Trabecular scaffolds created using micro CT guided fused deposition modeling

Free form fabrication and high resolution imaging techniques enable the creation of biomimetic tissue engineering scaffolds. A 3D CAD model of canine trabecular bone was produced via micro CT and exported to a fused deposition modeler, to produce polybutylene terephthalate (PBT) trabeculated scaffol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials Science & Engineering C 2008-01, Vol.28 (1), p.171-178
Hauptverfasser: Tellis, B.C., Szivek, J.A., Bliss, C.L., Margolis, D.S., Vaidyanathan, R.K., Calvert, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 178
container_issue 1
container_start_page 171
container_title Materials Science & Engineering C
container_volume 28
creator Tellis, B.C.
Szivek, J.A.
Bliss, C.L.
Margolis, D.S.
Vaidyanathan, R.K.
Calvert, P.
description Free form fabrication and high resolution imaging techniques enable the creation of biomimetic tissue engineering scaffolds. A 3D CAD model of canine trabecular bone was produced via micro CT and exported to a fused deposition modeler, to produce polybutylene terephthalate (PBT) trabeculated scaffolds and four other scaffold groups of varying pore structures. The five scaffold groups were divided into subgroups ( n = 6) and compression tested at two load rates (49 N/s and 294 N/s). Two groups were soaked in a 25 °C saline solution for 7 days before compression testing. Micro CT was used to compare porosity, connectivity density, and trabecular separation of each scaffold type to a canine trabecular bone sample. At 49 N/s the dry trabecular scaffolds had a compressive stiffness of 4.94 ± 1.19 MPa, similar to the simple linear small pore scaffolds and significantly more stiff ( p < 0.05) than either of the complex interconnected pore scaffolds. At 294 N/s, the compressive stiffness values for all five groups roughly doubled. Soaking in saline had an insignificant effect on stiffness. The trabecular scaffolds matched bone samples in porosity; however, achieving physiologic connectivity density and trabecular separation will require further refining of scaffold processing.
doi_str_mv 10.1016/j.msec.2006.11.010
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3065838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0928493106003821</els_id><sourcerecordid>20567185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c583t-25efd29da3c4bb699f96290dc7c71a74ca3a03fd8472513dbdf2534cc3729693</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhoMo7jj6BzxIn8RLt6mkO-mACMvgFwx4mXtIJ5UxQ3dnTLoX_PdmmHXRy3pJIHnqpaoeQl4DbYCCeH9qpoy2YZSKBqChQJ-QDfSS1xQUPCUbqlhft4rDDXmR86lwPZfsOblh0AoAKTZkf0hmQLuOJlXZGu_j6HJlE5oFXbXmMB-rKdgUq92hOq7BlVe_5nI6PMcclhDnaooOx0K-JM-8GTO-ur-35PD502H3td5___Jtd7uvbdfzpWYdeseUM9y2wyCU8kowRZ2VVoKRrTXcUO5d30rWAXeD86zjrbWleSUU35KP19jzOkzoLM5LMqM-pzCZ9EtHE_S_P3P4oY_xTnMqSgN9CXh7H5DizxXzoqeQLY6jmTGuWXNQVHJF_wsy2gkJfVfAd4-C0POu7WlX5GwJu6JlqTkn9A-NA9UXr_qkL171xasG0MVrKXrz98gPJX9EFuDDFcCy97uASWcbcLboQkK7aBfDY_m_AdCQtQI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835480587</pqid></control><display><type>article</type><title>Trabecular scaffolds created using micro CT guided fused deposition modeling</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Tellis, B.C. ; Szivek, J.A. ; Bliss, C.L. ; Margolis, D.S. ; Vaidyanathan, R.K. ; Calvert, P.</creator><creatorcontrib>Tellis, B.C. ; Szivek, J.A. ; Bliss, C.L. ; Margolis, D.S. ; Vaidyanathan, R.K. ; Calvert, P.</creatorcontrib><description>Free form fabrication and high resolution imaging techniques enable the creation of biomimetic tissue engineering scaffolds. A 3D CAD model of canine trabecular bone was produced via micro CT and exported to a fused deposition modeler, to produce polybutylene terephthalate (PBT) trabeculated scaffolds and four other scaffold groups of varying pore structures. The five scaffold groups were divided into subgroups ( n = 6) and compression tested at two load rates (49 N/s and 294 N/s). Two groups were soaked in a 25 °C saline solution for 7 days before compression testing. Micro CT was used to compare porosity, connectivity