A molecular-imprint nanosensor for ultrasensitive detection of proteins
Molecular imprinting is a technique for preparing polymer scaffolds that function as synthetic receptors 1 , 2 , 3 . Imprinted polymers that can selectively bind organic compounds have proven useful in sensor development 2 , 3 , 4 , 5 , 6 , 7 . Although creating synthetic molecular-imprinting polyme...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2010-08, Vol.5 (8), p.597-601 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 601 |
---|---|
container_issue | 8 |
container_start_page | 597 |
container_title | Nature nanotechnology |
container_volume | 5 |
creator | Cai, Dong Ren, Lu Zhao, Huaizhou Xu, Chenjia Zhang, Lu Yu, Ying Wang, Hengzhi Lan, Yucheng Roberts, Mary F. Chuang, Jeffrey H. Naughton, Michael J. Ren, Zhifeng Chiles, Thomas C. |
description | Molecular imprinting is a technique for preparing polymer scaffolds that function as synthetic receptors
1
,
2
,
3
. Imprinted polymers that can selectively bind organic compounds have proven useful in sensor development
2
,
3
,
4
,
5
,
6
,
7
. Although creating synthetic molecular-imprinting polymers that recognize proteins remains challenging
8
,
9
,
10
,
11
, nanodevices and nanomaterials show promise in this area
12
,
13
,
14
. Here, we show that arrays of carbon-nanotube tips with an imprinted non-conducting polymer coating can recognize proteins with subpicogram per litre sensitivity using electrochemical impedance spectroscopy. We have developed molecular-imprinting sensors specific for human ferritin and human papillomavirus derived E7 protein. The molecular-imprinting-based nanosensor can also discriminate between Ca
2+
-induced conformational changes in calmodulin. This ultrasensitive, label-free electrochemical detection of proteins offers an alternative to biosensors based on biomolecule recognition.
Carbon nanotube tips containing imprints within a non-conducting polymer coating can detect proteins with high sensitivity, offering a label-free alternative to sensors based on biomolecule recognition. |
doi_str_mv | 10.1038/nnano.2010.114 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3064708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2356966101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-4affcaeee993dbbc6123f5ac954b8af2efc053f43f9822cd4fc15d06ac5d28dc3</originalsourceid><addsrcrecordid>eNp1kUtPxCAUhYnR-BjdujSNG1cdKY8ObEyM8ZWYuNE1YehlxLQwQmviv5c6Oj4SFwRu-Dicew9ChxWeVpiKU--1D1OCx7piG2i3mjFRUir55vosZjtoL6VnjDmRhG2jHYK5qATlu-j6vOhCC2ZodSxdt4zO98WomcCnEAub19D2UY-1690rFA30YHoXfBFssYyhB-fTPtqyuk1w8LlP0OPV5cPFTXl3f317cX5XGsbrvmTaWqMBQErazOemrgi1XBvJ2VxoS8AazKll1EpBiGmYNRVvcK0Nb4hoDJ2gs5Xucph30Bjw2Vursu9OxzcVtFO_b7x7Uovwqiiu2QyLLHDyKRDDywCpV51LBtpWewhDUnlkMo8Py0we_yGfwxB97k6JWlDJJJ1laLqCTAwpRbBrKxVWY0LqIyE1JqRyQvnB0c8G1vhXJBk4XQFpDGMB8fvbfyTfAQYZoEk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>868394937</pqid></control><display><type>article</type><title>A molecular-imprint nanosensor for ultrasensitive detection of proteins</title><source>MEDLINE</source><source>Nature</source><source>Springer Nature - Complete Springer Journals</source><creator>Cai, Dong ; Ren, Lu ; Zhao, Huaizhou ; Xu, Chenjia ; Zhang, Lu ; Yu, Ying ; Wang, Hengzhi ; Lan, Yucheng ; Roberts, Mary F. ; Chuang, Jeffrey H. ; Naughton, Michael J. ; Ren, Zhifeng ; Chiles, Thomas C.</creator><creatorcontrib>Cai, Dong ; Ren, Lu ; Zhao, Huaizhou ; Xu, Chenjia ; Zhang, Lu ; Yu, Ying ; Wang, Hengzhi ; Lan, Yucheng ; Roberts, Mary F. ; Chuang, Jeffrey H. ; Naughton, Michael J. ; Ren, Zhifeng ; Chiles, Thomas C.</creatorcontrib><description>Molecular imprinting is a technique for preparing polymer scaffolds that function as synthetic receptors
1
,
2
,
3
. Imprinted polymers that can selectively bind organic compounds have proven useful in sensor development
2
,
3
,
4
,
5
,
6
,
7
. Although creating synthetic molecular-imprinting polymers that recognize proteins remains challenging
8
,
9
,
10
,
11
, nanodevices and nanomaterials show promise in this area
12
,
13
,
14
. Here, we show that arrays of carbon-nanotube tips with an imprinted non-conducting polymer coating can recognize proteins with subpicogram per litre sensitivity using electrochemical impedance spectroscopy. We have developed molecular-imprinting sensors specific for human ferritin and human papillomavirus derived E7 protein. The molecular-imprinting-based nanosensor can also discriminate between Ca
2+
-induced conformational changes in calmodulin. This ultrasensitive, label-free electrochemical detection of proteins offers an alternative to biosensors based on biomolecule recognition.
