Phenotypic Landscape of a Bacterial Cell

The explosion of sequence information in bacteria makes developing high-throughput, cost-effective approaches to matching genes with phenotypes imperative. Using E. coli as proof of principle, we show that combining large-scale chemical genomics with quantitative fitness measurements provides a high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2011-01, Vol.144 (1), p.143-156
Hauptverfasser: Nichols, Robert J., Sen, Saunak, Choo, Yoe Jin, Beltrao, Pedro, Zietek, Matylda, Chaba, Rachna, Lee, Sueyoung, Kazmierczak, Krystyna M., Lee, Karis J., Wong, Angela, Shales, Michael, Lovett, Susan, Winkler, Malcolm E., Krogan, Nevan J., Typas, Athanasios, Gross, Carol A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 156
container_issue 1
container_start_page 143
container_title Cell
container_volume 144
creator Nichols, Robert J.
Sen, Saunak
Choo, Yoe Jin
Beltrao, Pedro
Zietek, Matylda
Chaba, Rachna
Lee, Sueyoung
Kazmierczak, Krystyna M.
Lee, Karis J.
Wong, Angela
Shales, Michael
Lovett, Susan
Winkler, Malcolm E.
Krogan, Nevan J.
Typas, Athanasios
Gross, Carol A.
description The explosion of sequence information in bacteria makes developing high-throughput, cost-effective approaches to matching genes with phenotypes imperative. Using E. coli as proof of principle, we show that combining large-scale chemical genomics with quantitative fitness measurements provides a high-quality data set rich in discovery. Probing growth profiles of a mutant library in hundreds of conditions in parallel yielded > 10,000 phenotypes that allowed us to study gene essentiality, discover leads for gene function and drug action, and understand higher-order organization of the bacterial chromosome. We highlight new information derived from the study, including insights into a gene involved in multiple antibiotic resistance and the synergy between a broadly used combinatory antibiotic therapy, trimethoprim and sulfonamides. This data set, publicly available at http://ecoliwiki.net/tools/chemgen/, is a valuable resource for both the microbiological and bioinformatic communities, as it provides high-confidence associations between hundreds of annotated and uncharacterized genes as well as inferences about the mode of action of several poorly understood drugs. [Display omitted] ► Phenomic profiling of E. coli identifies thousands of mutant growth phenotypes ► Patterns of growth phenotypes reveal new functional connections between genes ► Uncharacterized genes linked to many phenotypes tend to be evolutionarily restricted ► Mutant phenotypes generate insights into drug mode of action and drug synergy
doi_str_mv 10.1016/j.cell.2010.11.052
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3060659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867410013747</els_id><sourcerecordid>893262027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-4dcc50b5f1517613a8638d302e047c8484d55ca101cf6569f5a6c3dfc7ab601f3</originalsourceid><addsrcrecordid>eNp9kMFO3DAQhq2qqCy0L9ADzY1esoyd2EmkCglWFJBWohLseeSd2OBVNt7aWSTevo6WruDCydL4m39-fYx95zDlwNXZakqm66YCxgGfghSf2IRDU-Ulr8RnNgFoRF6rqjxkRzGuAKCWUn5hh4LzWkIlJuznnyfT--Fl4yib676NpDcm8zbT2aWmwQSnu2yWznxlB1Z30Xx7fY_Z4vfVw-wmn99d384u5jlJDkNetkQSltJyySvFC12rom4LEAbKiuqyLlspSaf-ZJVUjZVaUdFaqvRSAbfFMTvf5W62y7VpyfRD0B1uglvr8IJeO3z_07snfPTPWIACJZsUcPoaEPzfrYkDrl0cRene-G3EuimEEiCqRIodScHHGIzdX-GAo2Fc4biIo2HkHJPhtHTytt9-5b_SBPzYAVZ71I_BRVzcpwSZ9JdKlJCIXzvCJI_PzgSM5ExPpnXB0ICtdx81-Ac5f5Sw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>893262027</pqid></control><display><type>article</type><title>Phenotypic Landscape of a Bacterial Cell</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Nichols, Robert J. ; Sen, Saunak ; Choo, Yoe Jin ; Beltrao, Pedro ; Zietek, Matylda ; Chaba, Rachna ; Lee, Sueyoung ; Kazmierczak, Krystyna M. ; Lee, Karis J. ; Wong, Angela ; Shales, Michael ; Lovett, Susan ; Winkler, Malcolm E. ; Krogan, Nevan J. ; Typas, Athanasios ; Gross, Carol A.</creator><creatorcontrib>Nichols, Robert J. ; Sen, Saunak ; Choo, Yoe Jin ; Beltrao, Pedro ; Zietek, Matylda ; Chaba, Rachna ; Lee, Sueyoung ; Kazmierczak, Krystyna M. ; Lee, Karis J. ; Wong, Angela ; Shales, Michael ; Lovett, Susan ; Winkler, Malcolm E. ; Krogan, Nevan J. ; Typas, Athanasios ; Gross, Carol A.