density, and trabecular separation of each scaffold type to a canine trabecular bone sample. At 49 N/s the dry trabecular scaffolds had a compressive stiffness of 4.94 ± 1.19 MPa, similar to the simple linear small pore scaffolds and significantly more stiff ( p &lt; 0.05) than either of the complex interconnected pore scaffolds. At 294 N/s, the compressive stiffness values for all five groups roughly doubled. Soaking in saline had an insignificant effect on stiffness. The trabecular scaffolds matched bone samples in porosity; however, achieving physiologic connectivity density and trabecular separation will require further refining of scaffold processing.</description><identifier>ISSN: 0928-4931</identifier><identifier>EISSN: 1873-0191</identifier><identifier>DOI: 10.1016/j.msec.2006.11.010</identifier><identifier>PMID: 21461176</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Bone ; Fused deposition modeling ; Micro CT ; Rapid prototyping ; Scaffolds</subject><ispartof>Materials Science &amp; Engineering C, 2008-01, Vol.28 (1), p.171-178</ispartof><rights>2006 Elsevier B.V.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c583t-25efd29da3c4bb699f96290dc7c71a74ca3a03fd8472513dbdf2534cc3729693</citedby><cites>FETCH-LOGICAL-c583t-25efd29da3c4bb699f96290dc7c71a74ca3a03fd8472513dbdf2534cc3729693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msec.2006.11.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21461176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tellis, B.C.</creatorcontrib><creatorcontrib>Szivek, J.A.</creatorcontrib><creatorcontrib>Bliss, C.L.</creatorcontrib><creatorcontrib>Margolis, D.S.</creatorcontrib><creatorcontrib>Vaidyanathan, R.K.</creatorcontrib><creatorcontrib>Calvert, P.</creatorcontrib><title>Trabecular scaffolds created using micro CT guided fused deposition modeling</title><title>Materials Science &amp; Engineering C</title><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><description>Free form fabrication and high resolution imaging techniques enable the creation of biomimetic tissue engineering scaffolds. A 3D CAD model of canine trabecular bone was produced via micro CT and exported to a fused deposition modeler, to produce polybutylene terephthalate (PBT) trabeculated scaffolds and four other scaffold groups of varying pore structures. The five scaffold groups were divided into subgroups ( n = 6) and compression tested at two load rates (49 N/s and 294 N/s). Two groups were soaked in a 25 °C saline solution for 7 days before compression testing. Micro CT was used to compare porosity, connectivity density, and trabecular separation of each scaffold type to a canine trabecular bone sample. At 49 N/s the dry trabecular scaffolds had a compressive stiffness of 4.94 ± 1.19 MPa, similar to the simple linear small pore scaffolds and significantly more stiff ( p &lt; 0.05) than either of the complex interconnected pore scaffolds. At 294 N/s, the compressive stiffness values for all five groups roughly doubled. Soaking in saline had an insignificant effect on stiffness. The trabecular scaffolds matched bone samples in porosity; however, achieving physiologic connectivity density and trabecular separation will require further refining of scaffold processing.</description><subject>Bone</subject><subject>Fused deposition modeling</subject><subject>Micro CT</subject><subject>Rapid prototyping</subject><subject>Scaffolds</subject><issn>0928-4931</issn><issn>1873-0191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkU2LFDEQhoMo7jj6BzxIn8RLt6mkO-mACMvgFwx4mXtIJ5UxQ3dnTLoX_PdmmHXRy3pJIHnqpaoeQl4DbYCCeH9qpoy2YZSKBqChQJ-QDfSS1xQUPCUbqlhft4rDDXmR86lwPZfsOblh0AoAKTZkf0hmQLuOJlXZGu_j6HJlE5oFXbXmMB-rKdgUq92hOq7BlVe_5nI6PMcclhDnaooOx0K-JM-8GTO-ur-35PD502H3td5___Jtd7uvbdfzpWYdeseUM9y2wyCU8kowRZ2VVoKRrTXcUO5d30rWAXeD86zjrbWleSUU35KP19jzOkzoLM5LMqM-pzCZ9EtHE_S_P3P4oY_xTnMqSgN9CXh7H5DizxXzoqeQLY6jmTGuWXNQVHJF_wsy2gkJfVfAd4-C0POu7WlX5GwJu6JlqTkn9A-NA9UXr_qkL171xasG0MVrKXrz98gPJX9EFuDDFcCy97uASWcbcLboQkK7aBfDY_m_AdCQtQI</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Tellis, B.C.</creator><creator>Szivek, J.A.