The Efficacy of Radiotherapy Relies upon Induction of Type I Interferon-Dependent Innate and Adaptive Immunity
The most widely held explanation for the efficacy of local radiotherapy (RT) is based on direct cytotoxicity to cancer cells through the induction of lethal DNA damage. Recent studies have shown that local ablative radiation of established tumors can lead to increased T-cell priming and T-cell-depen...
Gespeichert in:
Veröffentlicht in: | Cancer research (Chicago, Ill.) Ill.), 2011-04, Vol.71 (7), p.2488-2496 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2496 |
---|---|
container_issue | 7 |
container_start_page | 2488 |
container_title | Cancer research (Chicago, Ill.) |
container_volume | 71 |
creator | BURNETTE, Byron C HUA LIANG LEE, Youjin CHLEWICKI, Lukasz KHODAREV, Nikolai N WEICHSELBAUM, Ralph R FU, Yang-Xin AUH, Sogyong L |
description | The most widely held explanation for the efficacy of local radiotherapy (RT) is based on direct cytotoxicity to cancer cells through the induction of lethal DNA damage. Recent studies have shown that local ablative radiation of established tumors can lead to increased T-cell priming and T-cell-dependent tumor regression, but the underlying mechanism remains unclear. Here, we describe an essential role for type I IFN in local RT-mediated tumor control. We show that ablative RT increases intratumoral production of IFN-β and, more surprisingly, the antitumor effect of RT is abolished in type I IFN nonresponsive hosts. Furthermore, the major target of RT-induced type I IFN is the hematopoietic compartment. RT drastically enhances the cross-priming capacity of tumor-infiltrating dendritic cells (TIDC) from wild-type mice but not type I IFN receptor-deficient mice. The enhanced cross-priming ability of TIDCs after RT was dependent on autocrine production of type I IFNs. By using adenoviral-mediated expression of IFN-β, we show that delivery of exogenous IFN-β into the tumor tissue in the absence of RT is also sufficient to selectively expand antigen-specific T cells leading to complete tumor regression. Our study reveals that local high-dose RT can trigger production of type I IFN that initiates a cascading innate and adaptive immune attack on the tumor. |
doi_str_mv | 10.1158/0008-5472.can-10-2820 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3070872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>907162857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c642t-dba32e1db0b05e92c9ba679c98bd2200b7a9c5a6b08332ff3dc0d63d3529ba2b3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EotvCTwD5gjiljO04di5Iq6WFlSqQquVsObbDGiVOsJNK-fc4dFngxMnjN988zegh9IrANSFcvgMAWfBS0GujQ0GgoJLCE7QhnMlClCV_ijZn5gJdpvQ9fzkB_hxdUMIARFVuUDgcHb5pW2-0WfDQ4ntt_TAdXdTjgu9d513C8zgEvA92NpPPVaYOy-jwPmuTi62LQyg-uNEF68KUxaAnh3WweGv1OPmHjPb9HPy0vEDPWt0l9_L0XqGvtzeH3afi7svH_W57V5iqpFNhG82oI7aBBrirqakbXYna1LKxlAI0QteG66oByRhtW2YN2IpZxmkmacOu0PtH33FuemdN3ivqTo3R9zouatBe_dsJ_qi-DQ-KgQApaDZ4ezKIw4_ZpUn1PhnXdTq4YU6qBkEqKrn4LykrIEKyX578kTRxSCm69rwPAbWGqtbA1BqY2m0_r-oaap57_fcx56nfKWbgzQnQyeiujToYn_5wJZSMScp-Ao91rJU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>860178372</pqid></control><display><type>article</type><title>The Efficacy of Radiotherapy Relies upon Induction of Type I Interferon-Dependent Innate and Adaptive Immunity</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>BURNETTE, Byron C ; HUA LIANG ; LEE, Youjin ; CHLEWICKI, Lukasz ; KHODAREV, Nikolai N ; WEICHSELBAUM, Ralph R ; FU, Yang-Xin ; AUH, Sogyong L</creator><creatorcontrib>BURNETTE, Byron C ; HUA LIANG ; LEE, Youjin ; CHLEWICKI, Lukasz ; KHODAREV, Nikolai N ; WEICHSELBAUM, Ralph R ; FU, Yang-Xin ; AUH, Sogyong L</creatorcontrib><description>The most widely held explanation for the efficacy of local radiotherapy (RT) is based on direct