</creatorcontrib><description>The explosion of sequence information in bacteria makes developing high-throughput, cost-effective approaches to matching genes with phenotypes imperative. Using E. coli as proof of principle, we show that combining large-scale chemical genomics with quantitative fitness measurements provides a high-quality data set rich in discovery. Probing growth profiles of a mutant library in hundreds of conditions in parallel yielded &gt; 10,000 phenotypes that allowed us to study gene essentiality, discover leads for gene function and drug action, and understand higher-order organization of the bacterial chromosome. We highlight new information derived from the study, including insights into a gene involved in multiple antibiotic resistance and the synergy between a broadly used combinatory antibiotic therapy, trimethoprim and sulfonamides. This data set, publicly available at http://ecoliwiki.net/tools/chemgen/, is a valuable resource for both the microbiological and bioinformatic communities, as it provides high-confidence associations between hundreds of annotated and uncharacterized genes as well as inferences about the mode of action of several poorly understood drugs. [Display omitted] ► Phenomic profiling of E. coli identifies thousands of mutant growth phenotypes ► Patterns of growth phenotypes reveal new functional connections between genes ► Uncharacterized genes linked to many phenotypes tend to be evolutionarily restricted ► Mutant phenotypes generate insights into drug mode of action and drug synergy</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2010.11.052</identifier><identifier>PMID: 21185072</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Antibiotic resistance ; Antibiotics ; bacteria ; Bioinformatics ; Chromosomes ; cost effectiveness ; data collection ; Data processing ; Drugs ; Escherichia coli ; Escherichia coli - drug effects ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Fitness ; Gene Deletion ; Gene Expression Profiling ; genes ; Genome, Bacterial ; Genomics ; Landscape ; mechanism of action ; multiple drug resistance ; mutants ; Mutation ; phenotype ; Sulfonamides ; therapeutics ; Trimethoprim</subject><ispartof>Cell, 2011-01, Vol.144 (1), p.143-156</ispartof><rights>2011 Elsevier Inc.</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><rights>2010 Elsevier Inc. All rights reserved. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-4dcc50b5f1517613a8638d302e047c8484d55ca101cf6569f5a6c3dfc7ab601f3</citedby><cites>FETCH-LOGICAL-c510t-4dcc50b5f1517613a8638d302e047c8484d55ca101cf6569f5a6c3dfc7ab601f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cell.2010.11.052$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21185072$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nichols, Robert J.</creatorcontrib><creatorcontrib>Sen, Saunak</creatorcontrib><creatorcontrib>Choo, Yoe Jin</creatorcontrib><creatorcontrib>Beltrao, Pedro</creatorcontrib><creatorcontrib>Zietek, Matylda</creatorcontrib><creatorcontrib>Chaba, Rachna</creatorcontrib><creatorcontrib>Lee, Sueyoung</creatorcontrib><creatorcontrib>Kazmierczak, Krystyna M.</creatorcontrib><creatorcontrib>Lee, Karis J.</creatorcontrib><creatorcontrib>Wong, Angela</creatorcontrib><creatorcontrib>Shales, Michael</creatorcontrib><creatorcontrib>Lovett, Susan</creatorcontrib><creatorcontrib>Winkler, Malcolm E.</creatorcontrib><creatorcontrib>Krogan, Nevan J.</creatorcontrib><creatorcontrib>Typas, Athanasios</creatorcontrib><creatorcontrib>Gross, Carol A.</creatorcontrib><title>Phenotypic Landscape of a Bacterial Cell</title><title>Cell</title><addtitle>Cell</addtitle><description>The explosion of sequence information in bacteria makes developing high-throughput, cost-effective approaches to matching genes with phenotypes imperative. Using E. coli as proof of principle, we show that combining large-scale chemical genomics with quantitative fitness measurements provides a high-quality data set rich in discovery. Probing growth profiles of a mutant library in hundreds of conditions in parallel yielded &gt; 10,000 phenotypes that allowed us to study gene essentiality, discover leads for gene function and drug action, and understand higher-order organization of the bacterial chromosome. We highlight new information