The Role of Iron in Learning and Memory

Iron deficiency (ID) is the most common nutrient deficiency, affecting 2 billion people and 30% of pregnant women and their offspring. Early life ID affects at least 3 major neurobehavioral domains, including speed of processing, affect, and learning and memory, the latter being particularly promine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in nutrition (Bethesda, Md.) Md.), 2011-03, Vol.2 (2), p.112-121
Hauptverfasser: Fretham, Stephanie J.B., Carlson, Erik S., Georgieff, Michael K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 121
container_issue 2
container_start_page 112
container_title Advances in nutrition (Bethesda, Md.)
container_volume 2
creator Fretham, Stephanie J.B.
Carlson, Erik S.
Georgieff, Michael K.
description Iron deficiency (ID) is the most common nutrient deficiency, affecting 2 billion people and 30% of pregnant women and their offspring. Early life ID affects at least 3 major neurobehavioral domains, including speed of processing, affect, and learning and memory, the latter being particularly prominent. The learning and memory deficits occur while the infants are iron deficient and persist despite iron repletion. The neural mechanisms underlying the short- and long-term deficits are being elucidated. Early ID alters the transcriptome, metabolome, structure, intracellular signaling pathways, and electrophysiology of the developing hippocampus, the brain region responsible for recognition learning and memory. Until recently, it was unclear whether these effects are directly due to a lack of iron interacting with important transcriptional, translational, or post-translational processes or to indirect effects such as hypoxia due to anemia or stress. Nonanemic genetic mouse models generated by conditionally altering expression of iron transport proteins specifically in hippocampal neurons in late gestation have led to a greater understanding of iron's role in learning and memory. The learning deficits in adulthood likely result from interactions between direct and indirect effects that contribute to abnormal hippocampal structure and plasticity.
doi_str_mv 10.3945/an.110.000190
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3065765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2161831322005713</els_id><sourcerecordid>921567053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-d535c0d759a81574eaa47071db9cc4727672e44ce9d2e93370f7515b63dc56b13</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMottQevcreetqabL66F0GKH4WKIPUcsslsG9kmNWkL_fdu2Sp68DQvzMM7w4PQNcFjWjJ-q_2YtBljTEp8hvoF4SLnVIrzYxYkn1BCe2iY0kfLYF5MpKCXqFcUlBaY4T4aLVaQvYUGslBnsxh85nw2Bx2988tMe5u9wDrEwxW6qHWTYHiaA_T--LCYPufz16fZ9H6eG0bZNreccoOt5KWeEC4ZaM0klsRWpTFMFlLIAhgzUNoCSkolriUnvBLUGi4qQgforuvd7Ko1WAN-G3WjNtGtdTyooJ36u_FupZZhrygWXAreFoxOBTF87iBt1dolA02jPYRdUuXRkcSctmTekSaGlCLUP1cIVke9SnvV6lWd3pa_-f3aD_0tswVkB0AraO8gqmQceAPWRTBbZYP7p_oLfPSFpg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921567053</pqid></control><display><type>article</type><title>The Role of Iron in Learning and Memory</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Fretham, Stephanie J.B. ; Carlson, Erik S. ; Georgieff, Michael K.</creator><creatorcontrib>Fretham, Stephanie J.B. ; Carlson, Erik S. ; Georgieff, Michael K.</creatorcontrib><description>Iron deficiency (ID) is the most common nutrient deficiency, affecting 2 billion people and 30% of pregnant women and their offspring. Early life ID affects at least 3 major neurobehavioral domains, including speed of processing, affect, and learning and memory, the latter being particularly prominent. The learning and memory deficits occur while the infants are iron deficient and persist despite iron repletion. The neural mechanisms underlying the short- and long-term deficits are being elucidated. Early ID alters the transcriptome, metabolome, structure, intracellular signaling pathways, and electrophysiology of the developing hippocampus, the brain region responsible for recognition learning and memory. Until recently, it was unclear whether these effects are directly due to a lack of iron interacting with important transcriptional, translational, or post-translational processes or to indirect effects such as hypoxia due to anemia or stress. Nonanemic genetic mouse models generated by conditionally altering expression of iron transport proteins specifically in hippocampal neurons in late gestation have led to a greater understanding of iron's role in learning and memory. The learning deficits in adulthood likely result from interactions between direct and indirect effects that contribute to abnormal hippocampal structure and plasticity.