A molecular-imprint nanosensor for ultrasensitive detection of proteins

Molecular imprinting is a technique for preparing polymer scaffolds that function as synthetic receptors 1 , 2 , 3 . Imprinted polymers that can selectively bind organic compounds have proven useful in sensor development 2 , 3 , 4 , 5 , 6 , 7 . Although creating synthetic molecular-imprinting polyme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2010-08, Vol.5 (8), p.597-601
Hauptverfasser: Cai, Dong, Ren, Lu, Zhao, Huaizhou, Xu, Chenjia, Zhang, Lu, Yu, Ying, Wang, Hengzhi, Lan, Yucheng, Roberts, Mary F., Chuang, Jeffrey H., Naughton, Michael J., Ren, Zhifeng, Chiles, Thomas C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 601
container_issue 8
container_start_page 597
container_title Nature nanotechnology
container_volume 5
creator Cai, Dong
Ren, Lu
Zhao, Huaizhou
Xu, Chenjia
Zhang, Lu
Yu, Ying
Wang, Hengzhi
Lan, Yucheng
Roberts, Mary F.
Chuang, Jeffrey H.
Naughton, Michael J.
Ren, Zhifeng
Chiles, Thomas C.
description Molecular imprinting is a technique for preparing polymer scaffolds that function as synthetic receptors 1 , 2 , 3 . Imprinted polymers that can selectively bind organic compounds have proven useful in sensor development 2 , 3 , 4 , 5 , 6 , 7 . Although creating synthetic molecular-imprinting polymers that recognize proteins remains challenging 8 , 9 , 10 , 11 , nanodevices and nanomaterials show promise in this area 12 , 13 , 14 . Here, we show that arrays of carbon-nanotube tips with an imprinted non-conducting polymer coating can recognize proteins with subpicogram per litre sensitivity using electrochemical impedance spectroscopy. We have developed molecular-imprinting sensors specific for human ferritin and human papillomavirus derived E7 protein. The molecular-imprinting-based nanosensor can also discriminate between Ca 2+ -induced conformational changes in calmodulin. This ultrasensitive, label-free electrochemical detection of proteins offers an alternative to biosensors based on biomolecule recognition. Carbon nanotube tips containing imprints within a non-conducting polymer coating can detect proteins with high sensitivity, offering a label-free alternative to sensors based on biomolecule recognition.
doi_str_mv 10.1038/nnano.2010.114
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3064708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2356966101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-4affcaeee993dbbc6123f5ac954b8af2efc053f43f9822cd4fc15d06ac5d28dc3</originalsourceid><addsrcrecordid>eNp1kUtPxCAUhYnR-BjdujSNG1cdKY8ObEyM8ZWYuNE1YehlxLQwQmviv5c6Oj4SFwRu-Dicew9ChxWeVpiKU--1D1OCx7piG2i3mjFRUir55vosZjtoL6VnjDmRhG2jHYK5qATlu-j6vOhCC2ZodSxdt4zO98WomcCnEAub19D2UY-1690rFA30YHoXfBFssYyhB-fTPtqyuk1w8LlP0OPV5cPFTXl3f317cX5XGsbrvmTaWqMBQErazOemrgi1XBvJ2VxoS8AazKll1EpBiGmYNRVvcK0Nb4hoDJ2gs5Xucph30Bjw2Vursu9OxzcVtFO_b7x7Uovwqiiu2QyLLHDyKRDDywCpV51LBtpWewhDUnlkMo8Py0we_yGfwxB97k6JWlDJJJ1laLqCTAwpRbBrKxVWY0LqIyE1JqRyQvnB0c8G1vhXJBk4XQFpDGMB8fvbfyTfAQYZoEk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>868394937</pqid></control><display><type>article</type><title>A molecular-imprint nanosensor for ultrasensitive detection of proteins</title><source>MEDLINE</source><source>Nature</source><source>Springer Nature - Complete Springer Journals</source><creator>Cai, Dong ; Ren, Lu ; Zhao, Huaizhou ; Xu, Chenjia ; Zhang, Lu ; Yu, Ying ; Wang, Hengzhi ; Lan, Yucheng ; Roberts, Mary F. ; Chuang, Jeffrey H. ; Naughton, Michael J. ; Ren, Zhifeng ; Chiles, Thomas C.</creator><creatorcontrib>Cai, Dong ; Ren, Lu ; Zhao, Huaizhou ; Xu, Chenjia ; Zhang, Lu ; Yu, Ying ; Wang, Hengzhi ; Lan, Yucheng ; Roberts, Mary F. ; Chuang, Jeffrey H. ; Naughton, Michael J. ; Ren, Zhifeng ; Chiles, Thomas C.