Carbon nanotube tips containing imprints within a non-conducting polymer coating can detect proteins with high sensitivity, offering a label-free alternative to sensors based on biomolecule recognition.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/nnano.2010.114</identifier><identifier>PMID: 20581835</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45/612 ; 639/925/927/356 ; Arrays ; Biosensing Techniques - instrumentation ; Biosensors ; Chemistry and Materials Science ; Conductometry - instrumentation ; Electrochemistry ; Equipment Design ; Equipment Failure Analysis ; Glass substrates ; Impedance ; letter ; Materials Science ; Microscopy ; Molecular Probe Techniques - instrumentation ; Nanotechnology ; Nanotechnology - instrumentation ; Nanotechnology and Microengineering ; Organic compounds ; Polymers ; Protein Array Analysis - instrumentation ; Proteins ; Sensitivity and Specificity ; Sensors ; Spectroscopy</subject><ispartof>Nature nanotechnology, 2010-08, Vol.5 (8), p.597-601</ispartof><rights>Springer Nature Limited 2010</rights><rights>Copyright Nature Publishing Group Aug 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-4affcaeee993dbbc6123f5ac954b8af2efc053f43f9822cd4fc15d06ac5d28dc3</citedby><cites>FETCH-LOGICAL-c456t-4affcaeee993dbbc6123f5ac954b8af2efc053f43f9822cd4fc15d06ac5d28dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nnano.2010.114$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nnano.2010.114$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20581835$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cai, Dong</creatorcontrib><creatorcontrib>Ren, Lu</creatorcontrib><creatorcontrib>Zhao, Huaizhou</creatorcontrib><creatorcontrib>Xu, Chenjia</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Yu, Ying</creatorcontrib><creatorcontrib>Wang, Hengzhi</creatorcontrib><creatorcontrib>Lan, Yucheng</creatorcontrib><creatorcontrib>Roberts, Mary F.</creatorcontrib><creatorcontrib>Chuang, Jeffrey H.</creatorcontrib><creatorcontrib>Naughton, Michael J.</creatorcontrib><creatorcontrib>Ren, Zhifeng</creatorcontrib><creatorcontrib>Chiles, Thomas C.</creatorcontrib><title>A molecular-imprint nanosensor for ultrasensitive detection of proteins</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Molecular imprinting is a technique for preparing polymer scaffolds that function as synthetic receptors
1
,
2
,
3
. Imprinted polymers that can selectively bind organic compounds have proven useful in sensor development
2
,
3
,
4
,
5
,
6
,
7
. Although creating synthetic molecular-imprinting polymers that recognize proteins remains challenging
8
,
9
,
10
,
11
, nanodevices and nanomaterials show promise in this area
12
,
13
,
14
. Here, we show that arrays of carbon-nanotube tips with an imprinted non-conducting polymer coating can recognize proteins with subpicogram per litre sensitivity using electrochemical impedance spectroscopy. We have developed molecular-imprinting sensors specific for human ferritin and human papillomavirus derived E7 protein. The molecular-imprinting-based nanosensor can also discriminate between Ca
2+
-induced conformational changes in calmodulin. This ultrasensitive, label-free electrochemical detection of proteins offers an alternative to biosensors based on biomolecule recognition.