derived from the study, including insights into a gene involved in multiple antibiotic resistance and the synergy between a broadly used combinatory antibiotic therapy, trimethoprim and sulfonamides. This data set, publicly available at http://ecoliwiki.net/tools/chemgen/, is a valuable resource for both the microbiological and bioinformatic communities, as it provides high-confidence associations between hundreds of annotated and uncharacterized genes as well as inferences about the mode of action of several poorly understood drugs. [Display omitted] ► Phenomic profiling of E. coli identifies thousands of mutant growth phenotypes ► Patterns of growth phenotypes reveal new functional connections between genes ► Uncharacterized genes linked to many phenotypes tend to be evolutionarily restricted ► Mutant phenotypes generate insights into drug mode of action and drug synergy</description><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>bacteria</subject><subject>Bioinformatics</subject><subject>Chromosomes</subject><subject>cost effectiveness</subject><subject>data collection</subject><subject>Data processing</subject><subject>Drugs</subject><subject>Escherichia coli</subject><subject>Escherichia coli - drug effects</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Fitness</subject><subject>Gene Deletion</subject><subject>Gene Expression Profiling</subject><subject>genes</subject><subject>Genome, Bacterial</subject><subject>Genomics</subject><subject>Landscape</subject><subject>mechanism of action</subject><subject>multiple drug resistance</subject><subject>mutants</subject><subject>Mutation</subject><subject>phenotype</subject><subject>Sulfonamides</subject><subject>therapeutics</subject><subject>Trimethoprim</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMFO3DAQhq2qqCy0L9ADzY1esoyd2EmkCglWFJBWohLseeSd2OBVNt7aWSTevo6WruDCydL4m39-fYx95zDlwNXZakqm66YCxgGfghSf2IRDU-Ulr8RnNgFoRF6rqjxkRzGuAKCWUn5hh4LzWkIlJuznnyfT--Fl4yib676NpDcm8zbT2aWmwQSnu2yWznxlB1Z30Xx7fY_Z4vfVw-wmn99d384u5jlJDkNetkQSltJyySvFC12rom4LEAbKiuqyLlspSaf-ZJVUjZVaUdFaqvRSAbfFMTvf5W62y7VpyfRD0B1uglvr8IJeO3z_07snfPTPWIACJZsUcPoaEPzfrYkDrl0cRene-G3EuimEEiCqRIodScHHGIzdX-GAo2Fc4biIo2HkHJPhtHTytt9-5b_SBPzYAVZ71I_BRVzcpwSZ9JdKlJCIXzvCJI_PzgSM5ExPpnXB0ICtdx81-Ac5f5Sw</recordid><startdate>20110107</startdate><enddate>20110107</enddate><creator>Nichols, Robert J.</creator><creator>Sen, Saunak</creator><creator>Choo, Yoe Jin</creator><creator>Beltrao, Pedro</creator><creator>Zietek, Matylda</creator><creator>Chaba, Rachna</creator><creator>Lee, Sueyoung</creator><creator>Kazmierczak, Krystyna M.</creator><creator>Lee, Karis J.</creator><creator>Wong, Angela</creator><creator>Shales, Michael</creator><creator>Lovett, Susan</creator><creator>Winkler, Malcolm E.</creator><creator>Krogan, Nevan J.</creator><creator>Typas, Athanasios</creator><creator>Gross, Carol A.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20110107</creationdate><title>Phenotypic Landscape of a Bacterial Cell</title><author>Nichols, Robert J. ; Sen, Saunak ; Choo, Yoe Jin ; Beltrao, Pedro ; Zietek, Matylda ; Chaba, Rachna ; Lee, Sueyoung ; Kazmierczak, Krystyna M. ; Lee, Karis J. ; Wong, Angela ; Shales, Michael ; Lovett, Susan ; Winkler, Malcolm E. ; Krogan, Nevan J. ; Typas, Athanasios ; Gross, Carol A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-4dcc50b5f1517613a8638d302e047c8484d55ca101cf6569f5a6c3dfc7ab601f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>bacteria</topic><topic>Bioinformatics</topic><topic>Chromosomes</topic><topic>cost effectiveness</topic><topic>data collection</topic><topic>Data processing</topic><topic>Drugs</topic><topic>Escherichia coli</topic><topic>Escherichia coli - drug effects</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Fitness</topic><topic>Gene Deletion</topic><topic>Gene Expression Profiling</topic><topic>genes</topic><topic>Genome, Bacterial</topic><topic>Genomics</topic><topic>Landscape</topic><topic>mechanism of action</topic><topic>multiple drug resistance</topic><topic>mutants</topic><topic>Mutation</topic><topic>phenotype</topic><topic>Sulfonamides</topic><topic>therapeutics</topic><topic>Trimethoprim</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nichols, Robert J.