ER stress modulates cellular metabolism

Changes in metabolic processes play a critical role in the survival or death of cells subjected to various stresses. In the present study, we have investigated the effects of ER (endoplasmic reticulum) stress on cellular metabolism. A major difficulty in studying metabolic responses to ER stress is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical journal 2011-04, Vol.435 (1), p.285-296
Hauptverfasser: Wang, Xiaoli, Eno, Colins O, Altman, Brian J, Zhu, Yanglong, Zhao, Guoping, Olberding, Kristen E, Rathmell, Jeffrey C, Li, Chi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 296
container_issue 1
container_start_page 285
container_title Biochemical journal
container_volume 435
creator Wang, Xiaoli
Eno, Colins O
Altman, Brian J
Zhu, Yanglong
Zhao, Guoping
Olberding, Kristen E
Rathmell, Jeffrey C
Li, Chi
description Changes in metabolic processes play a critical role in the survival or death of cells subjected to various stresses. In the present study, we have investigated the effects of ER (endoplasmic reticulum) stress on cellular metabolism. A major difficulty in studying metabolic responses to ER stress is that ER stress normally leads to apoptosis and metabolic changes observed in dying cells may be misleading. Therefore we have used IL-3 (interleukin 3)-dependent Bak-/-Bax-/- haemopoietic cells which do not die in the presence of the ER-stress-inducing drug tunicamycin. Tunicamycin-treated Bak-/-Bax-/- cells remain viable, but cease growth, arresting in G1-phase and undergoing autophagy in the absence of apoptosis. In these cells, we used NMR-based SIRM (stable isotope-resolved metabolomics) to determine the metabolic effects of tunicamycin. Glucose was found to be the major carbon source for energy production and anabolic metabolism. Following tunicamycin exposure, glucose uptake and lactate production are greatly reduced. Decreased 13C labelling in several cellular metabolites suggests that mitochondrial function in cells undergoing ER stress is compromised. Consistent with this, mitochondrial membrane potential, oxygen consumption and cellular ATP levels are much lower compared with untreated cells. Importantly, the effects of tunicamycin on cellular metabolic processes may be related to a reduction in cell-surface GLUT1 (glucose transporter 1) levels which, in turn, may reflect decreased Akt signalling. These results suggest that ER stress exerts profound effects on several central metabolic processes which may help to explain cell death arising from ER stress in normal cells.
doi_str_mv 10.1042/BJ20101864
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3072169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21241252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-6587913cfc7ad7c2a2fb7ae352432fd0856f9361683936006c82dfd798bcbfae3</originalsourceid><addsrcrecordid>eNpVkE1LAzEQhoMotlYv_gDZmyCsTibZJHsRbKlfFATRc8hmE13JdkuyFfz3rlSrnt6BeeYdeAg5pnBOgePF9B6BAlWC75Ax5RJyJVHtkjGg4LkApCNykNIbAOXAYZ-MkCKnWOCYnM4fs9RHl1LWdvU6mN6lzLoQhjFmretN1YUmtYdkz5uQ3NF3Tsjz9fxpdpsvHm7uZleL3DIp-1wUSpaUWW-lqaVFg76SxrECOUNfgyqEL5mgQrEhAIRVWPtalqqylR_ACbnc9K7WVetq65Z9NEGvYtOa-KE70-j_m2Xzql-6d81AIhXlUHC2KbCxSyk6v72loL906V9dA3zy99sW_fHDPgFzqmUK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ER stress modulates cellular metabolism</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Wang, Xiaoli ; Eno, Colins O ; Altman, Brian J ; Zhu, Yanglong ; Zhao, Guoping ; Olberding, Kristen E ; Rathmell, Jeffrey C ; Li, Chi</creator><creatorcontrib>Wang, Xiaoli ; Eno, Colins O ; Altman, Brian J ; Zhu, Yanglong ; Zhao, Guoping ; Olberding, Kristen E ; Rathmell, Jeffrey C ; Li, Chi</creatorcontrib><description>Changes in metabolic processes play a critical role in the survival or death of cells subjected to various stresses. In the present study, we have investigated the effects of ER (endoplasmic reticulum) stress on cellular metabolism. A major difficulty in studying metabolic responses to ER stress is that ER stress normally leads to apoptosis and metabolic