</description><identifier>ISSN: 2161-8313</identifier><identifier>EISSN: 2156-5376</identifier><identifier>DOI: 10.3945/an.110.000190</identifier><identifier>PMID: 22332040</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adolescent ; Adult ; Animals ; Brain-Derived Neurotrophic Factor - metabolism ; Child ; Child, Preschool ; Female ; Gene Expression ; Hippocampus - metabolism ; Hippocampus - physiopathology ; Humans ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Infant ; Infant, Newborn ; Iron Deficiencies ; Iron, Dietary - metabolism ; Learning - physiology ; Memory - physiology ; Mice ; Neurons - metabolism ; Pregnancy ; Rats ; Thematic Reviews Series: Minerals ; TOR Serine-Threonine Kinases - metabolism ; Trace Elements - deficiency</subject><ispartof>Advances in nutrition (Bethesda, Md.), 2011-03, Vol.2 (2), p.112-121</ispartof><rights>2011 © 2011 American Society for Nutrition</rights><rights>2011 American Society for Nutrition 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-d535c0d759a81574eaa47071db9cc4727672e44ce9d2e93370f7515b63dc56b13</citedby><cites>FETCH-LOGICAL-c434t-d535c0d759a81574eaa47071db9cc4727672e44ce9d2e93370f7515b63dc56b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065765/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065765/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22332040$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fretham, Stephanie J.B.</creatorcontrib><creatorcontrib>Carlson, Erik S.</creatorcontrib><creatorcontrib>Georgieff, Michael K.</creatorcontrib><title>The Role of Iron in Learning and Memory</title><title>Advances in nutrition (Bethesda, Md.)</title><addtitle>Adv Nutr</addtitle><description>Iron deficiency (ID) is the most common nutrient deficiency, affecting 2 billion people and 30% of pregnant women and their offspring. Early life ID affects at least 3 major neurobehavioral domains, including speed of processing, affect, and learning and memory, the latter being particularly prominent. The learning and memory deficits occur while the infants are iron deficient and persist despite iron repletion. The neural mechanisms underlying the short- and long-term deficits are being elucidated. Early ID alters the transcriptome, metabolome, structure, intracellular signaling pathways, and electrophysiology of the developing hippocampus, the brain region responsible for recognition learning and memory. Until recently, it was unclear whether these effects are directly due to a lack of iron interacting with important transcriptional, translational, or post-translational processes or to indirect effects such as hypoxia due to anemia or stress. Nonanemic genetic mouse models generated by conditionally altering expression of iron transport proteins specifically in hippocampal neurons in late gestation have led to a greater understanding of iron's role in learning and memory. The learning deficits in adulthood likely result from interactions between direct and indirect effects that contribute to abnormal hippocampal structure and plasticity.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Animals</subject><subject>Brain-Derived Neurotrophic Factor - metabolism</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Female</subject><subject>Gene Expression</subject><subject>Hippocampus - metabolism</subject><subject>Hippocampus - physiopathology</subject><subject>Humans</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Iron Deficiencies</subject><subject>Iron, Dietary - metabolism</subject><subject>Learning - physiology</subject><subject>Memory - physiology</subject><subject>Mice</subject><subject>Neurons - metabolism</subject><subject>Pregnancy</subject><subject>Rats</subject><subject>Thematic Reviews Series: Minerals</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Trace Elements - deficiency</subject><issn>2161-8313</issn><issn>2156-5376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1LAzEQhoMottQevcreetqabL66F0GKH4WKIPUcsslsG9kmNWkL_fdu2Sp68DQvzMM7w4PQNcFjWjJ-q_2YtBljTEp8hvoF4SLnVIrzYxYkn1BCe2iY0kfLYF5MpKCXqFcUlBaY4T4aLVaQvYUGslBnsxh85nw2Bx2988tMe5u9wDrEwxW6qHWTYHiaA_T--LCYPufz16fZ9H6eG0bZNreccoOt5KWeEC4ZaM0klsRWpTFMFlLIAhgzUNoCSkolriUnvBLUGi4qQgforuvd7Ko1WAN-G3WjNtGtdTyooJ36u_FupZZhrygWXAreFoxOBTF87iBt1dolA02jPYRdUuXRkcSctmTekSaGlCLUP1cIVke9SnvV6lWd3pa_-f3aD_0tswVkB0AraO8gqmQceAPWRTBbZYP7p_oLfPSFpg</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Fretham, Stephanie J.B.</creator><creator>Carlson, Erik S.</creator><creator>Georgieff, Michael K.