cytotoxicity to cancer cells through the induction of lethal DNA damage. Recent studies have shown that local ablative radiation of established tumors can lead to increased T-cell priming and T-cell-dependent tumor regression, but the underlying mechanism remains unclear. Here, we describe an essential role for type I IFN in local RT-mediated tumor control. We show that ablative RT increases intratumoral production of IFN-β and, more surprisingly, the antitumor effect of RT is abolished in type I IFN nonresponsive hosts. Furthermore, the major target of RT-induced type I IFN is the hematopoietic compartment. RT drastically enhances the cross-priming capacity of tumor-infiltrating dendritic cells (TIDC) from wild-type mice but not type I IFN receptor-deficient mice. The enhanced cross-priming ability of TIDCs after RT was dependent on autocrine production of type I IFNs. By using adenoviral-mediated expression of IFN-β, we show that delivery of exogenous IFN-β into the tumor tissue in the absence of RT is also sufficient to selectively expand antigen-specific T cells leading to complete tumor regression. Our study reveals that local high-dose RT can trigger production of type I IFN that initiates a cascading innate and adaptive immune attack on the tumor.</description><identifier>ISSN: 0008-5472</identifier><identifier>EISSN: 1538-7445</identifier><identifier>DOI: 10.1158/0008-5472.can-10-2820</identifier><identifier>PMID: 21300764</identifier><identifier>CODEN: CNREA8</identifier><language>eng</language><publisher>Philadelphia, PA: American Association for Cancer Research</publisher><subject>Adaptive Immunity - radiation effects ; Animals ; Antigen presentation ; Antineoplastic agents ; Antitumor activity ; Autocrine signalling ; beta -Interferon ; Biological and medical sciences ; Cancer ; CD8-Positive T-Lymphocytes - immunology ; CD8-Positive T-Lymphocytes - radiation effects ; Cytotoxicity ; Dendritic cells ; Dendritic Cells - immunology ; Dendritic Cells - radiation effects ; DNA damage ; Epitopes, T-Lymphocyte - immunology ; Hematopoietic Stem Cells - immunology ; Hematopoietic Stem Cells - radiation effects ; Hemopoiesis ; Immunity ; Immunity, Innate - radiation effects ; Interferon ; Interferon Type I - biosynthesis ; Interferon Type I - immunology ; Interferon Type I - pharmacology ; Interferon-alpha - biosynthesis ; Interferon-alpha - immunology ; Interferon-beta - biosynthesis ; Interferon-beta - immunology ; Interferon-beta - pharmacology ; Lymphocytes T ; Medical sciences ; Melanoma, Experimental - immunology ; Melanoma, Experimental - radiotherapy ; Mice ; Mice, Knockout ; Pharmacology. Drug treatments ; Radiotherapy ; Tumor Microenvironment - immunology ; Tumor Microenvironment - radiation effects ; Tumors</subject><ispartof>Cancer research (Chicago, Ill.), 2011-04, Vol.71 (7), p.2488-2496</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c642t-dba32e1db0b05e92c9ba679c98bd2200b7a9c5a6b08332ff3dc0d63d3529ba2b3</citedby><cites>FETCH-LOGICAL-c642t-dba32e1db0b05e92c9ba679c98bd2200b7a9c5a6b08332ff3dc0d63d3529ba2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3343,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24043382$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21300764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>BURNETTE, Byron C</creatorcontrib><creatorcontrib>HUA LIANG</creatorcontrib><creatorcontrib>LEE, Youjin</creatorcontrib><creatorcontrib>CHLEWICKI, Lukasz</creatorcontrib><creatorcontrib>KHODAREV, Nikolai N</creatorcontrib><creatorcontrib>WEICHSELBAUM, Ralph R</creatorcontrib><creatorcontrib>FU, Yang-Xin</creatorcontrib><creatorcontrib>AUH, Sogyong L</creatorcontrib><title>The Efficacy of Radiotherapy Relies upon Induction of Type I Interferon-Dependent Innate and Adaptive Immunity</title><title>Cancer research (Chicago, Ill.)