Semi-automated atlas-based analysis of brain histological sections

▶ Semi-automated atlas registration to histological sections. ▶ Quantitative analysis of lesion extent across brain regions. ▶ Automated cell counting algorithm. ▶ Arc mRNA upregulated in frontal cortical regions following exploration. Quantifying the location and/or number of features in a histolog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroscience methods 2011-03, Vol.196 (1), p.12-19
Hauptverfasser: Kopec, Charles D., Bowers, Amanda C., Pai, Shraddha, Brody, Carlos D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue 1
container_start_page 12
container_title Journal of neuroscience methods
container_volume 196
creator Kopec, Charles D.
Bowers, Amanda C.
Pai, Shraddha
Brody, Carlos D.
description ▶ Semi-automated atlas registration to histological sections. ▶ Quantitative analysis of lesion extent across brain regions. ▶ Automated cell counting algorithm. ▶ Arc mRNA upregulated in frontal cortical regions following exploration. Quantifying the location and/or number of features in a histological section of the brain currently requires one to first, manually register a corresponding section from a tissue atlas onto the experimental section and second, count the features. No automated method exists for the first process (registering), and most automated methods for the second process (feature counting) operate reliably only in a high signal-to-noise regime. To reduce experimenter bias and inconsistencies and increase the speed of these analyses, we developed Atlas Fitter, a semi-automated, open-source MatLab-based software package that assists in rapidly registering atlas panels onto histological sections. We also developed CellCounter, a novel fully automated cell counting algorithm that is designed to operate on images with non-uniform background intensities and low signal-to-noise ratios.
doi_str_mv 10.1016/j.jneumeth.2010.12.007
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3075115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165027010006709</els_id><sourcerecordid>907157203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-e0d21f678f209b37c715a030cb19db1c400ecaf8c39536ab4597c4a9d293b1263</originalsourceid><addsrcrecordid>eNqFkUFP3DAQhS1EBQvtX0C59ZTt2Inj-IIoCEolpB7aSr1ZE2fCepXE1HaQ-Pd4tYDaEydb9jfPz-8xdsZhzYE3X7br7UzLRGmzFrA7FGsAdcBWvFWibFT755CtMihLEAqO2UmMWwCoNTRH7FhwrmtZNyt2-ZMmV-KS_ISJ-gLTiLHsMO72M45P0cXCD0UX0M3FxsXkR3_vLI5FJJucn-NH9mHAMdKnl_WU_b65_nV1W979-Pb96utdaSWIVBL0gg_Z2SBAd5WyikuECmzHdd9xWwOQxaG1lZZVg10ttbI16l7oquOiqU7Z-V73Yekm6i3NKeBoHoKbMDwZj878fzO7jbn3j6YCJTmXWeDzi0DwfxeKyUwuWhpHnMkv0WjIlpSA6l2ylULnCFuRyWZP2uBjDDS8-eFgdk2ZrXltyuyaMlyY3FQePPv3N29jr9Vk4GIPUM700VEw0TqaLfUu5ORN7917bzwD25ipZQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>852911982</pqid></control><display><type>article</type><title>Semi-automated atlas-based analysis of brain histological sections</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Kopec, Charles D. ; Bowers, Amanda C. ; Pai, Shraddha ; Brody, Carlos D.</creator><creatorcontrib>Kopec, Charles D. ; Bowers, Amanda C. ; Pai, Shraddha ; Brody, Carlos D.</creatorcontrib><description>▶ Semi-automated atlas registration to histological sections. ▶ Quantitative analysis of lesion extent across brain regions. ▶ Automated cell counting algorithm. ▶ Arc mRNA upregulated in frontal cortical regions following exploration. Quantifying the location and/or number of features in a histological section of the brain currently requires one to first, manually register a corresponding section from a tissue atlas onto the experimental section and second, count the features. No automated method exists for the first process (registering), and most automated methods for the second process (feature counting) operate reliably only in a high signal-to-noise regime. To reduce experimenter bias and inconsistencies and increase the speed of these analyses, we developed Atlas Fitter, a semi-automated, open-source MatLab-based software package that assists in rapidly registering atlas panels onto histological sections. We also developed CellCounter, a novel fully automated cell counting algorithm that is designed to operate on images with non-uniform background intensities and low signal-to-noise ratios.