Trabecular scaffolds created using micro CT guided fused deposition modeling
Free form fabrication and high resolution imaging techniques enable the creation of biomimetic tissue engineering scaffolds. A 3D CAD model of canine trabecular bone was produced via micro CT and exported to a fused deposition modeler, to produce polybutylene terephthalate (PBT) trabeculated scaffol...
Gespeichert in:
Veröffentlicht in: | Materials Science & Engineering C 2008-01, Vol.28 (1), p.171-178 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 178 |
---|---|
container_issue | 1 |
container_start_page | 171 |
container_title | Materials Science & Engineering C |
container_volume | 28 |
creator | Tellis, B.C. Szivek, J.A. Bliss, C.L. Margolis, D.S. Vaidyanathan, R.K. Calvert, P. |
description | Free form fabrication and high resolution imaging techniques enable the creation of biomimetic tissue engineering scaffolds. A 3D CAD model of canine trabecular bone was produced via micro CT and exported to a fused deposition modeler, to produce polybutylene terephthalate (PBT) trabeculated scaffolds and four other scaffold groups of varying pore structures. The five scaffold groups were divided into subgroups (
n
=
6) and compression tested at two load rates (49 N/s and 294 N/s). Two groups were soaked in a 25 °C saline solution for 7 days before compression testing. Micro CT was used to compare porosity, connectivity density, and trabecular separation of each scaffold type to a canine trabecular bone sample. At 49 N/s the dry trabecular scaffolds had a compressive stiffness of 4.94
±
1.19 MPa, similar to the simple linear small pore scaffolds and significantly more stiff (
p
<
0.05) than either of the complex interconnected pore scaffolds. At 294 N/s, the compressive stiffness values for all five groups roughly doubled. Soaking in saline had an insignificant effect on stiffness. The trabecular scaffolds matched bone samples in porosity; however, achieving physiologic connectivity density and trabecular separation will require further refining of scaffold processing. |
doi_str_mv | 10.1016/j.msec.2006.11.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3065838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0928493106003821</els_id><sourcerecordid>20567185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c583t-25efd29da3c4bb699f96290dc7c71a74ca3a03fd8472513dbdf2534cc3729693</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhoMo7jj6BzxIn8RLt6mkO-mACMvgFwx4mXtIJ5UxQ3dnTLoX_PdmmHXRy3pJIHnqpaoeQl4DbYCCeH9qpoy2YZSKBqChQJ-QDfSS1xQUPCUbqlhft4rDDXmR86lwPZfsOblh0AoAKTZkf0hmQLuOJlXZGu_j6HJlE5oFXbXmMB-rKdgUq92hOq7BlVe_5nI6PMcclhDnaooOx0K-JM-8GTO-ur-35PD502H3td5___Jtd7uvbdfzpWYdeseUM9y2wyCU8kowRZ2VVoKRrTXcUO5d30rWAXeD86zjrbWleSUU35KP19jzOkzoLM5LMqM-pzCZ9EtHE_S_P3P4oY_xTnMqSgN9CXh7H5DizxXzoqeQLY6jmTGuWXNQVHJF_wsy2gkJfVfAd4-C0POu7WlX5GwJu6JlqTkn9A-NA9UXr_qkL171xasG0MVrKXrz98gPJX9EFuDDFcCy97uASWcbcLboQkK7aBfDY_m_AdCQtQI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835480587</pqid></control><display><type>article</type><title>Trabecular scaffolds created using micro CT guided fused deposition modeling</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Tellis, B.C. ; Szivek, J.A. ; Bliss, C.L. ; Margolis, D.S. ; Vaidyanathan, R.K. ; Calvert, P.</creator><creatorcontrib>Tellis, B.C. ; Szivek, J.A. ; Bliss, C.L. ; Margolis, D.S. ; Vaidyanathan, R.K. ; Calvert, P.</creatorcontrib><description>Free form fabrication and high resolution imaging techniques enable the creation of biomimetic tissue engineering scaffolds. A 3D CAD model of canine trabecular bone was produced via micro CT and exported to a fused deposition modeler, to produce polybutylene terephthalate (PBT) trabeculated scaffolds and four other scaffold groups of varying pore structures. The five scaffold groups were divided into subgroups (
n
=
6) and compression tested at two load rates (49 N/s and 294 N/s). Two groups were soaked in a 25 °C saline solution for 7 days before compression testing. Micro CT was used to compare porosity, connectivity density, and trabecular separation of each scaffold type to a canine trabecular bone sample. At 49 N/s the dry trabecular scaffolds had a compressive stiffness of 4.94
