The Efficacy of Radiotherapy Relies upon Induction of Type I Interferon-Dependent Innate and Adaptive Immunity

The most widely held explanation for the efficacy of local radiotherapy (RT) is based on direct cytotoxicity to cancer cells through the induction of lethal DNA damage. Recent studies have shown that local ablative radiation of established tumors can lead to increased T-cell priming and T-cell-depen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2011-04, Vol.71 (7), p.2488-2496
Hauptverfasser: BURNETTE, Byron C, HUA LIANG, LEE, Youjin, CHLEWICKI, Lukasz, KHODAREV, Nikolai N, WEICHSELBAUM, Ralph R, FU, Yang-Xin, AUH, Sogyong L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2496
container_issue 7
container_start_page 2488
container_title Cancer research (Chicago, Ill.)
container_volume 71
creator BURNETTE, Byron C
HUA LIANG
LEE, Youjin
CHLEWICKI, Lukasz
KHODAREV, Nikolai N
WEICHSELBAUM, Ralph R
FU, Yang-Xin
AUH, Sogyong L
description The most widely held explanation for the efficacy of local radiotherapy (RT) is based on direct cytotoxicity to cancer cells through the induction of lethal DNA damage. Recent studies have shown that local ablative radiation of established tumors can lead to increased T-cell priming and T-cell-dependent tumor regression, but the underlying mechanism remains unclear. Here, we describe an essential role for type I IFN in local RT-mediated tumor control. We show that ablative RT increases intratumoral production of IFN-β and, more surprisingly, the antitumor effect of RT is abolished in type I IFN nonresponsive hosts. Furthermore, the major target of RT-induced type I IFN is the hematopoietic compartment. RT drastically enhances the cross-priming capacity of tumor-infiltrating dendritic cells (TIDC) from wild-type mice but not type I IFN receptor-deficient mice. The enhanced cross-priming ability of TIDCs after RT was dependent on autocrine production of type I IFNs. By using adenoviral-mediated expression of IFN-β, we show that delivery of exogenous IFN-β into the tumor tissue in the absence of RT is also sufficient to selectively expand antigen-specific T cells leading to complete tumor regression. Our study reveals that local high-dose RT can trigger production of type I IFN that initiates a cascading innate and adaptive immune attack on the tumor.
doi_str_mv 10.1158/0008-5472.can-10-2820
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3070872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>907162857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c642t-dba32e1db0b05e92c9ba679c98bd2200b7a9c5a6b08332ff3dc0d63d3529ba2b3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EotvCTwD5gjiljO04di5Iq6WFlSqQquVsObbDGiVOsJNK-fc4dFngxMnjN988zegh9IrANSFcvgMAWfBS0GujQ0GgoJLCE7QhnMlClCV_ijZn5gJdpvQ9fzkB_hxdUMIARFVuUDgcHb5pW2-0WfDQ4ntt_TAdXdTjgu9d513C8zgEvA92NpPPVaYOy-jwPmuTi62LQyg-uNEF68KUxaAnh3WweGv1OPmHjPb9HPy0vEDPWt0l9_L0XqGvtzeH3afi7svH_W57V5iqpFNhG82oI7aBBrirqakbXYna1LKxlAI0QteG66oByRhtW2YN2IpZxmkmacOu0PtH33FuemdN3ivqTo3R9zouatBe_dsJ_qi-DQ-KgQApaDZ4ezKIw4_ZpUn1PhnXdTq4YU6qBkEqKrn4LykrIEKyX578kTRxSCm69rwPAbWGqtbA1BqY2m0_r-oaap57_fcx56nfKWbgzQnQyeiujToYn_5wJZSMScp-Ao91rJU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>860178372</pqid></control><display><type>article</type><title>The Efficacy of Radiotherapy Relies upon Induction of Type I Interferon-Dependent Innate and Adaptive Immunity</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>BURNETTE, Byron C ; HUA LIANG ; LEE, Youjin ; CHLEWICKI, Lukasz ; KHODAREV, Nikolai N ; WEICHSELBAUM, Ralph R ; FU, Yang-Xin ; AUH, Sogyong L</creator><creatorcontrib>BURNETTE, Byron C ; HUA LIANG ; LEE, Youjin ; CHLEWICKI, Lukasz ; KHODAREV, Nikolai N ; WEICHSELBAUM, Ralph R ; FU, Yang-Xin ; AUH, Sogyong L</creatorcontrib><description>The most widely held