</description><identifier>ISSN: 0165-0270</identifier><identifier>EISSN: 1872-678X</identifier><identifier>DOI: 10.1016/j.jneumeth.2010.12.007</identifier><identifier>PMID: 21194546</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; Analysis ; Animals ; Arc ; Automation, Laboratory - methods ; Brain - anatomy &amp; histology ; Brain - metabolism ; Brain Mapping ; Cell Count - methods ; Cell counting ; Cytoskeletal Proteins - metabolism ; Histology ; IEG ; Image Interpretation, Computer-Assisted ; Male ; Mapping ; Nerve Tissue Proteins - metabolism ; Neurons - cytology ; Neurons - metabolism ; Rats ; Rats, Long-Evans ; Software</subject><ispartof>Journal of neuroscience methods, 2011-03, Vol.196 (1), p.12-19</ispartof><rights>2010 Elsevier B.V.</rights><rights>Copyright © 2010 Elsevier B.V. All rights reserved.</rights><rights>2010 Elsevier B.V. All rights reserved. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-e0d21f678f209b37c715a030cb19db1c400ecaf8c39536ab4597c4a9d293b1263</citedby><cites>FETCH-LOGICAL-c502t-e0d21f678f209b37c715a030cb19db1c400ecaf8c39536ab4597c4a9d293b1263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0165027010006709$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21194546$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kopec, Charles D.</creatorcontrib><creatorcontrib>Bowers, Amanda C.</creatorcontrib><creatorcontrib>Pai, Shraddha</creatorcontrib><creatorcontrib>Brody, Carlos D.</creatorcontrib><title>Semi-automated atlas-based analysis of brain histological sections</title><title>Journal of neuroscience methods</title><addtitle>J Neurosci Methods</addtitle><description>▶ Semi-automated atlas registration to histological sections. ▶ Quantitative analysis of lesion extent across brain regions. ▶ Automated cell counting algorithm. ▶ Arc mRNA upregulated in frontal cortical regions following exploration. Quantifying the location and/or number of features in a histological section of the brain currently requires one to first, manually register a corresponding section from a tissue atlas onto the experimental section and second, count the features. No automated method exists for the first process (registering), and most automated methods for the second process (feature counting) operate reliably only in a high signal-to-noise regime. To reduce experimenter bias and inconsistencies and increase the speed of these analyses, we developed Atlas Fitter, a semi-automated, open-source MatLab-based software package that assists in rapidly registering atlas panels onto histological sections. We also developed CellCounter, a novel fully automated cell counting algorithm that is designed to operate on images with non-uniform background intensities and low signal-to-noise ratios.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Animals</subject><subject>Arc</subject><subject>Automation, Laboratory - methods</subject><subject>Brain - anatomy &amp; histology</subject><subject>Brain - metabolism</subject><subject>Brain Mapping</subject><subject>Cell Count - methods</subject><subject>Cell counting</subject><subject>Cytoskeletal Proteins - metabolism</subject><subject>Histology</subject><subject>IEG</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Male</subject><subject>Mapping</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Rats</subject><subject>Rats, Long-Evans</subject><subject>Software</subject><issn>0165-0270</issn><issn>1872-678X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFP3DAQhS1EBQvtX0C59ZTt2Inj-IIoCEolpB7aSr1ZE2fCepXE1HaQ-Pd4tYDaEydb9jfPz-8xdsZhzYE3X7br7UzLRGmzFrA7FGsAdcBWvFWibFT755CtMihLEAqO2UmMWwCoNTRH7FhwrmtZNyt2-ZMmV-KS_ISJ-gLTiLHsMO72M45P0cXCD0UX0M3FxsXkR3_vLI5FJJucn-NH9mHAMdKnl_WU_b65_nV1W979-Pb96utdaSWIVBL0gg_Z2SBAd5WyikuECmzHdd9xWwOQxaG1lZZVg10ttbI16l7oquOiqU7Z-V73Yekm6i3NKeBoHoKbMDwZj878fzO7jbn3j6YCJTmXWeDzi0DwfxeKyUwuWhpHnMkv0WjIlpSA6l2ylULnCFuRyWZP2uBjDDS8-eFgdk2ZrXltyuyaMlyY3FQePPv3N29jr9Vk4GIPUM700VEw0TqaLfUu5ORN7917bzwD25ipZQ</recordid><startdate>20110315</startdate><enddate>20110315</enddate><creator>Kopec, Charles D.</creator><creator>Bowers, Amanda C.</creator><creator>Pai, Shraddha</creator><creator>Brody, Carlos D.