The Role of Iron in Learning and Memory
Iron deficiency (ID) is the most common nutrient deficiency, affecting 2 billion people and 30% of pregnant women and their offspring. Early life ID affects at least 3 major neurobehavioral domains, including speed of processing, affect, and learning and memory, the latter being particularly promine...
Gespeichert in:
Veröffentlicht in: | Advances in nutrition (Bethesda, Md.) Md.), 2011-03, Vol.2 (2), p.112-121 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 121 |
---|---|
container_issue | 2 |
container_start_page | 112 |
container_title | Advances in nutrition (Bethesda, Md.) |
container_volume | 2 |
creator | Fretham, Stephanie J.B. Carlson, Erik S. Georgieff, Michael K. |
description | Iron deficiency (ID) is the most common nutrient deficiency, affecting 2 billion people and 30% of pregnant women and their offspring. Early life ID affects at least 3 major neurobehavioral domains, including speed of processing, affect, and learning and memory, the latter being particularly prominent. The learning and memory deficits occur while the infants are iron deficient and persist despite iron repletion. The neural mechanisms underlying the short- and long-term deficits are being elucidated. Early ID alters the transcriptome, metabolome, structure, intracellular signaling pathways, and electrophysiology of the developing hippocampus, the brain region responsible for recognition learning and memory. Until recently, it was unclear whether these effects are directly due to a lack of iron interacting with important transcriptional, translational, or post-translational processes or to indirect effects such as hypoxia due to anemia or stress. Nonanemic genetic mouse models generated by conditionally altering expression of iron transport proteins specifically in hippocampal neurons in late gestation have led to a greater understanding of iron's role in learning and memory. The learning deficits in adulthood likely result from interactions between direct and indirect effects that contribute to abnormal hippocampal structure and plasticity. |
doi_str_mv | 10.3945/an.110.000190 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3065765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2161831322005713</els_id><sourcerecordid>921567053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-d535c0d759a81574eaa47071db9cc4727672e44ce9d2e93370f7515b63dc56b13</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMottQevcreetqabL66F0GKH4WKIPUcsslsG9kmNWkL_fdu2Sp68DQvzMM7w4PQNcFjWjJ-q_2YtBljTEp8hvoF4SLnVIrzYxYkn1BCe2iY0kfLYF5MpKCXqFcUlBaY4T4aLVaQvYUGslBnsxh85nw2Bx2988tMe5u9wDrEwxW6qHWTYHiaA_T--LCYPufz16fZ9H6eG0bZNreccoOt5KWeEC4ZaM0klsRWpTFMFlLIAhgzUNoCSkolriUnvBLUGi4qQgforuvd7Ko1WAN-G3WjNtGtdTyooJ36u_FupZZhrygWXAreFoxOBTF87iBt1dolA02jPYRdUuXRkcSctmTekSaGlCLUP1cIVke9SnvV6lWd3pa_-f3aD_0tswVkB0AraO8gqmQceAPWRTBbZYP7p_oLfPSFpg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921567053</pqid></control><display><type>article</type><title>The Role of Iron in Learning and Memory</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Fretham, Stephanie J.B. ; Carlson, Erik S. ; Georgieff, Michael K.</creator><creatorcontrib>Fretham, Stephanie J.B. ; Carlson, Erik S. ; Georgieff, Michael K.</creatorcontrib><description>Iron deficiency (ID) is the most common nutrient deficiency, affecting 2 billion people and 30% of pregnant women and their offspring. Early life ID affects at least 3 major neurobehavioral domains, including speed of processing, affect, and learning and memory, the latter being particularly prominent. The learning and memory deficits occur while the infants are iron deficient and persist despite iron repletion. The neural mechanisms underlying the short- and long-term deficits are being elucidated. Early ID alters the transcriptome, metabolome, structure, intracellular signaling pathways, and electrophysiology of the developing hippocampus, the brain region responsible for recognition learning and memory. Until recently, it was unclear whether these effects are directly due to a lack of iron interacting with important transcriptional, translational, or post-translational processes or to indirect effects such as hypoxia due to anemia or stress. Nonanemic genetic mouse models generated by conditionally altering expression of iron transport proteins specifically in hippocampal neurons in late gestation have led to a greater understanding of iron's role in learning and memory. The learning deficits in adulthood likely result from interactions between direct and indirect effects that contribute to abnormal hippocampal structure and plasticity.