</title><addtitle>Cancer Res</addtitle><description>The most widely held explanation for the efficacy of local radiotherapy (RT) is based on direct cytotoxicity to cancer cells through the induction of lethal DNA damage. Recent studies have shown that local ablative radiation of established tumors can lead to increased T-cell priming and T-cell-dependent tumor regression, but the underlying mechanism remains unclear. Here, we describe an essential role for type I IFN in local RT-mediated tumor control. We show that ablative RT increases intratumoral production of IFN-β and, more surprisingly, the antitumor effect of RT is abolished in type I IFN nonresponsive hosts. Furthermore, the major target of RT-induced type I IFN is the hematopoietic compartment. RT drastically enhances the cross-priming capacity of tumor-infiltrating dendritic cells (TIDC) from wild-type mice but not type I IFN receptor-deficient mice. The enhanced cross-priming ability of TIDCs after RT was dependent on autocrine production of type I IFNs. By using adenoviral-mediated expression of IFN-β, we show that delivery of exogenous IFN-β into the tumor tissue in the absence of RT is also sufficient to selectively expand antigen-specific T cells leading to complete tumor regression. Our study reveals that local high-dose RT can trigger production of type I IFN that initiates a cascading innate and adaptive immune attack on the tumor.</description><subject>Adaptive Immunity - radiation effects</subject><subject>Animals</subject><subject>Antigen presentation</subject><subject>Antineoplastic agents</subject><subject>Antitumor activity</subject><subject>Autocrine signalling</subject><subject>beta -Interferon</subject><subject>Biological and medical sciences</subject><subject>Cancer</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>CD8-Positive T-Lymphocytes - radiation effects</subject><subject>Cytotoxicity</subject><subject>Dendritic cells</subject><subject>Dendritic Cells - immunology</subject><subject>Dendritic Cells - radiation effects</subject><subject>DNA damage</subject><subject>Epitopes, T-Lymphocyte - immunology</subject><subject>Hematopoietic Stem Cells - immunology</subject><subject>Hematopoietic Stem Cells - radiation effects</subject><subject>Hemopoiesis</subject><subject>Immunity</subject><subject>Immunity, Innate - radiation effects</subject><subject>Interferon</subject><subject>Interferon Type I - biosynthesis</subject><subject>Interferon Type I - immunology</subject><subject>Interferon Type I - pharmacology</subject><subject>Interferon-alpha - biosynthesis</subject><subject>Interferon-alpha - immunology</subject><subject>Interferon-beta - biosynthesis</subject><subject>Interferon-beta - immunology</subject><subject>Interferon-beta - pharmacology</subject><subject>Lymphocytes T</subject><subject>Medical sciences</subject><subject>Melanoma, Experimental - immunology</subject><subject>Melanoma, Experimental - radiotherapy</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Pharmacology. Drug treatments</subject><subject>Radiotherapy</subject><subject>Tumor Microenvironment - immunology</subject><subject>Tumor Microenvironment - radiation effects</subject><subject>Tumors</subject><issn>0008-5472</issn><issn>1538-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhS0EotvCTwD5gjiljO04di5Iq6WFlSqQquVsObbDGiVOsJNK-fc4dFngxMnjN988zegh9IrANSFcvgMAWfBS0GujQ0GgoJLCE7QhnMlClCV_ijZn5gJdpvQ9fzkB_hxdUMIARFVuUDgcHb5pW2-0WfDQ4ntt_TAdXdTjgu9d513C8zgEvA92NpPPVaYOy-jwPmuTi62LQyg-uNEF68KUxaAnh3WweGv1OPmHjPb9HPy0vEDPWt0l9_L0XqGvtzeH3afi7svH_W57V5iqpFNhG82oI7aBBrirqakbXYna1LKxlAI0QteG66oByRhtW2YN2IpZxmkmacOu0PtH33FuemdN3ivqTo3R9zouatBe_dsJ_qi-DQ-KgQApaDZ4ezKIw4_ZpUn1PhnXdTq4YU6qBkEqKrn4LykrIEKyX578kTRxSCm69rwPAbWGqtbA1BqY2m0_r-oaap57_fcx56nfKWbgzQnQyeiujToYn_5wJZSMScp-Ao91rJU</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>BURNETTE, Byron