Intracellular bacteria recognition contributes to maximal interleukin (IL)-12 production by IL-10-deficient macrophages

Interleukin (IL)-12 is a key factor that induces T helper cell type 1-mediated immunity and inflammatory diseases. In some colitis models, such as IL-10 knock-out (KO) mice, IL-12 triggers intestinal inflammation. An abundant amount of IL-12 is produced by intestinal macrophages in response to stimu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical and experimental immunology 2011-04, Vol.164 (1), p.137-144
Hauptverfasser: Naruse, H, Hisamatsu, T, Yamauchi, Y, Chang, J.E, Matsuoka, K, Kitazume, M.T, Arai, K, Ando, S, Kanai, T, Kamada, N, Hibi, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 144
container_issue 1
container_start_page 137
container_title Clinical and experimental immunology
container_volume 164
creator Naruse, H
Hisamatsu, T
Yamauchi, Y
Chang, J.E
Matsuoka, K
Kitazume, M.T
Arai, K
Ando, S
Kanai, T
Kamada, N
Hibi, T
description Interleukin (IL)-12 is a key factor that induces T helper cell type 1-mediated immunity and inflammatory diseases. In some colitis models, such as IL-10 knock-out (KO) mice, IL-12 triggers intestinal inflammation. An abundant amount of IL-12 is produced by intestinal macrophages in response to stimulation by commensal bacteria in IL-10 KO mice. Intact bacteria are more potent inducers of macrophage IL-12 production than cell surface components in this model. This suggested that cell surface receptor signalling and intracellular pathogen recognition mechanisms are important for the induction of IL-12. We addressed the importance of intracellular recognition mechanisms and demonstrated that signal transducers and activator of transcription 1 (STAT1) signalling activated bacterial phagocytosis and was involved in the induction of abnormal IL-12 production. In IL-10 KO mouse bone marrow-derived (BM) macrophages, Escherichia coli stimulation induced increased IL-12p70 production compared to lipopolysaccharide combined with interferon (IFN)-γ treatment. Significant repression of IL-12 production was achieved by inhibition of phagocytosis with cytochalasin D, and inhibition of de novo protein synthesis with cycloheximide. Induction of IFN regulatory factors-1 and -8, downstream molecules of STAT1 and the key transcription factors for IK-12 transcription, following E. coli stimulation, were mediated by phagocytosis. Interestingly, STAT1 was activated after stimulation with E. coli in IL-10 KO BM macrophages, although IFN-γ could not be detected. These data suggest that molecules other than IFN-γ are involved in hyper-production mechanisms of IL-12 induced by E. coli stimulation. In conclusion, enteric bacteria stimulate excessive IL-12p70 production in IL-10 KO BM macrophages via phagocytosis-dependent signalling.
doi_str_mv 10.1111/j.1365-2249.2011.04318.x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3074226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3317455561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6538-3b9b3beaf58b20e7bc3e983d276a2a6b11fbfc80eb990e5ce15e87f16da288e73</originalsourceid><addsrcrecordid>eNqNkcuO0zAUhi0EYsrAK0AkhIBFgi-52AuQUDVApEosYNaW7Zx0XFK72AnTvj3OtJTLCm9s63z_uf0IZQQXJJ03m4KwusopLUVBMSEFLhnhxf4eWpwD99ECYyxyQXB5gR7FuEnfuq7pQ3RBCasoEWKBbls3BmVgGKZBhUwrM0KwKgtg_NrZ0XqXGZ8Yq6cRYjb6bKv2dquGzLqEDjB9sy571a5e54Rmu-C7ydyp9CFrVznBeQe9NRbcmJQm-N2NWkN8jB70aojw5HRfousPV1-Xn_LV54_t8v0qN3XFeM600EyD6iuuKYZGGwaCs442taKq1oT0ujccgxYCQ2WAVMCbntSdopxDwy7Ru2Pe3aS30BmYxx3kLqQRwkF6ZeXfEWdv5Nr_kAw3JaV1SvDylCD47xPEUW5tnPelHPgpSt6IsklbnUs9_4fc-Cm4NJ0kFRUVq2oxU_xIpVXEGKA_90KwnM2VGzl7KGcP5WyuvDNX7pP06Z-znIW_3EzAixOgolFDH5QzNv7mmKCNEGXi3h65WzvA4b8bkMurdn4l_bOjvldeqnVINa6_JJJhIlInJWc_AWG2yyY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1529535697</pqid></control><display><type>article</type><title>Intracellular bacteria recognition contributes to maximal interleukin (IL)-12 production