</creator><general>Elsevier Inc</general><general>American Society for Nutrition</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110301</creationdate><title>The Role of Iron in Learning and Memory</title><author>Fretham, Stephanie J.B. ; Carlson, Erik S. ; Georgieff, Michael K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-d535c0d759a81574eaa47071db9cc4727672e44ce9d2e93370f7515b63dc56b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Animals</topic><topic>Brain-Derived Neurotrophic Factor - metabolism</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Female</topic><topic>Gene Expression</topic><topic>Hippocampus - metabolism</topic><topic>Hippocampus - physiopathology</topic><topic>Humans</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Iron Deficiencies</topic><topic>Iron, Dietary - metabolism</topic><topic>Learning - physiology</topic><topic>Memory - physiology</topic><topic>Mice</topic><topic>Neurons - metabolism</topic><topic>Pregnancy</topic><topic>Rats</topic><topic>Thematic Reviews Series: Minerals</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Trace Elements - deficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fretham, Stephanie J.B.</creatorcontrib><creatorcontrib>Carlson, Erik S.</creatorcontrib><creatorcontrib>Georgieff, Michael K.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advances in nutrition (Bethesda, Md.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fretham, Stephanie J.B.</au><au>Carlson, Erik S.</au><au>Georgieff, Michael K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of Iron in Learning and Memory</atitle><jtitle>Advances in nutrition (Bethesda, Md.)</jtitle><addtitle>Adv Nutr</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>2</volume><issue>2</issue><spage>112</spage><epage>121</epage><pages>112-121</pages><issn>2161-8313</issn><eissn>2156-5376</eissn><abstract>Iron deficiency (ID) is the most common nutrient deficiency, affecting 2 billion people and 30% of pregnant women and their offspring. Early life ID affects at least 3 major neurobehavioral domains, including speed of processing, affect, and learning and memory, the latter being particularly prominent. The learning and memory deficits occur while the infants are iron deficient and persist despite iron repletion. The neural mechanisms underlying the short- and long-term deficits are being elucidated. Early ID alters the transcriptome, metabolome, structure, intracellular signaling pathways, and electrophysiology of the developing hippocampus, the brain region responsible for recognition learning and memory. Until recently, it was unclear whether these effects are directly due to a lack of iron interacting with important transcriptional, translational, or post-translational processes or to indirect effects such as hypoxia due to anemia or stress. Nonanemic genetic mouse models generated by conditionally altering expression of iron transport proteins specifically in hippocampal neurons in late gestation have led to a greater understanding of iron's role in learning and memory. The learning deficits in adulthood likely result from interactions between direct and indirect effects that contribute to abnormal hippocampal structure and plasticity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22332040</pmid><doi>10.3945/an.110.000190</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2161-8313
ispartof Advances in nutrition (Bethesda, Md.), 2011-03, Vol.2 (2), p.112-121
issn 2161-8313
2156-5376
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3065765
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Adolescent
Adult
Animals
Brain-Derived Neurotrophic Factor - metabolism
Child
Child, Preschool
Female
Gene Expression
Hippocampus - metabolism
Hippocampus - physiopathology
Humans
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
Infant
Infant, Newborn
Iron Deficiencies
Iron, Dietary - metabolism
Learning - physiology
Memory - physiology
Mice
Neurons - metabolism
Pregnancy
Rats
Thematic Reviews Series: Minerals
TOR Serine-Threonine Kinases - metabolism
Trace Elements - deficiency
title The Role of Iron in Learning and Memory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T10%3A55%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20Iron%20in%20Learning%20and%20Memory&rft.jtitle=Advances%20in%20nutrition%20(Bethesda,%20Md.)&rft.au=Fretham,%20Stephanie%20J.B.&rft.date=2011-03-01&rft.volume=2&rft.issue=2&rft.spage=112&rft.epage=121&rft.pages=112-121&rft.issn=2161-8313&rft.eissn=2156-5376&rft_id=info:doi/10.3945/an.110.000190&rft_dat=%3Cproquest_pubme%3E921567053%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921567053&rft_id=info:pmid/22332040&rft_els_id=S2161831322005713&rfr_iscdi=true