changes observed in dying cells may be misleading. Therefore we have used IL-3 (interleukin 3)-dependent Bak-/-Bax-/- haemopoietic cells which do not die in the presence of the ER-stress-inducing drug tunicamycin. Tunicamycin-treated Bak-/-Bax-/- cells remain viable, but cease growth, arresting in G1-phase and undergoing autophagy in the absence of apoptosis. In these cells, we used NMR-based SIRM (stable isotope-resolved metabolomics) to determine the metabolic effects of tunicamycin. Glucose was found to be the major carbon source for energy production and anabolic metabolism. Following tunicamycin exposure, glucose uptake and lactate production are greatly reduced. Decreased 13C labelling in several cellular metabolites suggests that mitochondrial function in cells undergoing ER stress is compromised. Consistent with this, mitochondrial membrane potential, oxygen consumption and cellular ATP levels are much lower compared with untreated cells. Importantly, the effects of tunicamycin on cellular metabolic processes may be related to a reduction in cell-surface GLUT1 (glucose transporter 1) levels which, in turn, may reflect decreased Akt signalling. These results suggest that ER stress exerts profound effects on several central metabolic processes which may help to explain cell death arising from ER stress in normal cells.</description><identifier>ISSN: 0264-6021</identifier><identifier>EISSN: 1470-8728</identifier><identifier>DOI: 10.1042/BJ20101864</identifier><identifier>PMID: 21241252</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; Autophagy - drug effects ; bcl-2 Homologous Antagonist-Killer Protein - genetics ; bcl-2 Homologous Antagonist-Killer Protein - metabolism ; bcl-2-Associated X Protein - genetics ; bcl-2-Associated X Protein - metabolism ; Cell Line ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; Endoplasmic Reticulum - metabolism ; G1 Phase - drug effects ; Glucose Transporter Type 1 - metabolism ; Magnetic Resonance Imaging ; Membrane Potential, Mitochondrial - drug effects ; Metabolome - drug effects ; Mice ; Mitochondria - drug effects ; Mitochondria - metabolism ; Proto-Oncogene Proteins c-akt - metabolism ; Rats ; Signal Transduction - drug effects ; Stress, Physiological ; Tunicamycin - toxicity</subject><ispartof>Biochemical journal, 2011-04, Vol.435 (1), p.285-296</ispartof><rights>2011 The Authors Journal compilation © 2011 Portland Press Limited 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-6587913cfc7ad7c2a2fb7ae352432fd0856f9361683936006c82dfd798bcbfae3</citedby><cites>FETCH-LOGICAL-c377t-6587913cfc7ad7c2a2fb7ae352432fd0856f9361683936006c82dfd798bcbfae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072169/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072169/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21241252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xiaoli</creatorcontrib><creatorcontrib>Eno, Colins O</creatorcontrib><creatorcontrib>Altman, Brian J</creatorcontrib><creatorcontrib>Zhu, Yanglong</creatorcontrib><creatorcontrib>Zhao, Guoping</creatorcontrib><creatorcontrib>Olberding, Kristen E</creatorcontrib><creatorcontrib>Rathmell, Jeffrey C</creatorcontrib><creatorcontrib>Li, Chi</creatorcontrib><title>ER stress modulates cellular metabolism</title><title>Biochemical journal</title><addtitle>Biochem J</addtitle><description>Changes in metabolic processes play a critical role in the survival or death of cells subjected to various stresses. In the present study, we have investigated the effects of ER (endoplasmic reticulum) stress on cellular metabolism. A major difficulty in studying metabolic responses to ER stress is that ER stress normally leads to apoptosis and metabolic changes observed in dying cells may be misleading. Therefore we have used IL-3 (interleukin 3)-dependent Bak-/-Bax-/- haemopoietic cells which do not die in the presence of the ER-stress-inducing drug tunicamycin. Tunicamycin-treated Bak-/-Bax-/- cells remain viable, but cease growth, arresting in G1-phase and undergoing autophagy in