by IL-10-deficient macrophages</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Naruse, H ; Hisamatsu, T ; Yamauchi, Y ; Chang, J.E ; Matsuoka, K ; Kitazume, M.T ; Arai, K ; Ando, S ; Kanai, T ; Kamada, N ; Hibi, T</creator><creatorcontrib>Naruse, H ; Hisamatsu, T ; Yamauchi, Y ; Chang, J.E ; Matsuoka, K ; Kitazume, M.T ; Arai, K ; Ando, S ; Kanai, T ; Kamada, N ; Hibi, T</creatorcontrib><description>Interleukin (IL)-12 is a key factor that induces T helper cell type 1-mediated immunity and inflammatory diseases. In some colitis models, such as IL-10 knock-out (KO) mice, IL-12 triggers intestinal inflammation. An abundant amount of IL-12 is produced by intestinal macrophages in response to stimulation by commensal bacteria in IL-10 KO mice. Intact bacteria are more potent inducers of macrophage IL-12 production than cell surface components in this model. This suggested that cell surface receptor signalling and intracellular pathogen recognition mechanisms are important for the induction of IL-12. We addressed the importance of intracellular recognition mechanisms and demonstrated that signal transducers and activator of transcription 1 (STAT1) signalling activated bacterial phagocytosis and was involved in the induction of abnormal IL-12 production. In IL-10 KO mouse bone marrow-derived (BM) macrophages, Escherichia coli stimulation induced increased IL-12p70 production compared to lipopolysaccharide combined with interferon (IFN)-γ treatment. Significant repression of IL-12 production was achieved by inhibition of phagocytosis with cytochalasin D, and inhibition of de novo protein synthesis with cycloheximide. Induction of IFN regulatory factors-1 and -8, downstream molecules of STAT1 and the key transcription factors for IK-12 transcription, following E. coli stimulation, were mediated by phagocytosis. Interestingly, STAT1 was activated after stimulation with E. coli in IL-10 KO BM macrophages, although IFN-γ could not be detected. These data suggest that molecules other than IFN-γ are involved in hyper-production mechanisms of IL-12 induced by E. coli stimulation. In conclusion, enteric bacteria stimulate excessive IL-12p70 production in IL-10 KO BM macrophages via phagocytosis-dependent signalling.</description><identifier>ISSN: 0009-9104</identifier><identifier>EISSN: 1365-2249</identifier><identifier>DOI: 10.1111/j.1365-2249.2011.04318.x</identifier><identifier>PMID: 21352199</identifier><identifier>CODEN: CEXIAL</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Analytical, structural and metabolic biochemistry ; Animal models ; Animals ; Bacteria ; Biological and medical sciences ; Blotting, Western ; Bone marrow ; Bone Marrow Cells - drug effects ; Bone Marrow Cells - immunology ; Bone Marrow Cells - microbiology ; Cell surface ; Cells, Cultured ; Colitis ; Commensals ; Cycloheximide ; cytochalasin D ; Cytokines ; Data processing ; E coli ; Escherichia coli ; Escherichia coli - immunology ; Escherichia coli - physiology ; Fundamental and applied biological sciences. Psychology ; gamma -Interferon ; Helper cells ; Host-Pathogen Interactions - immunology ; IL‐10 ; IL‐12 ; Inflammatory diseases ; Interferon ; Interferon-gamma - pharmacology ; Interleukin 10 ; Interleukin 12 ; Interleukin-10 - deficiency ; Interleukin-10 - genetics ; Interleukin-12 - genetics ; Interleukin-12 - immunology ; Interleukin-12 - metabolism ; Intestine ; Intracellular signalling ; Lipopolysaccharides ; Lipopolysaccharides - pharmacology ; Lymphocytes T ; macrophage ; Macrophages ; Macrophages - drug effects ; Macrophages - immunology ; Macrophages - microbiology ; Medical research ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Pathogens ; Phagocytosis ; Phagocytosis - immunology ; Phosphorylation - drug effects ; Protein biosynthesis ; Protein Biosynthesis - immunology ; Reverse Transcriptase Polymerase Chain Reaction ; Signal Transduction - drug effects ; Signal Transduction - immunology ; Stat1 protein ; STAT1 Transcription Factor - immunology ; STAT1 Transcription Factor - metabolism ; Transcription factors ; Translational Studies</subject><ispartof>Clinical and experimental immunology, 2011-04, Vol.164 (1), p.137-144</ispartof><rights>2011 The Authors. Clinical and Experimental Immunology © 2011 British Society for Immunology</rights><rights>2015 INIST-CNRS</rights><rights>2011 The Authors. Clinical and Experimental Immunology © 2011 British Society for Immunology.