C</creator><creator>HUA LIANG</creator><creator>LEE, Youjin</creator><creator>CHLEWICKI, Lukasz</creator><creator>KHODAREV, Nikolai N</creator><creator>WEICHSELBAUM, Ralph R</creator><creator>FU, Yang-Xin</creator><creator>AUH, Sogyong L</creator><general>American Association for Cancer Research</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7T5</scope><scope>7U7</scope><scope>C1K</scope><scope>H94</scope><scope>5PM</scope></search><sort><creationdate>20110401</creationdate><title>The Efficacy of Radiotherapy Relies upon Induction of Type I Interferon-Dependent Innate and Adaptive Immunity</title><author>BURNETTE, Byron C ; HUA LIANG ; LEE, Youjin ; CHLEWICKI, Lukasz ; KHODAREV, Nikolai N ; WEICHSELBAUM, Ralph R ; FU, Yang-Xin ; AUH, Sogyong L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c642t-dba32e1db0b05e92c9ba679c98bd2200b7a9c5a6b08332ff3dc0d63d3529ba2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptive Immunity - radiation effects</topic><topic>Animals</topic><topic>Antigen presentation</topic><topic>Antineoplastic agents</topic><topic>Antitumor activity</topic><topic>Autocrine signalling</topic><topic>beta -Interferon</topic><topic>Biological and medical sciences</topic><topic>Cancer</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>CD8-Positive T-Lymphocytes - radiation effects</topic><topic>Cytotoxicity</topic><topic>Dendritic cells</topic><topic>Dendritic Cells - immunology</topic><topic>Dendritic Cells - radiation effects</topic><topic>DNA damage</topic><topic>Epitopes, T-Lymphocyte - immunology</topic><topic>Hematopoietic Stem Cells - immunology</topic><topic>Hematopoietic Stem Cells - radiation effects</topic><topic>Hemopoiesis</topic><topic>Immunity</topic><topic>Immunity, Innate - radiation effects</topic><topic>Interferon</topic><topic>Interferon Type I - biosynthesis</topic><topic>Interferon Type I - immunology</topic><topic>Interferon Type I - pharmacology</topic><topic>Interferon-alpha - biosynthesis</topic><topic>Interferon-alpha - immunology</topic><topic>Interferon-beta - biosynthesis</topic><topic>Interferon-beta - immunology</topic><topic>Interferon-beta - pharmacology</topic><topic>Lymphocytes T</topic><topic>Medical sciences</topic><topic>Melanoma, Experimental - immunology</topic><topic>Melanoma, Experimental - radiotherapy</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Pharmacology. Drug treatments</topic><topic>Radiotherapy</topic><topic>Tumor Microenvironment - immunology</topic><topic>Tumor Microenvironment - radiation effects</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BURNETTE, Byron C</creatorcontrib><creatorcontrib>HUA LIANG</creatorcontrib><creatorcontrib>LEE, Youjin</creatorcontrib><creatorcontrib>CHLEWICKI, Lukasz</creatorcontrib><creatorcontrib>KHODAREV, Nikolai N</creatorcontrib><creatorcontrib>WEICHSELBAUM, Ralph R</creatorcontrib><creatorcontrib>FU, Yang-Xin</creatorcontrib><creatorcontrib>AUH, Sogyong L</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Immunology Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer research (Chicago, Ill.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BURNETTE, Byron C</au><au>HUA LIANG</au><au>LEE, Youjin</au><au>CHLEWICKI, Lukasz</au><au>KHODAREV, Nikolai N</au><au>WEICHSELBAUM, Ralph R</au><au>FU, Yang-Xin</au><au>AUH, Sogyong L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Efficacy of Radiotherapy Relies upon Induction of Type I Interferon-Dependent Innate and Adaptive Immunity</atitle><jtitle>Cancer research (Chicago, Ill.)