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20110315</creationdate><title>Semi-automated atlas-based analysis of brain histological sections</title><author>Kopec, Charles D. ; Bowers, Amanda C. ; Pai, Shraddha ; Brody, Carlos D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-e0d21f678f209b37c715a030cb19db1c400ecaf8c39536ab4597c4a9d293b1263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Animals</topic><topic>Arc</topic><topic>Automation, Laboratory - methods</topic><topic>Brain - anatomy &amp; histology</topic><topic>Brain - metabolism</topic><topic>Brain Mapping</topic><topic>Cell Count - methods</topic><topic>Cell counting</topic><topic>Cytoskeletal Proteins - metabolism</topic><topic>Histology</topic><topic>IEG</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Male</topic><topic>Mapping</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Rats</topic><topic>Rats, Long-Evans</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kopec, Charles D.</creatorcontrib><creatorcontrib>Bowers, Amanda C.</creatorcontrib><creatorcontrib>Pai, Shraddha</creatorcontrib><creatorcontrib>Brody, Carlos D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of neuroscience methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kopec, Charles D.</au><au>Bowers, Amanda C.</au><au>Pai, Shraddha</au><au>Brody, Carlos D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-automated atlas-based analysis of brain histological sections</atitle><jtitle>Journal of neuroscience methods</jtitle><addtitle>J Neurosci Methods</addtitle><date>2011-03-15</date><risdate>2011</risdate><volume>196</volume><issue>1</issue><spage>12</spage><epage>19</epage><pages>12-19</pages><issn>0165-0270</issn><eissn>1872-678X</eissn><abstract>▶ Semi-automated atlas registration to histological sections. ▶ Quantitative analysis of lesion extent across brain regions. ▶ Automated cell counting algorithm. ▶ Arc mRNA upregulated in frontal cortical regions following exploration. Quantifying the location and/or number of features in a histological section of the brain currently requires one to first, manually register a corresponding section from a tissue atlas onto the experimental section and second, count the features. No automated method exists for the first process (registering), and most automated methods for the second process (feature counting) operate reliably only in a high signal-to-noise regime. To reduce experimenter bias and inconsistencies and increase the speed of these analyses, we developed Atlas Fitter, a semi-automated, open-source MatLab-based software package that assists in rapidly registering atlas panels onto histological sections. We also developed CellCounter, a novel fully automated cell counting algorithm that is designed to operate on images with non-uniform background intensities and low signal-to-noise ratios.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>21194546</pmid><doi>10.1016/j.jneumeth.2010.12.007</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0165-0270
ispartof Journal of neuroscience methods, 2011-03, Vol.196 (1), p.12-19
issn 0165-0270
1872-678X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3075115
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Algorithms
Analysis
Animals
Arc
Automation, Laboratory - methods
Brain - anatomy & histology
Brain - metabolism
Brain Mapping
Cell Count - methods
Cell counting
Cytoskeletal Proteins - metabolism
Histology
IEG
Image Interpretation, Computer-Assisted
Male
Mapping
Nerve Tissue Proteins - metabolism
Neurons - cytology
Neurons - metabolism
Rats
Rats, Long-Evans
Software
title Semi-automated atlas-based analysis of brain histological sections
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T12%3A23%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-automated%20atlas-based%20analysis%20of%20brain%20histological%20sections&rft.jtitle=Journal%20of%20neuroscience%20methods&rft.au=Kopec,%20Charles%20D.&rft.date=2011-03-15&rft.volume=196&rft.issue=1&rft.spage=12&rft.epage=19&rft.pages=12-19&rft.issn=0165-0270&rft.eissn=1872-678X&rft_id=info:doi/10.1016/j.jneumeth.2010.12.007&rft_dat=%3Cproquest_pubme%3E907157203%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=852911982&rft_id=info:pmid/21194546&rft_els_id=S0165027010006709&rfr_iscdi=true