</rights><rights>Copyright © 2011 British Society for Immunology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6538-3b9b3beaf58b20e7bc3e983d276a2a6b11fbfc80eb990e5ce15e87f16da288e73</citedby><cites>FETCH-LOGICAL-c6538-3b9b3beaf58b20e7bc3e983d276a2a6b11fbfc80eb990e5ce15e87f16da288e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074226/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074226/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27915,27916,53782,53784</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23927994$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21352199$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Naruse, H</creatorcontrib><creatorcontrib>Hisamatsu, T</creatorcontrib><creatorcontrib>Yamauchi, Y</creatorcontrib><creatorcontrib>Chang, J.E</creatorcontrib><creatorcontrib>Matsuoka, K</creatorcontrib><creatorcontrib>Kitazume, M.T</creatorcontrib><creatorcontrib>Arai, K</creatorcontrib><creatorcontrib>Ando, S</creatorcontrib><creatorcontrib>Kanai, T</creatorcontrib><creatorcontrib>Kamada, N</creatorcontrib><creatorcontrib>Hibi, T</creatorcontrib><title>Intracellular bacteria recognition contributes to maximal interleukin (IL)-12 production by IL-10-deficient macrophages</title><title>Clinical and experimental immunology</title><addtitle>Clin Exp Immunol</addtitle><description>Interleukin (IL)-12 is a key factor that induces T helper cell type 1-mediated immunity and inflammatory diseases. In some colitis models, such as IL-10 knock-out (KO) mice, IL-12 triggers intestinal inflammation. An abundant amount of IL-12 is produced by intestinal macrophages in response to stimulation by commensal bacteria in IL-10 KO mice. Intact bacteria are more potent inducers of macrophage IL-12 production than cell surface components in this model. This suggested that cell surface receptor signalling and intracellular pathogen recognition mechanisms are important for the induction of IL-12. We addressed the importance of intracellular recognition mechanisms and demonstrated that signal transducers and activator of transcription 1 (STAT1) signalling activated bacterial phagocytosis and was involved in the induction of abnormal IL-12 production. In IL-10 KO mouse bone marrow-derived (BM) macrophages, Escherichia coli stimulation induced increased IL-12p70 production compared to lipopolysaccharide combined with interferon (IFN)-γ treatment. Significant repression of IL-12 production was achieved by inhibition of phagocytosis with cytochalasin D, and inhibition of de novo protein synthesis with cycloheximide. Induction of IFN regulatory factors-1 and -8, downstream molecules of STAT1 and the key transcription factors for IK-12 transcription, following E. coli stimulation, were mediated by phagocytosis. Interestingly, STAT1 was activated after stimulation with E. coli in IL-10 KO BM macrophages, although IFN-γ could not be detected. These data suggest that molecules other than IFN-γ are involved in hyper-production mechanisms of IL-12 induced by E. coli stimulation. In conclusion, enteric bacteria stimulate excessive IL-12p70 production in IL-10 KO BM macrophages via phagocytosis-dependent signalling.