</creatorcontrib><description>Molecular imprinting is a technique for preparing polymer scaffolds that function as synthetic receptors 1 , 2 , 3 . Imprinted polymers that can selectively bind organic compounds have proven useful in sensor development 2 , 3 , 4 , 5 , 6 , 7 . Although creating synthetic molecular-imprinting polymers that recognize proteins remains challenging 8 , 9 , 10 , 11 , nanodevices and nanomaterials show promise in this area 12 , 13 , 14 . Here, we show that arrays of carbon-nanotube tips with an imprinted non-conducting polymer coating can recognize proteins with subpicogram per litre sensitivity using electrochemical impedance spectroscopy. We have developed molecular-imprinting sensors specific for human ferritin and human papillomavirus derived E7 protein. The molecular-imprinting-based nanosensor can also discriminate between Ca 2+ -induced conformational changes in calmodulin. This ultrasensitive, label-free electrochemical detection of proteins offers an alternative to biosensors based on biomolecule recognition. Carbon nanotube tips containing imprints within a non-conducting polymer coating can detect proteins with high sensitivity, offering a label-free alternative to sensors based on biomolecule recognition.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/nnano.2010.114</identifier><identifier>PMID: 20581835</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45/612 ; 639/925/927/356 ; Arrays ; Biosensing Techniques - instrumentation ; Biosensors ; Chemistry and Materials Science ; Conductometry - instrumentation ; Electrochemistry ; Equipment Design ; Equipment Failure Analysis ; Glass substrates ; Impedance ; letter ; Materials Science ; Microscopy ; Molecular Probe Techniques - instrumentation ; Nanotechnology ; Nanotechnology - instrumentation ; Nanotechnology and Microengineering ; Organic compounds ; Polymers ; Protein Array Analysis - instrumentation ; Proteins ; Sensitivity and Specificity ; Sensors ; Spectroscopy</subject><ispartof>Nature nanotechnology, 2010-08, Vol.5 (8), p.597-601</ispartof><rights>Springer Nature Limited 2010</rights><rights>Copyright Nature Publishing Group Aug 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-4affcaeee993dbbc6123f5ac954b8af2efc053f43f9822cd4fc15d06ac5d28dc3</citedby><cites>FETCH-LOGICAL-c456t-4affcaeee993dbbc6123f5ac954b8af2efc053f43f9822cd4fc15d06ac5d28dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nnano.2010.114$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nnano.2010.114$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20581835$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cai, Dong</creatorcontrib><creatorcontrib>Ren, Lu</creatorcontrib><creatorcontrib>Zhao, Huaizhou</creatorcontrib><creatorcontrib>Xu, Chenjia</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Yu, Ying</creatorcontrib><creatorcontrib>Wang, Hengzhi</creatorcontrib><creatorcontrib>Lan, Yucheng</creatorcontrib><creatorcontrib>Roberts, Mary F.</creatorcontrib><creatorcontrib>Chuang, Jeffrey H.</creatorcontrib><creatorcontrib>Naughton, Michael J.</creatorcontrib><creatorcontrib>Ren, Zhifeng</creatorcontrib><creatorcontrib>Chiles, Thomas C.</creatorcontrib><title>A molecular-imprint nanosensor for ultrasensitive detection of proteins</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Molecular imprinting is a technique for preparing polymer scaffolds that function as synthetic receptors 1 , 2 , 3 . Imprinted polymers that can selectively bind organic compounds have proven useful in sensor development 2 , 3 , 4 , 5 , 6 , 7 . Although creating synthetic molecular-imprinting polymers that recognize proteins remains challenging 8 , 9 , 10 , 11 , nanodevices and nanomaterials show promise in this area 12 , 13 , 14 . Here, we show that arrays of carbon-nanotube tips with an imprinted non-conducting polymer coating can recognize proteins with subpicogram per litre sensitivity using electrochemical impedance spectroscopy. We have developed molecular-imprinting sensors specific for human ferritin and human papillomavirus derived E7 protein. The molecular-imprinting-based nanosensor can also discriminate between Ca 2+ -induced conformational changes in calmodulin. This ultrasensitive, label-free electrochemical detection of proteins offers an alternative to biosensors based on biomolecule recognition. Carbon nanotube tips containing imprints within a non-conducting polymer coating can detect proteins with high sensitivity, offering a label-free alternative to sensors based on biomolecule recognition.