the absence of apoptosis. In these cells, we used NMR-based SIRM (stable isotope-resolved metabolomics) to determine the metabolic effects of tunicamycin. Glucose was found to be the major carbon source for energy production and anabolic metabolism. Following tunicamycin exposure, glucose uptake and lactate production are greatly reduced. Decreased 13C labelling in several cellular metabolites suggests that mitochondrial function in cells undergoing ER stress is compromised. Consistent with this, mitochondrial membrane potential, oxygen consumption and cellular ATP levels are much lower compared with untreated cells. Importantly, the effects of tunicamycin on cellular metabolic processes may be related to a reduction in cell-surface GLUT1 (glucose transporter 1) levels which, in turn, may reflect decreased Akt signalling. These results suggest that ER stress exerts profound effects on several central metabolic processes which may help to explain cell death arising from ER stress in normal cells.</description><subject>Animals</subject><subject>Autophagy - drug effects</subject><subject>bcl-2 Homologous Antagonist-Killer Protein - genetics</subject><subject>bcl-2 Homologous Antagonist-Killer Protein - metabolism</subject><subject>bcl-2-Associated X Protein - genetics</subject><subject>bcl-2-Associated X Protein - metabolism</subject><subject>Cell Line</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>G1 Phase - drug effects</subject><subject>Glucose Transporter Type 1 - metabolism</subject><subject>Magnetic Resonance Imaging</subject><subject>Membrane Potential, Mitochondrial - drug effects</subject><subject>Metabolome - drug effects</subject><subject>Mice</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Rats</subject><subject>Signal Transduction - drug effects</subject><subject>Stress, Physiological</subject><subject>Tunicamycin - toxicity</subject><issn>0264-6021</issn><issn>1470-8728</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkE1LAzEQhoMotlYv_gDZmyCsTibZJHsRbKlfFATRc8hmE13JdkuyFfz3rlSrnt6BeeYdeAg5pnBOgePF9B6BAlWC75Ax5RJyJVHtkjGg4LkApCNykNIbAOXAYZ-MkCKnWOCYnM4fs9RHl1LWdvU6mN6lzLoQhjFmretN1YUmtYdkz5uQ3NF3Tsjz9fxpdpsvHm7uZleL3DIp-1wUSpaUWW-lqaVFg76SxrECOUNfgyqEL5mgQrEhAIRVWPtalqqylR_ACbnc9K7WVetq65Z9NEGvYtOa-KE70-j_m2Xzql-6d81AIhXlUHC2KbCxSyk6v72loL906V9dA3zy99sW_fHDPgFzqmUK</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Wang, Xiaoli</creator><creator>Eno, Colins O</creator><creator>Altman, Brian J</creator><creator>Zhu, Yanglong</creator><creator>Zhao, Guoping</creator><creator>Olberding, Kristen E</creator><creator>Rathmell, Jeffrey C</creator><creator>Li, Chi</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20110401</creationdate><title>ER stress modulates cellular metabolism</title><author>Wang, Xiaoli ; Eno, Colins O ; Altman, Brian J ; Zhu, Yanglong ; Zhao, Guoping ; Olberding, Kristen E ; Rathmell, Jeffrey C ; Li, Chi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-6587913cfc7ad7c2a2fb7ae352432fd0856f9361683936006c82dfd798bcbfae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Autophagy - drug effects</topic><topic>bcl-2 Homologous Antagonist-Killer Protein - genetics</topic><topic>bcl-2 Homologous Antagonist-Killer Protein - metabolism</topic><topic>bcl-2-Associated X Protein - genetics</topic><topic>bcl-2-Associated X Protein - metabolism</topic><topic>Cell Line</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>G1 Phase - drug effects</topic><topic>Glucose Transporter Type 1 - metabolism</topic><topic>Magnetic Resonance Imaging</topic><topic>Membrane Potential, Mitochondrial - drug effects</topic><topic>Metabolome - drug effects</topic><topic>Mice</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Rats</topic><topic>Signal Transduction - drug effects</topic><topic>Stress, Physiological</topic><topic>Tunicamycin - toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaoli</creatorcontrib><creatorcontrib>Eno, Colins O</creatorcontrib><creatorcontrib>Altman, Brian J</creatorcontrib><creatorcontrib>Zhu, Yanglong</creatorcontrib><creatorcontrib>Zhao, Guoping</creatorcontrib><creatorcontrib>Olberding, Kristen