explanation for the efficacy of local radiotherapy (RT) is based on direct cytotoxicity to cancer cells through the induction of lethal DNA damage. Recent studies have shown that local ablative radiation of established tumors can lead to increased T-cell priming and T-cell-dependent tumor regression, but the underlying mechanism remains unclear. Here, we describe an essential role for type I IFN in local RT-mediated tumor control. We show that ablative RT increases intratumoral production of IFN-β and, more surprisingly, the antitumor effect of RT is abolished in type I IFN nonresponsive hosts. Furthermore, the major target of RT-induced type I IFN is the hematopoietic compartment. RT drastically enhances the cross-priming capacity of tumor-infiltrating dendritic cells (TIDC) from wild-type mice but not type I IFN receptor-deficient mice. The enhanced cross-priming ability of TIDCs after RT was dependent on autocrine production of type I IFNs. By using adenoviral-mediated expression of IFN-β, we show that delivery of exogenous IFN-β into the tumor tissue in the absence of RT is also sufficient to selectively expand antigen-specific T cells leading to complete tumor regression. Our study reveals that local high-dose RT can trigger production of type I IFN that initiates a cascading innate and adaptive immune attack on the tumor.</description><identifier>ISSN: 0008-5472</identifier><identifier>EISSN: 1538-7445</identifier><identifier>DOI: 10.1158/0008-5472.can-10-2820</identifier><identifier>PMID: 21300764</identifier><identifier>CODEN: CNREA8</identifier><language>eng</language><publisher>Philadelphia, PA: American Association for Cancer Research</publisher><subject>Adaptive Immunity - radiation effects ; Animals ; Antigen presentation ; Antineoplastic agents ; Antitumor activity ; Autocrine signalling ; beta -Interferon ; Biological and medical sciences ; Cancer ; CD8-Positive T-Lymphocytes - immunology ; CD8-Positive T-Lymphocytes - radiation effects ; Cytotoxicity ; Dendritic cells ; Dendritic Cells - immunology ; Dendritic Cells - radiation effects ; DNA damage ; Epitopes, T-Lymphocyte - immunology ; Hematopoietic Stem Cells - immunology ; Hematopoietic Stem Cells - radiation effects ; Hemopoiesis ; Immunity ; Immunity, Innate - radiation effects ; Interferon ; Interferon Type I - biosynthesis ; Interferon Type I - immunology ; Interferon Type I - pharmacology ; Interferon-alpha - biosynthesis ; Interferon-alpha - immunology ; Interferon-beta - biosynthesis ; Interferon-beta - immunology ; Interferon-beta - pharmacology ; Lymphocytes T ; Medical sciences ; Melanoma, Experimental - immunology ; Melanoma, Experimental - radiotherapy ; Mice ; Mice, Knockout ; Pharmacology. Drug treatments ; Radiotherapy ; Tumor Microenvironment - immunology ; Tumor Microenvironment - radiation effects ; Tumors</subject><ispartof>Cancer research (Chicago, Ill.), 2011-04, Vol.71 (7), p.2488-2496</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c642t-dba32e1db0b05e92c9ba679c98bd2200b7a9c5a6b08332ff3dc0d63d3529ba2b3</citedby><cites>FETCH-LOGICAL-c642t-dba32e1db0b05e92c9ba679c98bd2200b7a9c5a6b08332ff3dc0d63d3529ba2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3343,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24043382$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21300764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>BURNETTE, Byron C</creatorcontrib><creatorcontrib>HUA LIANG</creatorcontrib><creatorcontrib>LEE, Youjin</creatorcontrib><creatorcontrib>CHLEWICKI, Lukasz</creatorcontrib><creatorcontrib>KHODAREV, Nikolai N</creatorcontrib><creatorcontrib>WEICHSELBAUM, Ralph R</creatorcontrib><creatorcontrib>FU, Yang-Xin</creatorcontrib><creatorcontrib>AUH, Sogyong L</creatorcontrib><title>The Efficacy of Radiotherapy Relies upon Induction of Type I Interferon-Dependent Innate and Adaptive Immunity</title><title>Cancer research (Chicago, Ill.)