</description><identifier>ISSN: 2161-8313</identifier><identifier>EISSN: 2156-5376</identifier><identifier>DOI: 10.3945/an.110.000190</identifier><identifier>PMID: 22332040</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adolescent ; Adult ; Animals ; Brain-Derived Neurotrophic Factor - metabolism ; Child ; Child, Preschool ; Female ; Gene Expression ; Hippocampus - metabolism ; Hippocampus - physiopathology ; Humans ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Infant ; Infant, Newborn ; Iron Deficiencies ; Iron, Dietary - metabolism ; Learning - physiology ; Memory - physiology ; Mice ; Neurons - metabolism ; Pregnancy ; Rats ; Thematic Reviews Series: Minerals ; TOR Serine-Threonine Kinases - metabolism ; Trace Elements - deficiency</subject><ispartof>Advances in nutrition (Bethesda, Md.), 2011-03, Vol.2 (2), p.112-121</ispartof><rights>2011 © 2011 American Society for Nutrition</rights><rights>2011 American Society for Nutrition 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-d535c0d759a81574eaa47071db9cc4727672e44ce9d2e93370f7515b63dc56b13</citedby><cites>FETCH-LOGICAL-c434t-d535c0d759a81574eaa47071db9cc4727672e44ce9d2e93370f7515b63dc56b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065765/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065765/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22332040$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fretham, Stephanie J.B.</creatorcontrib><creatorcontrib>Carlson, Erik S.</creatorcontrib><creatorcontrib>Georgieff, Michael K.</creatorcontrib><title>The Role of Iron in Learning and Memory</title><title>Advances in nutrition (Bethesda, Md.)</title><addtitle>Adv Nutr</addtitle><description>Iron deficiency (ID) is the most common nutrient deficiency, affecting 2 billion people and 30% of pregnant women and their offspring. Early life ID affects at least 3 major neurobehavioral domains, including speed of processing, affect, and learning and memory, the latter being particularly prominent. The learning and memory deficits occur while the infants are iron deficient and persist despite iron repletion. The neural mechanisms underlying the short- and long-term deficits are being elucidated. Early ID alters the transcriptome, metabolome, structure, intracellular signaling pathways, and electrophysiology of the developing hippocampus, the brain region responsible for recognition learning and memory. Until recently, it was unclear whether these effects are directly due to a lack of iron interacting with important transcriptional, translational, or post-translational processes or to indirect effects such as hypoxia due to anemia or stress. Nonanemic genetic mouse models generated by conditionally altering expression of iron transport proteins specifically in hippocampal neurons in late gestation have led to a greater understanding of iron's role in learning and memory. The learning deficits in adulthood likely result from interactions between direct and indirect effects that contribute to abnormal hippocampal structure and plasticity.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Animals</subject><subject>Brain-Derived Neurotrophic Factor - metabolism</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Female</subject><subject>Gene Expression</subject><subject>Hippocampus - metabolism</subject><subject>Hippocampus - physiopathology</subject><subject>Humans</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Iron Deficiencies</subject><subject>Iron, Dietary - metabolism</subject><subject>Learning - physiology</subject><subject>Memory - physiology</subject><subject>Mice</subject><subject>Neurons - metabolism</subject><subject>Pregnancy</subject><subject>Rats</subject><subject>Thematic Reviews Series: Minerals</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Trace Elements - deficiency</subject><issn>2161-8313</issn><issn>2156-5376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1LAzEQhoMottQevcreetqabL66F0GKH4WKIPUcsslsG9kmNWkL_fdu2Sp68DQvzMM7w4PQNcFjWjJ-q_2YtBljTEp8hvoF4SLnVIrzYxYkn1BCe2iY0kfLYF5MpKCXqFcUlBaY4T4aLVaQvYUGslBnsxh85nw2Bx2988tMe5u9wDrEwxW6qHWTYHiaA_T--LCYPufz16fZ9H6eG0bZNreccoOt5KWeEC4ZaM0klsRWpTFMFlLIAhgzUNoCSkolriUnvBLUGi4qQgforuvd7Ko1WAN-G3WjNtGtdTyooJ36u_FupZZhrygWXAreFoxOBTF87iBt1dolA02jPYRdUuXRkcSctmTekSaGlCLUP1cIVke9SnvV6lWd3pa_-f3aD_0tswVkB0AraO8gqmQceAPWRTBbZYP7p_oLfPSFpg</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Fretham, Stephanie J.B.</creator><creator>Carlson, Erik S.</creator><creator>Georgieff, Michael K.