Carbon nanotube tips containing imprints within a non-conducting polymer coating can detect proteins with high sensitivity, offering a label-free alternative to sensors based on biomolecule recognition.</description><subject>631/45/612</subject><subject>639/925/927/356</subject><subject>Arrays</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensors</subject><subject>Chemistry and Materials Science</subject><subject>Conductometry - instrumentation</subject><subject>Electrochemistry</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Glass substrates</subject><subject>Impedance</subject><subject>letter</subject><subject>Materials Science</subject><subject>Microscopy</subject><subject>Molecular Probe Techniques - instrumentation</subject><subject>Nanotechnology</subject><subject>Nanotechnology - instrumentation</subject><subject>Nanotechnology and Microengineering</subject><subject>Organic compounds</subject><subject>Polymers</subject><subject>Protein Array Analysis - instrumentation</subject><subject>Proteins</subject><subject>Sensitivity and Specificity</subject><subject>Sensors</subject><subject>Spectroscopy</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUtPxCAUhYnR-BjdujSNG1cdKY8ObEyM8ZWYuNE1YehlxLQwQmviv5c6Oj4SFwRu-Dicew9ChxWeVpiKU--1D1OCx7piG2i3mjFRUir55vosZjtoL6VnjDmRhG2jHYK5qATlu-j6vOhCC2ZodSxdt4zO98WomcCnEAub19D2UY-1690rFA30YHoXfBFssYyhB-fTPtqyuk1w8LlP0OPV5cPFTXl3f317cX5XGsbrvmTaWqMBQErazOemrgi1XBvJ2VxoS8AazKll1EpBiGmYNRVvcK0Nb4hoDJ2gs5Xucph30Bjw2Vursu9OxzcVtFO_b7x7Uovwqiiu2QyLLHDyKRDDywCpV51LBtpWewhDUnlkMo8Py0we_yGfwxB97k6JWlDJJJ1laLqCTAwpRbBrKxVWY0LqIyE1JqRyQvnB0c8G1vhXJBk4XQFpDGMB8fvbfyTfAQYZoEk</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Cai, Dong</creator><creator>Ren, Lu</creator><creator>Zhao, Huaizhou</creator><creator>Xu, Chenjia</creator><creator>Zhang, Lu</creator><creator>Yu, Ying</creator><creator>Wang, Hengzhi</creator><creator>Lan, Yucheng</creator><creator>Roberts, Mary F.</creator><creator>Chuang, Jeffrey H.</creator><creator>Naughton, Michael J.</creator><creator>Ren, Zhifeng</creator><creator>Chiles, Thomas C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100801</creationdate><title>A molecular-imprint nanosensor for ultrasensitive detection of proteins</title><author>Cai, Dong ; Ren, Lu ; Zhao, Huaizhou ; Xu, Chenjia ; Zhang, Lu ; Yu, Ying ; Wang, Hengzhi ; Lan, Yucheng ; Roberts, Mary F. ; Chuang, Jeffrey H. ; Naughton, Michael J. ; Ren, Zhifeng ; Chiles, Thomas C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-4affcaeee993dbbc6123f5ac954b8af2efc053f43f9822cd4fc15d06ac5d28dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>631/45/612</topic><topic>639/925/927/356</topic><topic>Arrays</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensors</topic><topic>Chemistry and Materials Science</topic><topic>Conductometry - instrumentation</topic><topic>Electrochemistry</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Glass substrates</topic><topic>Impedance</topic><topic>letter</topic><topic>Materials Science</topic><topic>Microscopy</topic><topic>Molecular Probe Techniques - instrumentation</topic><topic>Nanotechnology</topic><topic>Nanotechnology - instrumentation</topic><topic>Nanotechnology and Microengineering</topic><topic>Organic compounds</topic><topic>Polymers</topic><topic>Protein Array Analysis - instrumentation</topic><topic>Proteins</topic><topic>Sensitivity and Specificity</topic><topic>Sensors</topic><topic>Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Dong</creatorcontrib><creatorcontrib>Ren, Lu</creatorcontrib><creatorcontrib>Zhao, Huaizhou</creatorcontrib><creatorcontrib>Xu, Chenjia</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Yu, Ying</creatorcontrib><creatorcontrib>Wang, Hengzhi</creatorcontrib><creatorcontrib>Lan, Yucheng</creatorcontrib><creatorcontrib>Roberts, Mary F.