</title><addtitle>Cancer Res</addtitle><description>The most widely held explanation for the efficacy of local radiotherapy (RT) is based on direct cytotoxicity to cancer cells through the induction of lethal DNA damage. Recent studies have shown that local ablative radiation of established tumors can lead to increased T-cell priming and T-cell-dependent tumor regression, but the underlying mechanism remains unclear. Here, we describe an essential role for type I IFN in local RT-mediated tumor control. We show that ablative RT increases intratumoral production of IFN-β and, more surprisingly, the antitumor effect of RT is abolished in type I IFN nonresponsive hosts. Furthermore, the major target of RT-induced type I IFN is the hematopoietic compartment. RT drastically enhances the cross-priming capacity of tumor-infiltrating dendritic cells (TIDC) from wild-type mice but not type I IFN receptor-deficient mice. The enhanced cross-priming ability of TIDCs after RT was dependent on autocrine production of type I IFNs. By using adenoviral-mediated expression of IFN-β, we show that delivery of exogenous IFN-β into the tumor tissue in the absence of RT is also sufficient to selectively expand antigen-specific T cells leading to complete tumor regression. Our study reveals that local high-dose RT can trigger production of type I IFN that initiates a cascading innate and adaptive immune attack on the tumor.</description><subject>Adaptive Immunity - radiation effects</subject><subject>Animals</subject><subject>Antigen presentation</subject><subject>Antineoplastic agents</subject><subject>Antitumor activity</subject><subject>Autocrine signalling</subject><subject>beta -Interferon</subject><subject>Biological and medical sciences</subject><subject>Cancer</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>CD8-Positive T-Lymphocytes - radiation effects</subject><subject>Cytotoxicity</subject><subject>Dendritic cells</subject><subject>Dendritic Cells - immunology</subject><subject>Dendritic Cells - radiation effects</subject><subject>DNA damage</subject><subject>Epitopes, T-Lymphocyte - immunology</subject><subject>Hematopoietic Stem Cells - immunology</subject><subject>Hematopoietic Stem Cells - radiation effects</subject><subject>Hemopoiesis</subject><subject>Immunity</subject><subject>Immunity, Innate - radiation effects</subject><subject>Interferon</subject><subject>Interferon Type I - biosynthesis</subject><subject>Interferon Type I - immunology</subject><subject>Interferon Type I - pharmacology</subject><subject>Interferon-alpha - biosynthesis</subject><subject>Interferon-alpha - immunology</subject><subject>Interferon-beta - biosynthesis</subject><subject>Interferon-beta - immunology</subject><subject>Interferon-beta - pharmacology</subject><subject>Lymphocytes T</subject><subject>Medical sciences</subject><subject>Melanoma, Experimental - immunology</subject><subject>Melanoma, Experimental - radiotherapy</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Pharmacology. Drug treatments</subject><subject>Radiotherapy</subject><subject>Tumor Microenvironment - immunology</subject><subject>Tumor Microenvironment - radiation effects</subject><subject>Tumors</subject><issn>0008-5472</issn><issn>1538-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhS0EotvCTwD5gjiljO04di5Iq6WFlSqQquVsObbDGiVOsJNK-fc4dFngxMnjN988zegh9IrANSFcvgMAWfBS0GujQ0GgoJLCE7QhnMlClCV_ijZn5gJdpvQ9fzkB_hxdUMIARFVuUDgcHb5pW2-0WfDQ4ntt_TAdXdTjgu9d513C8zgEvA92NpPPVaYOy-jwPmuTi62LQyg-uNEF68KUxaAnh3WweGv1OPmHjPb9HPy0vEDPWt0l9_L0XqGvtzeH3afi7svH_W57V5iqpFNhG82oI7aBBrirqakbXYna1LKxlAI0QteG66oByRhtW2YN2IpZxmkmacOu0PtH33FuemdN3ivqTo3R9zouatBe_dsJ_qi-DQ-KgQApaDZ4ezKIw4_ZpUn1PhnXdTq4YU6qBkEqKrn4LykrIEKyX578kTRxSCm69rwPAbWGqtbA1BqY2m0_r-oaap57_fcx56nfKWbgzQnQyeiujToYn_5wJZSMScp-Ao91rJU</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>BURNETTE, Byron