</creator><general>Elsevier Inc</general><general>American Society for Nutrition</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110301</creationdate><title>The Role of Iron in Learning and Memory</title><author>Fretham, Stephanie J.B. ; Carlson, Erik S. ; Georgieff, Michael K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-d535c0d759a81574eaa47071db9cc4727672e44ce9d2e93370f7515b63dc56b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Animals</topic><topic>Brain-Derived Neurotrophic Factor - metabolism</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Female</topic><topic>Gene Expression</topic><topic>Hippocampus - metabolism</topic><topic>Hippocampus - physiopathology</topic><topic>Humans</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Iron Deficiencies</topic><topic>Iron, Dietary - metabolism</topic><topic>Learning - physiology</topic><topic>Memory - physiology</topic><topic>Mice</topic><topic>Neurons - metabolism</topic><topic>Pregnancy</topic><topic>Rats</topic><topic>Thematic Reviews Series: Minerals</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Trace Elements - deficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fretham, Stephanie J.B.</creatorcontrib><creatorcontrib>Carlson, Erik S.</creatorcontrib><creatorcontrib>Georgieff, Michael K.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advances in nutrition (Bethesda, Md.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fretham, Stephanie J.B.</au><au>Carlson, Erik S.</au><au>Georgieff, Michael K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of Iron in Learning and Memory</atitle><jtitle>Advances in nutrition (Bethesda, Md.)</jtitle><addtitle>Adv Nutr</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>2</volume><issue>2</issue><spage>112</spage><epage>121</epage><pages>112-121</pages><issn>2161-8313</issn><eissn>2156-5376</eissn><abstract>Iron deficiency (ID) is the most common nutrient deficiency, affecting 2 billion people and 30% of pregnant women and their offspring. Early life ID affects at least 3 major neurobehavioral domains, including speed of processing, affect, and learning and memory, the latter being particularly prominent. The learning and memory deficits occur while the infants are iron deficient and persist despite iron repletion. The neural mechanisms underlying the short- and long-term deficits are being elucidated. Early ID alters the transcriptome, metabolome, structure, intracellular signaling pathways, and electrophysiology of the developing hippocampus, the brain region responsible for recognition learning and memory. Until recently, it was unclear whether these effects are directly due to a lack of iron interacting with important transcriptional, translational, or post-translational processes or to indirect effects such as hypoxia due to anemia or stress. Nonanemic genetic mouse models generated by conditionally altering expression of iron transport proteins specifically in hippocampal neurons in late gestation have led to a greater understanding of iron's role in learning and memory. The learning deficits in adulthood likely result from interactions between direct and indirect effects that contribute to abnormal hippocampal structure and plasticity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22332040</pmid><doi>10.3945/an.110.000190</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2161-8313 |
ispartof | Advances in nutrition (Bethesda, Md.), 2011-03, Vol.2 (2), p.112-121 |
issn | 2161-8313 2156-5376 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3065765 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Adolescent Adult Animals Brain-Derived Neurotrophic Factor - metabolism Child Child, Preschool Female Gene Expression Hippocampus - metabolism Hippocampus - physiopathology Humans Hypoxia-Inducible Factor 1, alpha Subunit - metabolism Infant Infant, Newborn Iron Deficiencies Iron, Dietary - metabolism Learning - physiology Memory - physiology Mice Neurons - metabolism Pregnancy Rats Thematic Reviews Series: Minerals TOR Serine-Threonine Kinases - metabolism Trace Elements - deficiency |
title | The Role of Iron in Learning and Memory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T10%3A55%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20Iron%20in%20Learning%20and%20Memory&rft.jtitle=Advances%20in%20nutrition%20(Bethesda,%20Md.)&rft.au=Fretham,%20Stephanie%20J.B.&rft.date=2011-03-01&rft.volume=2&rft.issue=2&rft.spage=112&rft.epage=121&rft.pages=112-121&rft.issn=2161-8313&rft.eissn=2156-5376&rft_id=info:doi/10.3945/an.110.000190&rft_dat=%3Cproquest_pubme%3E921567053%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921567053&rft_id=info:pmid/22332040&rft_els_id=S2161831322005713&rfr_iscdi=true |