</description><subject>631/45/612</subject><subject>639/925/927/356</subject><subject>Arrays</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensors</subject><subject>Chemistry and Materials Science</subject><subject>Conductometry - instrumentation</subject><subject>Electrochemistry</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Glass substrates</subject><subject>Impedance</subject><subject>letter</subject><subject>Materials Science</subject><subject>Microscopy</subject><subject>Molecular Probe Techniques - instrumentation</subject><subject>Nanotechnology</subject><subject>Nanotechnology - instrumentation</subject><subject>Nanotechnology and Microengineering</subject><subject>Organic compounds</subject><subject>Polymers</subject><subject>Protein Array Analysis - instrumentation</subject><subject>Proteins</subject><subject>Sensitivity and Specificity</subject><subject>Sensors</subject><subject>Spectroscopy</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUtPxCAUhYnR-BjdujSNG1cdKY8ObEyM8ZWYuNE1YehlxLQwQmviv5c6Oj4SFwRu-Dicew9ChxWeVpiKU--1D1OCx7piG2i3mjFRUir55vosZjtoL6VnjDmRhG2jHYK5qATlu-j6vOhCC2ZodSxdt4zO98WomcCnEAub19D2UY-1690rFA30YHoXfBFssYyhB-fTPtqyuk1w8LlP0OPV5cPFTXl3f317cX5XGsbrvmTaWqMBQErazOemrgi1XBvJ2VxoS8AazKll1EpBiGmYNRVvcK0Nb4hoDJ2gs5Xucph30Bjw2Vursu9OxzcVtFO_b7x7Uovwqiiu2QyLLHDyKRDDywCpV51LBtpWewhDUnlkMo8Py0we_yGfwxB97k6JWlDJJJ1laLqCTAwpRbBrKxVWY0LqIyE1JqRyQvnB0c8G1vhXJBk4XQFpDGMB8fvbfyTfAQYZoEk</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Cai, Dong</creator><creator>Ren, Lu</creator><creator>Zhao, Huaizhou</creator><creator>Xu, Chenjia</creator><creator>Zhang, Lu</creator><creator>Yu, Ying</creator><creator>Wang, Hengzhi</creator><creator>Lan, Yucheng</creator><creator>Roberts, Mary F.</creator><creator>Chuang, Jeffrey H.</creator><creator>Naughton, Michael J.</creator><creator>Ren, Zhifeng</creator><creator>Chiles, Thomas C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100801</creationdate><title>A molecular-imprint nanosensor for ultrasensitive detection of proteins</title><author>Cai, Dong ; Ren, Lu ; Zhao, Huaizhou ; Xu, Chenjia ; Zhang, Lu ; Yu, Ying ; Wang, Hengzhi ; Lan, Yucheng ; Roberts, Mary F. ; Chuang, Jeffrey H. ; Naughton, Michael J. ; Ren, Zhifeng ; Chiles, Thomas C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-4affcaeee993dbbc6123f5ac954b8af2efc053f43f9822cd4fc15d06ac5d28dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>631/45/612</topic><topic>639/925/927/356</topic><topic>Arrays</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensors</topic><topic>Chemistry and Materials Science</topic><topic>Conductometry - instrumentation</topic><topic>Electrochemistry</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Glass substrates</topic><topic>Impedance</topic><topic>letter</topic><topic>Materials Science</topic><topic>Microscopy</topic><topic>Molecular Probe Techniques - instrumentation</topic><topic>Nanotechnology</topic><topic>Nanotechnology - instrumentation</topic><topic>Nanotechnology and Microengineering</topic><topic>Organic compounds</topic><topic>Polymers</topic><topic>Protein Array Analysis - instrumentation</topic><topic>Proteins</topic><topic>Sensitivity and Specificity</topic><topic>Sensors</topic><topic>Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Dong</creatorcontrib><creatorcontrib>Ren, Lu</creatorcontrib><creatorcontrib>Zhao, Huaizhou</creatorcontrib><creatorcontrib>Xu, Chenjia</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Yu, Ying</creatorcontrib><creatorcontrib>Wang, Hengzhi</creatorcontrib><creatorcontrib>Lan, Yucheng</creatorcontrib><creatorcontrib>Roberts, Mary F.