C</creator><creator>HUA LIANG</creator><creator>LEE, Youjin</creator><creator>CHLEWICKI, Lukasz</creator><creator>KHODAREV, Nikolai N</creator><creator>WEICHSELBAUM, Ralph R</creator><creator>FU, Yang-Xin</creator><creator>AUH, Sogyong L</creator><general>American Association for Cancer Research</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7T5</scope><scope>7U7</scope><scope>C1K</scope><scope>H94</scope><scope>5PM</scope></search><sort><creationdate>20110401</creationdate><title>The Efficacy of Radiotherapy Relies upon Induction of Type I Interferon-Dependent Innate and Adaptive Immunity</title><author>BURNETTE, Byron C ; HUA LIANG ; LEE, Youjin ; CHLEWICKI, Lukasz ; KHODAREV, Nikolai N ; WEICHSELBAUM, Ralph R ; FU, Yang-Xin ; AUH, Sogyong L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c642t-dba32e1db0b05e92c9ba679c98bd2200b7a9c5a6b08332ff3dc0d63d3529ba2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptive Immunity - radiation effects</topic><topic>Animals</topic><topic>Antigen presentation</topic><topic>Antineoplastic agents</topic><topic>Antitumor activity</topic><topic>Autocrine signalling</topic><topic>beta -Interferon</topic><topic>Biological and medical sciences</topic><topic>Cancer</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>CD8-Positive T-Lymphocytes - radiation effects</topic><topic>Cytotoxicity</topic><topic>Dendritic cells</topic><topic>Dendritic Cells - immunology</topic><topic>Dendritic Cells - radiation effects</topic><topic>DNA damage</topic><topic>Epitopes, T-Lymphocyte - immunology</topic><topic>Hematopoietic Stem Cells - immunology</topic><topic>Hematopoietic Stem Cells - radiation effects</topic><topic>Hemopoiesis</topic><topic>Immunity</topic><topic>Immunity, Innate - radiation effects</topic><topic>Interferon</topic><topic>Interferon Type I - biosynthesis</topic><topic>Interferon Type I - immunology</topic><topic>Interferon Type I - pharmacology</topic><topic>Interferon-alpha - biosynthesis</topic><topic>Interferon-alpha - immunology</topic><topic>Interferon-beta - biosynthesis</topic><topic>Interferon-beta - immunology</topic><topic>Interferon-beta - pharmacology</topic><topic>Lymphocytes T</topic><topic>Medical sciences</topic><topic>Melanoma, Experimental - immunology</topic><topic>Melanoma, Experimental - radiotherapy</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Pharmacology. Drug treatments</topic><topic>Radiotherapy</topic><topic>Tumor Microenvironment - immunology</topic><topic>Tumor Microenvironment - radiation effects</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BURNETTE, Byron C</creatorcontrib><creatorcontrib>HUA LIANG</creatorcontrib><creatorcontrib>LEE, Youjin</creatorcontrib><creatorcontrib>CHLEWICKI, Lukasz</creatorcontrib><creatorcontrib>KHODAREV, Nikolai N</creatorcontrib><creatorcontrib>WEICHSELBAUM, Ralph R</creatorcontrib><creatorcontrib>FU, Yang-Xin</creatorcontrib><creatorcontrib>AUH, Sogyong L</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Immunology Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer research (Chicago, Ill.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BURNETTE, Byron C</au><au>HUA LIANG</au><au>LEE, Youjin</au><au>CHLEWICKI, Lukasz</au><au>KHODAREV, Nikolai N</au><au>WEICHSELBAUM, Ralph R</au><au>FU, Yang-Xin</au><au>AUH, Sogyong L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Efficacy of Radiotherapy Relies upon Induction of Type I Interferon-Dependent Innate and Adaptive Immunity</atitle><jtitle>Cancer research (Chicago, Ill.)