</creatorcontrib><creatorcontrib>Sen, Saunak</creatorcontrib><creatorcontrib>Choo, Yoe Jin</creatorcontrib><creatorcontrib>Beltrao, Pedro</creatorcontrib><creatorcontrib>Zietek, Matylda</creatorcontrib><creatorcontrib>Chaba, Rachna</creatorcontrib><creatorcontrib>Lee, Sueyoung</creatorcontrib><creatorcontrib>Kazmierczak, Krystyna M.</creatorcontrib><creatorcontrib>Lee, Karis J.</creatorcontrib><creatorcontrib>Wong, Angela</creatorcontrib><creatorcontrib>Shales, Michael</creatorcontrib><creatorcontrib>Lovett, Susan</creatorcontrib><creatorcontrib>Winkler, Malcolm E.</creatorcontrib><creatorcontrib>Krogan, Nevan J.</creatorcontrib><creatorcontrib>Typas, Athanasios</creatorcontrib><creatorcontrib>Gross, Carol A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nichols, Robert J.</au><au>Sen, Saunak</au><au>Choo, Yoe Jin</au><au>Beltrao, Pedro</au><au>Zietek, Matylda</au><au>Chaba, Rachna</au><au>Lee, Sueyoung</au><au>Kazmierczak, Krystyna M.</au><au>Lee, Karis J.</au><au>Wong, Angela</au><au>Shales, Michael</au><au>Lovett, Susan</au><au>Winkler, Malcolm E.</au><au>Krogan, Nevan J.</au><au>Typas, Athanasios</au><au>Gross, Carol A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phenotypic Landscape of a Bacterial Cell</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2011-01-07</date><risdate>2011</risdate><volume>144</volume><issue>1</issue><spage>143</spage><epage>156</epage><pages>143-156</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>The explosion of sequence information in bacteria makes developing high-throughput, cost-effective approaches to matching genes with phenotypes imperative. Using E. coli as proof of principle, we show that combining large-scale chemical genomics with quantitative fitness measurements provides a high-quality data set rich in discovery. Probing growth profiles of a mutant library in hundreds of conditions in parallel yielded &gt; 10,000 phenotypes that allowed us to study gene essentiality, discover leads for gene function and drug action, and understand higher-order organization of the bacterial chromosome. We highlight new information derived from the study, including insights into a gene involved in multiple antibiotic resistance and the synergy between a broadly used combinatory antibiotic therapy, trimethoprim and sulfonamides. This data set, publicly available at http://ecoliwiki.net/tools/chemgen/, is a valuable resource for both the microbiological and bioinformatic communities, as it provides high-confidence associations between hundreds of annotated and uncharacterized genes as well as inferences about the mode of action of several poorly understood drugs. [Display omitted] ► Phenomic profiling of E. coli identifies thousands of mutant growth phenotypes ► Patterns of growth phenotypes reveal new functional connections between genes ► Uncharacterized genes linked to many phenotypes tend to be evolutionarily restricted ► Mutant phenotypes generate insights into drug mode of action and drug synergy</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21185072</pmid><doi>10.1016/j.cell.2010.11.052</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2011-01, Vol.144 (1), p.143-156
issn 0092-8674
1097-4172
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3060659
source MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Antibiotic resistance
Antibiotics
bacteria
Bioinformatics
Chromosomes
cost effectiveness
data collection
Data processing
Drugs
Escherichia coli
Escherichia coli - drug effects
Escherichia coli - genetics
Escherichia coli - metabolism
Fitness
Gene Deletion
Gene Expression Profiling
genes
Genome, Bacterial
Genomics
Landscape
mechanism of action
multiple drug resistance
mutants
Mutation
phenotype
Sulfonamides
therapeutics
Trimethoprim
title Phenotypic Landscape of a Bacterial Cell
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A59%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phenotypic%20Landscape%20of%20a%20Bacterial%20Cell&rft.jtitle=Cell&rft.au=Nichols,%20Robert%20J.&rft.date=2011-01-07&rft.volume=144&rft.issue=1&rft.spage=143&rft.epage=156&rft.pages=143-156&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2010.11.052&rft_dat=%3Cproquest_pubme%3E893262027%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=893262027&rft_id=info:pmid/21185072&rft_els_id=S0092867410013747&rfr_iscdi=true