</creator><creator>Bliss, C.L.</creator><creator>Margolis, D.S.</creator><creator>Vaidyanathan, R.K.</creator><creator>Calvert, P.</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7QP</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20080101</creationdate><title>Trabecular scaffolds created using micro CT guided fused deposition modeling</title><author>Tellis, B.C. ; Szivek, J.A. ; Bliss, C.L. ; Margolis, D.S. ; Vaidyanathan, R.K. ; Calvert, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c583t-25efd29da3c4bb699f96290dc7c71a74ca3a03fd8472513dbdf2534cc3729693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bone</topic><topic>Fused deposition modeling</topic><topic>Micro CT</topic><topic>Rapid prototyping</topic><topic>Scaffolds</topic><toplevel>online_resources</toplevel><creatorcontrib>Tellis, B.C.</creatorcontrib><creatorcontrib>Szivek, J.A.</creatorcontrib><creatorcontrib>Bliss, C.L.</creatorcontrib><creatorcontrib>Margolis, D.S.</creatorcontrib><creatorcontrib>Vaidyanathan, R.K.</creatorcontrib><creatorcontrib>Calvert, P.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials Science &amp; Engineering C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tellis, B.C.</au><au>Szivek, J.A.</au><au>Bliss, C.L.</au><au>Margolis, D.S.</au><au>Vaidyanathan, R.K.</au><au>Calvert, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trabecular scaffolds created using micro CT guided fused deposition modeling</atitle><jtitle>Materials Science &amp; Engineering C</jtitle><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><date>2008-01-01</date><risdate>2008</risdate><volume>28</volume><issue>1</issue><spage>171</spage><epage>178</epage><pages>171-178</pages><issn>0928-4931</issn><eissn>1873-0191</eissn><abstract>Free form fabrication and high resolution imaging techniques enable the creation of biomimetic tissue engineering scaffolds. A 3D CAD model of canine trabecular bone was produced via micro CT and exported to a fused deposition modeler, to produce polybutylene terephthalate (PBT) trabeculated scaffolds and four other scaffold groups of varying pore structures. The five scaffold groups were divided into subgroups ( n = 6) and compression tested at two load rates (49 N/s and 294 N/s). Two groups were soaked in a 25 °C saline solution for 7 days before compression testing. Micro CT was used to compare porosity, connectivity density, and trabecular separation of each scaffold type to a canine trabecular bone sample. At 49 N/s the dry trabecular scaffolds had a compressive stiffness of 4.94 ± 1.19 MPa, similar to the simple linear small pore scaffolds and significantly more stiff ( p &lt; 0.05) than either of the complex interconnected pore scaffolds. At 294 N/s, the compressive stiffness values for all five groups roughly doubled. Soaking in saline had an insignificant effect on stiffness. The trabecular scaffolds matched bone samples in porosity; however, achieving physiologic connectivity density and trabecular separation will require further refining of scaffold processing.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>21461176</pmid><doi>10.1016/j.msec.2006.11.010</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0928-4931
ispartof Materials Science & Engineering C, 2008-01, Vol.28 (1), p.171-178
issn 0928-4931
1873-0191
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3065838
source Elsevier ScienceDirect Journals Complete
subjects Bone
Fused deposition modeling
Micro CT
Rapid prototyping
Scaffolds
title Trabecular scaffolds created using micro CT guided fused deposition modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trabecular%20scaffolds%20created%20using%20micro%20CT%20guided%20fused%20deposition%20modeling&rft.jtitle=Materials%20Science%20&%20Engineering%20C&rft.au=Tellis,%20B.C.&rft.date=2008-01-01&rft.volume=28&rft.issue=1&rft.spage=171&rft.epage=178&rft.pages=171-178&rft.issn=0928-4931&rft.eissn=1873-0191&rft_id=info:doi/10.1016/j.msec.2006.11.010&rft_dat=%3Cproquest_pubme%3E20567185%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835480587&rft_id=info:pmid/21461176&rft_els_id=S0928493106003821&rfr_iscdi=true