</creatorcontrib><creatorcontrib>Chuang, Jeffrey H.</creatorcontrib><creatorcontrib>Naughton, Michael J.</creatorcontrib><creatorcontrib>Ren, Zhifeng</creatorcontrib><creatorcontrib>Chiles, Thomas C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Dong</au><au>Ren, Lu</au><au>Zhao, Huaizhou</au><au>Xu, Chenjia</au><au>Zhang, Lu</au><au>Yu, Ying</au><au>Wang, Hengzhi</au><au>Lan, Yucheng</au><au>Roberts, Mary F.</au><au>Chuang, Jeffrey H.</au><au>Naughton, Michael J.</au><au>Ren, Zhifeng</au><au>Chiles, Thomas C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A molecular-imprint nanosensor for ultrasensitive detection of proteins</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><addtitle>Nat Nanotechnol</addtitle><date>2010-08-01</date><risdate>2010</risdate><volume>5</volume><issue>8</issue><spage>597</spage><epage>601</epage><pages>597-601</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Molecular imprinting is a technique for preparing polymer scaffolds that function as synthetic receptors
1
,
2
,
3
. Imprinted polymers that can selectively bind organic compounds have proven useful in sensor development
2
,
3
,
4
,
5
,
6
,
7
. Although creating synthetic molecular-imprinting polymers that recognize proteins remains challenging
8
,
9
,
10
,
11
, nanodevices and nanomaterials show promise in this area
12
,
13
,
14
. Here, we show that arrays of carbon-nanotube tips with an imprinted non-conducting polymer coating can recognize proteins with subpicogram per litre sensitivity using electrochemical impedance spectroscopy. We have developed molecular-imprinting sensors specific for human ferritin and human papillomavirus derived E7 protein. The molecular-imprinting-based nanosensor can also discriminate between Ca
2+
-induced conformational changes in calmodulin. This ultrasensitive, label-free electrochemical detection of proteins offers an alternative to biosensors based on biomolecule recognition.
Carbon nanotube tips containing imprints within a non-conducting polymer coating can detect proteins with high sensitivity, offering a label-free alternative to sensors based on biomolecule recognition.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>20581835</pmid><doi>10.1038/nnano.2010.114</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-3387 |
ispartof | Nature nanotechnology, 2010-08, Vol.5 (8), p.597-601 |
issn | 1748-3387 1748-3395 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3064708 |
source | MEDLINE; Nature; Springer Nature - Complete Springer Journals |
subjects | 631/45/612 639/925/927/356 Arrays Biosensing Techniques - instrumentation Biosensors Chemistry and Materials Science Conductometry - instrumentation Electrochemistry Equipment Design Equipment Failure Analysis Glass substrates Impedance letter Materials Science Microscopy Molecular Probe Techniques - instrumentation Nanotechnology Nanotechnology - instrumentation Nanotechnology and Microengineering Organic compounds Polymers Protein Array Analysis - instrumentation Proteins Sensitivity and Specificity Sensors Spectroscopy |
title | A molecular-imprint nanosensor for ultrasensitive detection of proteins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A53%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20molecular-imprint%20nanosensor%20for%20ultrasensitive%20detection%20of%20proteins&rft.jtitle=Nature%20nanotechnology&rft.au=Cai,%20Dong&rft.date=2010-08-01&rft.volume=5&rft.issue=8&rft.spage=597&rft.epage=601&rft.pages=597-601&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/nnano.2010.114&rft_dat=%3Cproquest_pubme%3E2356966101%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=868394937&rft_id=info:pmid/20581835&rfr_iscdi=true |