±
1.19 MPa, similar to the simple linear small pore scaffolds and significantly more stiff (
p
<
0.05) than either of the complex interconnected pore scaffolds. At 294 N/s, the compressive stiffness values for all five groups roughly doubled. Soaking in saline had an insignificant effect on stiffness. The trabecular scaffolds matched bone samples in porosity; however, achieving physiologic connectivity density and trabecular separation will require further refining of scaffold processing.</description><identifier>ISSN: 0928-4931</identifier><identifier>EISSN: 1873-0191</identifier><identifier>DOI: 10.1016/j.msec.2006.11.010</identifier><identifier>PMID: 21461176</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Bone ; Fused deposition modeling ; Micro CT ; Rapid prototyping ; Scaffolds</subject><ispartof>Materials Science & Engineering C, 2008-01, Vol.28 (1), p.171-178</ispartof><rights>2006 Elsevier B.V.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c583t-25efd29da3c4bb699f96290dc7c71a74ca3a03fd8472513dbdf2534cc3729693</citedby><cites>FETCH-LOGICAL-c583t-25efd29da3c4bb699f96290dc7c71a74ca3a03fd8472513dbdf2534cc3729693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msec.2006.11.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21461176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tellis, B.C.</creatorcontrib><creatorcontrib>Szivek, J.A.</creatorcontrib><creatorcontrib>Bliss, C.L.</creatorcontrib><creatorcontrib>Margolis, D.S.</creatorcontrib><creatorcontrib>Vaidyanathan, R.K.</creatorcontrib><creatorcontrib>Calvert, P.</creatorcontrib><title>Trabecular scaffolds created using micro CT guided fused deposition modeling</title><title>Materials Science & Engineering C</title><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><description>Free form fabrication and high resolution imaging techniques enable the creation of biomimetic tissue engineering scaffolds. A 3D CAD model of canine trabecular bone was produced via micro CT and exported to a fused deposition modeler, to produce polybutylene terephthalate (PBT) trabeculated scaffolds and four other scaffold groups of varying pore structures. The five scaffold groups were divided into subgroups (
n
=
6) and compression tested at two load rates (49 N/s and 294 N/s). Two groups were soaked in a 25 °C saline solution for 7 days before compression testing. Micro CT was used to compare porosity, connectivity density, and trabecular separation of each scaffold type to a canine trabecular bone sample. At 49 N/s the dry trabecular scaffolds had a compressive stiffness of 4.94
±
1.19 MPa, similar to the simple linear small pore scaffolds and significantly more stiff (
p
<
0.05) than either of the complex interconnected pore scaffolds. At 294 N/s, the compressive stiffness values for all five groups roughly doubled. Soaking in saline had an insignificant effect on stiffness. The trabecular scaffolds matched bone samples in porosity; however, achieving physiologic connectivity density and trabecular separation will require further refining of scaffold processing.</description><subject>Bone</subject><subject>Fused deposition modeling</subject><subject>Micro CT</subject><subject>Rapid prototyping</subject><subject>Scaffolds</subject><issn>0928-4931</issn><issn>1873-0191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkU2LFDEQhoMo7jj6BzxIn8RLt6mkO-mACMvgFwx4mXtIJ5UxQ3dnTLoX_PdmmHXRy3pJIHnqpaoeQl4DbYCCeH9qpoy2YZSKBqChQJ-QDfSS1xQUPCUbqlhft4rDDXmR86lwPZfsOblh0AoAKTZkf0hmQLuOJlXZGu_j6HJlE5oFXbXmMB-rKdgUq92hOq7BlVe_5nI6PMcclhDnaooOx0K-JM-8GTO-ur-35PD502H3td5___Jtd7uvbdfzpWYdeseUM9y2wyCU8kowRZ2VVoKRrTXcUO5d30rWAXeD86zjrbWleSUU35KP19jzOkzoLM5LMqM-pzCZ9EtHE_S_P3P4oY_xTnMqSgN9CXh7H5DizxXzoqeQLY6jmTGuWXNQVHJF_wsy2gkJfVfAd4-C0POu7WlX5GwJu6JlqTkn9A-NA9UXr_qkL171xasG0MVrKXrz98gPJX9EFuDDFcCy97uASWcbcLboQkK7aBfDY_m_AdCQtQI</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Tellis, B.C.</creator><creator>Szivek, J.A.</creator><creator>Bliss, C.L.