</jtitle><addtitle>Cancer Res</addtitle><date>2011-04-01</date><risdate>2011</risdate><volume>71</volume><issue>7</issue><spage>2488</spage><epage>2496</epage><pages>2488-2496</pages><issn>0008-5472</issn><eissn>1538-7445</eissn><coden>CNREA8</coden><abstract>The most widely held explanation for the efficacy of local radiotherapy (RT) is based on direct cytotoxicity to cancer cells through the induction of lethal DNA damage. Recent studies have shown that local ablative radiation of established tumors can lead to increased T-cell priming and T-cell-dependent tumor regression, but the underlying mechanism remains unclear. Here, we describe an essential role for type I IFN in local RT-mediated tumor control. We show that ablative RT increases intratumoral production of IFN-β and, more surprisingly, the antitumor effect of RT is abolished in type I IFN nonresponsive hosts. Furthermore, the major target of RT-induced type I IFN is the hematopoietic compartment. RT drastically enhances the cross-priming capacity of tumor-infiltrating dendritic cells (TIDC) from wild-type mice but not type I IFN receptor-deficient mice. The enhanced cross-priming ability of TIDCs after RT was dependent on autocrine production of type I IFNs. By using adenoviral-mediated expression of IFN-β, we show that delivery of exogenous IFN-β into the tumor tissue in the absence of RT is also sufficient to selectively expand antigen-specific T cells leading to complete tumor regression. Our study reveals that local high-dose RT can trigger production of type I IFN that initiates a cascading innate and adaptive immune attack on the tumor.</abstract><cop>Philadelphia, PA</cop><pub>American Association for Cancer Research</pub><pmid>21300764</pmid><doi>10.1158/0008-5472.can-10-2820</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-5472
ispartof Cancer research (Chicago, Ill.), 2011-04, Vol.71 (7), p.2488-2496
issn 0008-5472
1538-7445
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3070872
source MEDLINE; American Association for Cancer Research; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adaptive Immunity - radiation effects
Animals
Antigen presentation
Antineoplastic agents
Antitumor activity
Autocrine signalling
beta -Interferon
Biological and medical sciences
Cancer
CD8-Positive T-Lymphocytes - immunology
CD8-Positive T-Lymphocytes - radiation effects
Cytotoxicity
Dendritic cells
Dendritic Cells - immunology
Dendritic Cells - radiation effects
DNA damage
Epitopes, T-Lymphocyte - immunology
Hematopoietic Stem Cells - immunology
Hematopoietic Stem Cells - radiation effects
Hemopoiesis
Immunity
Immunity, Innate - radiation effects
Interferon
Interferon Type I - biosynthesis
Interferon Type I - immunology
Interferon Type I - pharmacology
Interferon-alpha - biosynthesis
Interferon-alpha - immunology
Interferon-beta - biosynthesis
Interferon-beta - immunology
Interferon-beta - pharmacology
Lymphocytes T
Medical sciences
Melanoma, Experimental - immunology
Melanoma, Experimental - radiotherapy
Mice
Mice, Knockout
Pharmacology. Drug treatments
Radiotherapy
Tumor Microenvironment - immunology
Tumor Microenvironment - radiation effects
Tumors
title The Efficacy of Radiotherapy Relies upon Induction of Type I Interferon-Dependent Innate and Adaptive Immunity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T11%3A43%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Efficacy%20of%20Radiotherapy%20Relies%20upon%20Induction%20of%20Type%20I%20Interferon-Dependent%20Innate%20and%20Adaptive%20Immunity&rft.jtitle=Cancer%20research%20(Chicago,%20Ill.)&rft.au=BURNETTE,%20Byron%20C&rft.date=2011-04-01&rft.volume=71&rft.issue=7&rft.spage=2488&rft.epage=2496&rft.pages=2488-2496&rft.issn=0008-5472&rft.eissn=1538-7445&rft.coden=CNREA8&rft_id=info:doi/10.1158/0008-5472.can-10-2820&rft_dat=%3Cproquest_pubme%3E907162857%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=860178372&rft_id=info:pmid/21300764&rfr_iscdi=true