</creatorcontrib><creatorcontrib>Chuang, Jeffrey H.</creatorcontrib><creatorcontrib>Naughton, Michael J.</creatorcontrib><creatorcontrib>Ren, Zhifeng</creatorcontrib><creatorcontrib>Chiles, Thomas C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Dong</au><au>Ren, Lu</au><au>Zhao, Huaizhou</au><au>Xu, Chenjia</au><au>Zhang, Lu</au><au>Yu, Ying</au><au>Wang, Hengzhi</au><au>Lan, Yucheng</au><au>Roberts, Mary F.</au><au>Chuang, Jeffrey H.</au><au>Naughton, Michael J.</au><au>Ren, Zhifeng</au><au>Chiles, Thomas C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A molecular-imprint nanosensor for ultrasensitive detection of proteins</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><addtitle>Nat Nanotechnol</addtitle><date>2010-08-01</date><risdate>2010</risdate><volume>5</volume><issue>8</issue><spage>597</spage><epage>601</epage><pages>597-601</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Molecular imprinting is a technique for preparing polymer scaffolds that function as synthetic receptors 1 , 2 , 3 . Imprinted polymers that can selectively bind organic compounds have proven useful in sensor development 2 , 3 , 4 , 5 , 6 , 7 . Although creating synthetic molecular-imprinting polymers that recognize proteins remains challenging 8 , 9 , 10 , 11 , nanodevices and nanomaterials show promise in this area 12 , 13 , 14 . Here, we show that arrays of carbon-nanotube tips with an imprinted non-conducting polymer coating can recognize proteins with subpicogram per litre sensitivity using electrochemical impedance spectroscopy. We have developed molecular-imprinting sensors specific for human ferritin and human papillomavirus derived E7 protein. The molecular-imprinting-based nanosensor can also discriminate between Ca 2+ -induced conformational changes in calmodulin. This ultrasensitive, label-free electrochemical detection of proteins offers an alternative to biosensors based on biomolecule recognition. Carbon nanotube tips containing imprints within a non-conducting polymer coating can detect proteins with high sensitivity, offering a label-free alternative to sensors based on biomolecule recognition.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>20581835</pmid><doi>10.1038/nnano.2010.114</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2010-08, Vol.5 (8), p.597-601
issn 1748-3387
1748-3395
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3064708
source MEDLINE; Nature; Springer Nature - Complete Springer Journals
subjects 631/45/612
639/925/927/356
Arrays
Biosensing Techniques - instrumentation
Biosensors
Chemistry and Materials Science
Conductometry - instrumentation
Electrochemistry
Equipment Design
Equipment Failure Analysis
Glass substrates
Impedance
letter
Materials Science
Microscopy
Molecular Probe Techniques - instrumentation
Nanotechnology
Nanotechnology - instrumentation
Nanotechnology and Microengineering
Organic compounds
Polymers
Protein Array Analysis - instrumentation
Proteins
Sensitivity and Specificity
Sensors
Spectroscopy
title A molecular-imprint nanosensor for ultrasensitive detection of proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A53%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20molecular-imprint%20nanosensor%20for%20ultrasensitive%20detection%20of%20proteins&rft.jtitle=Nature%20nanotechnology&rft.au=Cai,%20Dong&rft.date=2010-08-01&rft.volume=5&rft.issue=8&rft.spage=597&rft.epage=601&rft.pages=597-601&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/nnano.2010.114&rft_dat=%3Cproquest_pubme%3E2356966101%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=868394937&rft_id=info:pmid/20581835&rfr_iscdi=true