</creator><creator>Margolis, D.S.</creator><creator>Vaidyanathan, R.K.</creator><creator>Calvert, P.</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7QP</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20080101</creationdate><title>Trabecular scaffolds created using micro CT guided fused deposition modeling</title><author>Tellis, B.C. ; Szivek, J.A. ; Bliss, C.L. ; Margolis, D.S. ; Vaidyanathan, R.K. ; Calvert, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c583t-25efd29da3c4bb699f96290dc7c71a74ca3a03fd8472513dbdf2534cc3729693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bone</topic><topic>Fused deposition modeling</topic><topic>Micro CT</topic><topic>Rapid prototyping</topic><topic>Scaffolds</topic><toplevel>online_resources</toplevel><creatorcontrib>Tellis, B.C.</creatorcontrib><creatorcontrib>Szivek, J.A.</creatorcontrib><creatorcontrib>Bliss, C.L.</creatorcontrib><creatorcontrib>Margolis, D.S.</creatorcontrib><creatorcontrib>Vaidyanathan, R.K.</creatorcontrib><creatorcontrib>Calvert, P.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials Science & Engineering C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tellis, B.C.</au><au>Szivek, J.A.</au><au>Bliss, C.L.</au><au>Margolis, D.S.</au><au>Vaidyanathan, R.K.</au><au>Calvert, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trabecular scaffolds created using micro CT guided fused deposition modeling</atitle><jtitle>Materials Science & Engineering C</jtitle><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><date>2008-01-01</date><risdate>2008</risdate><volume>28</volume><issue>1</issue><spage>171</spage><epage>178</epage><pages>171-178</pages><issn>0928-4931</issn><eissn>1873-0191</eissn><abstract>Free form fabrication and high resolution imaging techniques enable the creation of biomimetic tissue engineering scaffolds. A 3D CAD model of canine trabecular bone was produced via micro CT and exported to a fused deposition modeler, to produce polybutylene terephthalate (PBT) trabeculated scaffolds and four other scaffold groups of varying pore structures. The five scaffold groups were divided into subgroups (
n
=
6) and compression tested at two load rates (49 N/s and 294 N/s). Two groups were soaked in a 25 °C saline solution for 7 days before compression testing. Micro CT was used to compare porosity, connectivity density, and trabecular separation of each scaffold type to a canine trabecular bone sample. At 49 N/s the dry trabecular scaffolds had a compressive stiffness of 4.94
±
1.19 MPa, similar to the simple linear small pore scaffolds and significantly more stiff (
p
<
0.05) than either of the complex interconnected pore scaffolds. At 294 N/s, the compressive stiffness values for all five groups roughly doubled. Soaking in saline had an insignificant effect on stiffness. The trabecular scaffolds matched bone samples in porosity; however, achieving physiologic connectivity density and trabecular separation will require further refining of scaffold processing.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>21461176</pmid><doi>10.1016/j.msec.2006.11.010</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0928-4931 |
ispartof | Materials Science & Engineering C, 2008-01, Vol.28 (1), p.171-178 |
issn | 0928-4931 1873-0191 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3065838 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Bone Fused deposition modeling Micro CT Rapid prototyping Scaffolds |
title | Trabecular scaffolds created using micro CT guided fused deposition modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trabecular%20scaffolds%20created%20using%20micro%20CT%20guided%20fused%20deposition%20modeling&rft.jtitle=Materials%20Science%20&%20Engineering%20C&rft.au=Tellis,%20B.C.&rft.date=2008-01-01&rft.volume=28&rft.issue=1&rft.spage=171&rft.epage=178&rft.pages=171-178&rft.issn=0928-4931&rft.eissn=1873-0191&rft_id=info:doi/10.1016/j.msec.2006.11.010&rft_dat=%3Cproquest_pubme%3E20567185%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835480587&rft_id=info:pmid/21461176&rft_els_id=S0928493106003821&rfr_iscdi=true |