</description><subject>Analytical, structural and metabolic biochemistry</subject><subject>Animal models</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Biological and medical sciences</subject><subject>Blotting, Western</subject><subject>Bone marrow</subject><subject>Bone Marrow Cells - drug effects</subject><subject>Bone Marrow Cells - immunology</subject><subject>Bone Marrow Cells - microbiology</subject><subject>Cell surface</subject><subject>Cells, Cultured</subject><subject>Colitis</subject><subject>Commensals</subject><subject>Cycloheximide</subject><subject>cytochalasin D</subject><subject>Cytokines</subject><subject>Data processing</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - immunology</subject><subject>Escherichia coli - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gamma -Interferon</subject><subject>Helper cells</subject><subject>Host-Pathogen Interactions - immunology</subject><subject>IL‐10</subject><subject>IL‐12</subject><subject>Inflammatory diseases</subject><subject>Interferon</subject><subject>Interferon-gamma - pharmacology</subject><subject>Interleukin 10</subject><subject>Interleukin 12</subject><subject>Interleukin-10 - deficiency</subject><subject>Interleukin-10 - genetics</subject><subject>Interleukin-12 - genetics</subject><subject>Interleukin-12 - immunology</subject><subject>Interleukin-12 - metabolism</subject><subject>Intestine</subject><subject>Intracellular signalling</subject><subject>Lipopolysaccharides</subject><subject>Lipopolysaccharides - pharmacology</subject><subject>Lymphocytes T</subject><subject>macrophage</subject><subject>Macrophages</subject><subject>Macrophages - drug effects</subject><subject>Macrophages - immunology</subject><subject>Macrophages - microbiology</subject><subject>Medical research</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Pathogens</subject><subject>Phagocytosis</subject><subject>Phagocytosis - immunology</subject><subject>Phosphorylation - drug effects</subject><subject>Protein biosynthesis</subject><subject>Protein Biosynthesis - immunology</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - immunology</subject><subject>Stat1 protein</subject><subject>STAT1 Transcription Factor - immunology</subject><subject>STAT1 Transcription Factor - metabolism</subject><subject>Transcription factors</subject><subject>Translational Studies</subject><issn>0009-9104</issn><issn>1365-2249</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcuO0zAUhi0EYsrAK0AkhIBFgi-52AuQUDVApEosYNaW7Zx0XFK72AnTvj3OtJTLCm9s63z_uf0IZQQXJJ03m4KwusopLUVBMSEFLhnhxf4eWpwD99ECYyxyQXB5gR7FuEnfuq7pQ3RBCasoEWKBbls3BmVgGKZBhUwrM0KwKgtg_NrZ0XqXGZ8Yq6cRYjb6bKv2dquGzLqEDjB9sy571a5e54Rmu-C7ydyp9CFrVznBeQe9NRbcmJQm-N2NWkN8jB70aojw5HRfousPV1-Xn_LV54_t8v0qN3XFeM600EyD6iuuKYZGGwaCs442taKq1oT0ujccgxYCQ2WAVMCbntSdopxDwy7Ru2Pe3aS30BmYxx3kLqQRwkF6ZeXfEWdv5Nr_kAw3JaV1SvDylCD47xPEUW5tnPelHPgpSt6IsklbnUs9_4fc-Cm4NJ0kFRUVq2oxU_xIpVXEGKA_90KwnM2VGzl7KGcP5WyuvDNX7pP06Z-znIW_3EzAixOgolFDH5QzNv7mmKCNEGXi3h65WzvA4b8bkMurdn4l_bOjvldeqnVINa6_JJJhIlInJWc_AWG2yyY</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Naruse, H</creator><creator>Hisamatsu, T</creator><creator>Yamauchi, Y</creator><creator>Chang, J.E</creator><creator>Matsuoka, K</creator><creator>Kitazume, M.T</creator><creator>Arai, K</creator><creator>Ando, S</creator><creator>Kanai, T</creator><creator>Kamada, N</creator><creator>Hibi, T</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>Oxford University Press</general><general>Blackwell Science Inc</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7U9</scope><scope>H94</scope><scope>M7N</scope><scope>7QL</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>201104</creationdate><title>Intracellular bacteria recognition contributes to maximal interleukin (IL)-12 production by IL-10-deficient macrophages</title><author>Naruse, H ; Hisamatsu, T ; Yamauchi, Y ; Chang, J.E ; Matsuoka, K ; Kitazume, M.T ; Arai, K ; Ando, S ; Kanai, T ; Kamada, N ; Hibi, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6538-3b9b3beaf58b20e7bc3e983d276a2a6b11fbfc80eb990e5ce15e87f16da288e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analytical, structural