</jtitle><addtitle>Cancer Res</addtitle><date>2011-04-01</date><risdate>2011</risdate><volume>71</volume><issue>7</issue><spage>2488</spage><epage>2496</epage><pages>2488-2496</pages><issn>0008-5472</issn><eissn>1538-7445</eissn><coden>CNREA8</coden><abstract>The most widely held explanation for the efficacy of local radiotherapy (RT) is based on direct cytotoxicity to cancer cells through the induction of lethal DNA damage. Recent studies have shown that local ablative radiation of established tumors can lead to increased T-cell priming and T-cell-dependent tumor regression, but the underlying mechanism remains unclear. Here, we describe an essential role for type I IFN in local RT-mediated tumor control. We show that ablative RT increases intratumoral production of IFN-β and, more surprisingly, the antitumor effect of RT is abolished in type I IFN nonresponsive hosts. Furthermore, the major target of RT-induced type I IFN is the hematopoietic compartment. RT drastically enhances the cross-priming capacity of tumor-infiltrating dendritic cells (TIDC) from wild-type mice but not type I IFN receptor-deficient mice. The enhanced cross-priming ability of TIDCs after RT was dependent on autocrine production of type I IFNs. By using adenoviral-mediated expression of IFN-β, we show that delivery of exogenous IFN-β into the tumor tissue in the absence of RT is also sufficient to selectively expand antigen-specific T cells leading to complete tumor regression. Our study reveals that local high-dose RT can trigger production of type I IFN that initiates a cascading innate and adaptive immune attack on the tumor.</abstract><cop>Philadelphia, PA</cop><pub>American Association for Cancer Research</pub><pmid>21300764</pmid><doi>10.1158/0008-5472.can-10-2820</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-5472 |
ispartof | Cancer research (Chicago, Ill.), 2011-04, Vol.71 (7), p.2488-2496 |
issn | 0008-5472 1538-7445 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3070872 |
source | MEDLINE; American Association for Cancer Research; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adaptive Immunity - radiation effects Animals Antigen presentation Antineoplastic agents Antitumor activity Autocrine signalling beta -Interferon Biological and medical sciences Cancer CD8-Positive T-Lymphocytes - immunology CD8-Positive T-Lymphocytes - radiation effects Cytotoxicity Dendritic cells Dendritic Cells - immunology Dendritic Cells - radiation effects DNA damage Epitopes, T-Lymphocyte - immunology Hematopoietic Stem Cells - immunology Hematopoietic Stem Cells - radiation effects Hemopoiesis Immunity Immunity, Innate - radiation effects Interferon Interferon Type I - biosynthesis Interferon Type I - immunology Interferon Type I - pharmacology Interferon-alpha - biosynthesis Interferon-alpha - immunology Interferon-beta - biosynthesis Interferon-beta - immunology Interferon-beta - pharmacology Lymphocytes T Medical sciences Melanoma, Experimental - immunology Melanoma, Experimental - radiotherapy Mice Mice, Knockout Pharmacology. Drug treatments Radiotherapy Tumor Microenvironment - immunology Tumor Microenvironment - radiation effects Tumors |
title | The Efficacy of Radiotherapy Relies upon Induction of Type I Interferon-Dependent Innate and Adaptive Immunity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T11%3A43%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Efficacy%20of%20Radiotherapy%20Relies%20upon%20Induction%20of%20Type%20I%20Interferon-Dependent%20Innate%20and%20Adaptive%20Immunity&rft.jtitle=Cancer%20research%20(Chicago,%20Ill.)&rft.au=BURNETTE,%20Byron%20C&rft.date=2011-04-01&rft.volume=71&rft.issue=7&rft.spage=2488&rft.epage=2496&rft.pages=2488-2496&rft.issn=0008-5472&rft.eissn=1538-7445&rft.coden=CNREA8&rft_id=info:doi/10.1158/0008-5472.can-10-2820&rft_dat=%3Cproquest_pubme%3E907162857%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=860178372&rft_id=info:pmid/21300764&rfr_iscdi=true |