection. The transient expression of CaMBL1 induces the accumulation of salicylic acid (SA), the activation of defense-related genes, and the cell death phenotype in pepper. The G. nivalis agglutinin-related lectin domain of CaMBL1 is responsible for cell death induction. CaMBL1-silenced pepper plants are more susceptible to virulent or avirulent Xcv infection compared with unsilenced control plants, a phenotype that is accompanied by lowered reactive oxygen species accumulation, reduced expression of downstream SA target genes, and a concomitant decrease in SA accumulation. In contrast, CaMBL1 overexpression in Arabidopsis (Arabidopsis thaliana) confers enhanced resistance to Pseudomonas syringae pv tomato and Alternaria brassicicola infection. Together, these data suggest that CaMBL1 plays a key role in the regulation of plant cell death and defense responses through the induction of downstream defense-related genes and SA accumulation after the recognition of microbial pathogens.</description><subject>Alternaria brassicicola</subject><subject>Arabidopsis - microbiology</subject><subject>Arabidopsis thaliana</subject><subject>Biological and medical sciences</subject><subject>Capsicum - cytology</subject><subject>Capsicum - genetics</subject><subject>Capsicum - immunology</subject><subject>Capsicum - microbiology</subject><subject>Capsicum annuum</subject><subject>Cell death</subject><subject>Cell Death - genetics</subject><subject>Directional control</subject><subject>DNA, Complementary - genetics</subject><subject>DNA, Complementary - isolation & purification</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Galanthus nivalis</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene Silencing</subject><subject>Genes, Plant - genetics</subject><subject>Infections</subject><subject>Inoculation</subject><subject>Leaves</subject><subject>Lectins</subject><subject>Lycopersicon esculentum</subject><subject>Mannose - metabolism</subject><subject>Mannose-Binding Lectin - chemistry</subject><subject>Mannose-Binding Lectin - genetics</subject><subject>Mannose-Binding Lectin - metabolism</subject><subject>Models, Biological</subject><subject>Molecular Sequence Data</subject><subject>Pathogens</subject><subject>Peppers</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Leaves - cytology</subject><subject>Plant Leaves - microbiology</subject><subject>Plant physiology and development</subject><subject>Plant Proteins - chemistry</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants</subject><subject>PLANTS INTERACTING WITH OTHER ORGANISMS</subject><subject>Protein Binding</subject><subject>Protein Structure, Tertiary</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>Pseudomonas syringae</subject><subject>Pseudomonas syringae - physiology</subject><subject>Subcellular Fractions - metabolism</subject><subject>Xanthomonas campestris</subject><subject>Xanthomonas campestris - physiology</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkktv1DAUhS0EosPAkiXgDWKVcv1I7Gwq0SmUSjOigrK2PI4zdZWxUztB6r-vowwDrFjdI51Px_dhhF4TOCUE-Me-n-opqbjk8glakJLRgpZcPkULgKxByvoEvUjpDgAII_w5OqGEQlkxukAP17bvbcQb7X1Itjh3vnF-h9fWDM7jS-stXunN-Zrgq4S_2_vRRdvgIWS9Gzs9ZNt2Hb6werjF2jdZtdYnm_3UhyzSBG-ciWHrdIevMxd2mXiJnrW6S_bVoS7RzZfPN6uvxfrb5dXq07owZQVDIZmVJPdatUCZqTkxtKGyYZSWojZCNhWtRAlEVryU3FYcGNOtAQktiC1hS3Q2x_bjdm8bY_0Qdaf66PY6PqignfrX8e5W7cIvxUCUQvAc8OEQEMP9aNOg9i6ZPLP2NoxJSZG3WWf0_ySlAmrOpqaKmcxbSSna9tgPATWdVfX9VNV81sy__XuII_37jhl4fwB0Mrpro_bGpT8cExwknx5-M3N3aQjx6HPCGYf8dZbo3ey3Oii9iznj5w-avw2QmvGK1uwRTka7wA</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Hwang, In Sun</creator><creator>Hwang, Byung Kook</creator><general>American Society of Plant Biologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20110101</creationdate><title>Pepper Mannose-Binding Lectin Gene CaMBL1 Is Required to Regulate Cell Death and Defense Responses to Microbial Pathogens</title><author>Hwang, In Sun ; Hwang, Byung Kook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-83e815636f023c941c2d28d322579c78d6267501864584e64033afc080f07b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alternaria brassicicola</topic><topic>Arabidopsis - microbiology</topic><topic>Arabidopsis thaliana</topic><topic>Biological and medical sciences</topic><topic>Capsicum - cytology</topic><topic>Capsicum - genetics</topic><topic>Capsicum - immunology</topic><topic>Capsicum - microbiology</topic><topic>Capsicum annuum</topic><topic>Cell death</topic><topic>Cell Death - genetics</topic><topic>Directional control</topic><topic>DNA, Complementary - genetics</topic><topic>DNA, Complementary - isolation & purification</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Galanthus nivalis</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene Silencing</topic><topic>Genes, Plant - genetics</topic><topic>Infections</topic><topic>Inoculation</topic><topic>Leaves</topic><topic>Lectins</topic><topic>Lycopersicon esculentum</topic><topic>Mannose - metabolism</topic><topic>Mannose-Binding Lectin - chemistry</topic><topic>Mannose-Binding Lectin - genetics</topic><topic>Mannose-Binding Lectin - metabolism</topic><topic>Models, Biological</topic><topic>Molecular Sequence Data</topic><topic>Pathogens</topic><topic>Peppers</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Leaves - cytology</topic><topic>Plant Leaves - microbiology</topic><topic>Plant physiology and development</topic><topic>Plant Proteins - chemistry</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants</topic><topic>PLANTS INTERACTING WITH OTHER ORGANISMS</topic><topic>Protein Binding</topic><topic>Protein Structure, Tertiary</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>Pseudomonas syringae</topic><topic>Pseudomonas syringae - physiology</topic><topic>Subcellular Fractions - metabolism</topic><topic>Xanthomonas campestris</topic><topic>Xanthomonas campestris - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, In Sun</creatorcontrib><creatorcontrib>Hwang, Byung Kook</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, In Sun</au><au>Hwang, Byung Kook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pepper Mannose-Binding Lectin Gene CaMBL1 Is Required to Regulate Cell Death and Defense Responses to Microbial Pathogens</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>155</volume><issue>1</issue><spage>447</spage><epage>463</epage><pages>447-463</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Plant mannose-binding lectins (MBLs) are crucial for plant defense signaling during pathogen attack by recognizing specific carbohydrates on pathogen surfaces. In this study, we isolated and functionally characterized a novel pepper (Capsicum annuum) MBL gene, CaMBL1, from pepper leaves infected with Xanthomonas campestris pv vesicatoria (Xcv). The CaMBL1 gene contains a predicted Galanthus nivalis agglutinin-related lectin domain responsible for the recognition of high-mannose N-glycans but lacks a middle S-locus glycoprotein domain and a carboxyl-terminal PAN-Apple domain. The CaMBL1 protein exhibits binding specificity for mannose and is mainly localized to the plasma membrane. Immunoblotting using a CaMBL1-specific antibody revealed that CaMBL1 is strongly expressed and accumulates in pepper leaves during avirulent Xcv infection. The transient expression of CaMBL1 induces the accumulation of salicylic acid (SA), the activation of defense-related genes, and the cell death phenotype in pepper. The G. nivalis agglutinin-related lectin domain of CaMBL1 is responsible for cell death induction. CaMBL1-silenced pepper plants are more susceptible to virulent or avirulent Xcv infection compared with unsilenced control plants, a phenotype that is accompanied by lowered reactive oxygen species accumulation, reduced expression of downstream SA target genes, and a concomitant decrease in SA accumulation. In contrast, CaMBL1 overexpression in Arabidopsis (Arabidopsis thaliana) confers enhanced resistance to Pseudomonas syringae pv tomato and Alternaria brassicicola infection. Together, these data suggest that CaMBL1 plays a key role in the regulation of plant cell death and defense responses through the induction of downstream defense-related genes and SA accumulation after the recognition of microbial pathogens.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>21205632</pmid><doi>10.1104/pp.110.164848</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2011-01, Vol.155 (1), p.447-463 |
issn | 0032-0889 1532-2548 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3075774 |
source | Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Alternaria brassicicola Arabidopsis - microbiology Arabidopsis thaliana Biological and medical sciences Capsicum - cytology Capsicum - genetics Capsicum - immunology Capsicum - microbiology Capsicum annuum Cell death Cell Death - genetics Directional control DNA, Complementary - genetics DNA, Complementary - isolation & purification Fundamental and applied biological sciences. Psychology Galanthus nivalis Gene Expression Regulation, Plant Gene Silencing Genes, Plant - genetics Infections Inoculation Leaves Lectins Lycopersicon esculentum Mannose - metabolism Mannose-Binding Lectin - chemistry Mannose-Binding Lectin - genetics Mannose-Binding Lectin - metabolism Models, Biological Molecular Sequence Data Pathogens Peppers Plant Diseases - microbiology Plant Leaves - cytology Plant Leaves - microbiology Plant physiology and development Plant Proteins - chemistry Plant Proteins - genetics Plant Proteins - metabolism Plants PLANTS INTERACTING WITH OTHER ORGANISMS Protein Binding Protein Structure, Tertiary Protein Transport Proteins Pseudomonas syringae Pseudomonas syringae - physiology Subcellular Fractions - metabolism Xanthomonas campestris Xanthomonas campestris - physiology |
title | Pepper Mannose-Binding Lectin Gene CaMBL1 Is Required to Regulate Cell Death and Defense Responses to Microbial Pathogens |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A54%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pepper%20Mannose-Binding%20Lectin%20Gene%20CaMBL1%20Is%20Required%20to%20Regulate%20Cell%20Death%20and%20Defense%20Responses%20to%20Microbial%20Pathogens&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Hwang,%20In%20Sun&rft.date=2011-01-01&rft.volume=155&rft.issue=1&rft.spage=447&rft.epage=463&rft.pages=447-463&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.110.164848&rft_dat=%3Cjstor_pubme%3E41434015%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=822709431&rft_id=info:pmid/21205632&rft_jstor_id=41434015&rfr_iscdi=true |