and metabolic biochemistry</topic><topic>Animal models</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Biological and medical sciences</topic><topic>Blotting, Western</topic><topic>Bone marrow</topic><topic>Bone Marrow Cells - drug effects</topic><topic>Bone Marrow Cells - immunology</topic><topic>Bone Marrow Cells - microbiology</topic><topic>Cell surface</topic><topic>Cells, Cultured</topic><topic>Colitis</topic><topic>Commensals</topic><topic>Cycloheximide</topic><topic>cytochalasin D</topic><topic>Cytokines</topic><topic>Data processing</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - immunology</topic><topic>Escherichia coli - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gamma -Interferon</topic><topic>Helper cells</topic><topic>Host-Pathogen Interactions - immunology</topic><topic>IL‐10</topic><topic>IL‐12</topic><topic>Inflammatory diseases</topic><topic>Interferon</topic><topic>Interferon-gamma - pharmacology</topic><topic>Interleukin 10</topic><topic>Interleukin 12</topic><topic>Interleukin-10 - deficiency</topic><topic>Interleukin-10 - genetics</topic><topic>Interleukin-12 - genetics</topic><topic>Interleukin-12 - immunology</topic><topic>Interleukin-12 - metabolism</topic><topic>Intestine</topic><topic>Intracellular signalling</topic><topic>Lipopolysaccharides</topic><topic>Lipopolysaccharides - pharmacology</topic><topic>Lymphocytes T</topic><topic>macrophage</topic><topic>Macrophages</topic><topic>Macrophages - drug effects</topic><topic>Macrophages - immunology</topic><topic>Macrophages - microbiology</topic><topic>Medical research</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Pathogens</topic><topic>Phagocytosis</topic><topic>Phagocytosis - immunology</topic><topic>Phosphorylation - drug effects</topic><topic>Protein biosynthesis</topic><topic>Protein Biosynthesis - immunology</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - immunology</topic><topic>Stat1 protein</topic><topic>STAT1 Transcription Factor - immunology</topic><topic>STAT1 Transcription Factor - metabolism</topic><topic>Transcription factors</topic><topic>Translational Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naruse, H</creatorcontrib><creatorcontrib>Hisamatsu, T</creatorcontrib><creatorcontrib>Yamauchi, Y</creatorcontrib><creatorcontrib>Chang, J.E</creatorcontrib><creatorcontrib>Matsuoka, K</creatorcontrib><creatorcontrib>Kitazume, M.T</creatorcontrib><creatorcontrib>Arai, K</creatorcontrib><creatorcontrib>Ando, S</creatorcontrib><creatorcontrib>Kanai, T</creatorcontrib><creatorcontrib>Kamada, N</creatorcontrib><creatorcontrib>Hibi, T</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Clinical and experimental immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naruse, H</au><au>Hisamatsu, T</au><au>Yamauchi, Y</au><au>Chang, J.E</au><au>Matsuoka, K</au><au>Kitazume, M.T</au><au>Arai, K</au><au>Ando, S</au><au>Kanai, T</au><au>Kamada, N</au><au>Hibi, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intracellular bacteria recognition contributes to maximal interleukin (IL)-12 production by IL-10-deficient macrophages</atitle><jtitle>Clinical and experimental immunology</jtitle><addtitle>Clin Exp Immunol</addtitle><date>2011-04</date><risdate>2011</risdate><volume>164</volume><issue>1</issue><spage>137</spage><epage>144</epage><pages>137-144</pages><issn>0009-9104</issn><eissn>1365-2249</eissn><coden>CEXIAL</coden><abstract>Interleukin (IL)-12 is a key factor that induces T helper cell type 1-mediated immunity and inflammatory diseases. In some colitis models, such as IL-10 knock-out (KO) mice, IL-12 triggers intestinal inflammation. An abundant amount of IL-12 is produced by intestinal macrophages in response to stimulation by commensal bacteria in IL-10 KO mice. Intact bacteria are more potent inducers of macrophage IL-12 production than cell surface components in this model. This suggested that cell surface receptor signalling and