E</creatorcontrib><creatorcontrib>Rathmell, Jeffrey C</creatorcontrib><creatorcontrib>Li, Chi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochemical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiaoli</au><au>Eno, Colins O</au><au>Altman, Brian J</au><au>Zhu, Yanglong</au><au>Zhao, Guoping</au><au>Olberding, Kristen E</au><au>Rathmell, Jeffrey C</au><au>Li, Chi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ER stress modulates cellular metabolism</atitle><jtitle>Biochemical journal</jtitle><addtitle>Biochem J</addtitle><date>2011-04-01</date><risdate>2011</risdate><volume>435</volume><issue>1</issue><spage>285</spage><epage>296</epage><pages>285-296</pages><issn>0264-6021</issn><eissn>1470-8728</eissn><abstract>Changes in metabolic processes play a critical role in the survival or death of cells subjected to various stresses. In the present study, we have investigated the effects of ER (endoplasmic reticulum) stress on cellular metabolism. A major difficulty in studying metabolic responses to ER stress is that ER stress normally leads to apoptosis and metabolic changes observed in dying cells may be misleading. Therefore we have used IL-3 (interleukin 3)-dependent Bak-/-Bax-/- haemopoietic cells which do not die in the presence of the ER-stress-inducing drug tunicamycin. Tunicamycin-treated Bak-/-Bax-/- cells remain viable, but cease growth, arresting in G1-phase and undergoing autophagy in the absence of apoptosis. In these cells, we used NMR-based SIRM (stable isotope-resolved metabolomics) to determine the metabolic effects of tunicamycin. Glucose was found to be the major carbon source for energy production and anabolic metabolism. Following tunicamycin exposure, glucose uptake and lactate production are greatly reduced. Decreased 13C labelling in several cellular metabolites suggests that mitochondrial function in cells undergoing ER stress is compromised. Consistent with this, mitochondrial membrane potential, oxygen consumption and cellular ATP levels are much lower compared with untreated cells. Importantly, the effects of tunicamycin on cellular metabolic processes may be related to a reduction in cell-surface GLUT1 (glucose transporter 1) levels which, in turn, may reflect decreased Akt signalling. These results suggest that ER stress exerts profound effects on several central metabolic processes which may help to explain cell death arising from ER stress in normal cells.</abstract><cop>England</cop><pmid>21241252</pmid><doi>10.1042/BJ20101864</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0264-6021
ispartof Biochemical journal, 2011-04, Vol.435 (1), p.285-296
issn 0264-6021
1470-8728
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3072169
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animals
Autophagy - drug effects
bcl-2 Homologous Antagonist-Killer Protein - genetics
bcl-2 Homologous Antagonist-Killer Protein - metabolism
bcl-2-Associated X Protein - genetics
bcl-2-Associated X Protein - metabolism
Cell Line
Cell Proliferation - drug effects
Cell Survival - drug effects
Endoplasmic Reticulum - metabolism
G1 Phase - drug effects
Glucose Transporter Type 1 - metabolism
Magnetic Resonance Imaging
Membrane Potential, Mitochondrial - drug effects
Metabolome - drug effects
Mice
Mitochondria - drug effects
Mitochondria - metabolism
Proto-Oncogene Proteins c-akt - metabolism
Rats
Signal Transduction - drug effects
Stress, Physiological
Tunicamycin - toxicity
title ER stress modulates cellular metabolism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A17%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ER%20stress%20modulates%20cellular%20metabolism&rft.jtitle=Biochemical%20journal&rft.au=Wang,%20Xiaoli&rft.date=2011-04-01&rft.volume=435&rft.issue=1&rft.spage=285&rft.epage=296&rft.pages=285-296&rft.issn=0264-6021&rft.eissn=1470-8728&rft_id=info:doi/10.1042/BJ20101864&rft_dat=%3Cpubmed_cross%3E21241252%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21241252&rfr_iscdi=true