intracellular pathogen recognition mechanisms are important for the induction of IL-12. We addressed the importance of intracellular recognition mechanisms and demonstrated that signal transducers and activator of transcription 1 (STAT1) signalling activated bacterial phagocytosis and was involved in the induction of abnormal IL-12 production. In IL-10 KO mouse bone marrow-derived (BM) macrophages, Escherichia coli stimulation induced increased IL-12p70 production compared to lipopolysaccharide combined with interferon (IFN)-γ treatment. Significant repression of IL-12 production was achieved by inhibition of phagocytosis with cytochalasin D, and inhibition of de novo protein synthesis with cycloheximide. Induction of IFN regulatory factors-1 and -8, downstream molecules of STAT1 and the key transcription factors for IK-12 transcription, following E. coli stimulation, were mediated by phagocytosis. Interestingly, STAT1 was activated after stimulation with E. coli in IL-10 KO BM macrophages, although IFN-γ could not be detected. These data suggest that molecules other than IFN-γ are involved in hyper-production mechanisms of IL-12 induced by E. coli stimulation. In conclusion, enteric bacteria stimulate excessive IL-12p70 production in IL-10 KO BM macrophages via phagocytosis-dependent signalling.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21352199</pmid><doi>10.1111/j.1365-2249.2011.04318.x</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-9104
ispartof Clinical and experimental immunology, 2011-04, Vol.164 (1), p.137-144
issn 0009-9104
1365-2249
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3074226
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Analytical, structural and metabolic biochemistry
Animal models
Animals
Bacteria
Biological and medical sciences
Blotting, Western
Bone marrow
Bone Marrow Cells - drug effects
Bone Marrow Cells - immunology
Bone Marrow Cells - microbiology
Cell surface
Cells, Cultured
Colitis
Commensals
Cycloheximide
cytochalasin D
Cytokines
Data processing
E coli
Escherichia coli
Escherichia coli - immunology
Escherichia coli - physiology
Fundamental and applied biological sciences. Psychology
gamma -Interferon
Helper cells
Host-Pathogen Interactions - immunology
IL‐10
IL‐12
Inflammatory diseases
Interferon
Interferon-gamma - pharmacology
Interleukin 10
Interleukin 12
Interleukin-10 - deficiency
Interleukin-10 - genetics
Interleukin-12 - genetics
Interleukin-12 - immunology
Interleukin-12 - metabolism
Intestine
Intracellular signalling
Lipopolysaccharides
Lipopolysaccharides - pharmacology
Lymphocytes T
macrophage
Macrophages
Macrophages - drug effects
Macrophages - immunology
Macrophages - microbiology
Medical research
Mice
Mice, Inbred C57BL
Mice, Knockout
Pathogens
Phagocytosis
Phagocytosis - immunology
Phosphorylation - drug effects
Protein biosynthesis
Protein Biosynthesis - immunology
Reverse Transcriptase Polymerase Chain Reaction
Signal Transduction - drug effects
Signal Transduction - immunology
Stat1 protein
STAT1 Transcription Factor - immunology
STAT1 Transcription Factor - metabolism
Transcription factors
Translational Studies
title Intracellular bacteria recognition contributes to maximal interleukin (IL)-12 production by IL-10-deficient macrophages
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A48%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intracellular%20bacteria%20recognition%20contributes%20to%20maximal%20interleukin%20(IL)-12%20production%20by%20IL-10-deficient%20macrophages&rft.jtitle=Clinical%20and%20experimental%20immunology&rft.au=Naruse,%20H&rft.date=2011-04&rft.volume=164&rft.issue=1&rft.spage=137&rft.epage=144&rft.pages=137-144&rft.issn=0009-9104&rft.eissn=1365-2249&rft.coden=CEXIAL&rft_id=info:doi/10.1111/j.1365-2249.2011.04318.x&rft_dat=%3Cproquest_pubme%3E3317455561%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1529535697&rft_id=info:pmid/21352199&rfr_iscdi=true