Phenotypic Landscape of a Bacterial Cell
The explosion of sequence information in bacteria makes developing high-throughput, cost-effective approaches to matching genes with phenotypes imperative. Using E. coli as proof of principle, we show that combining large-scale chemical genomics with quantitative fitness measurements provides a high...
Gespeichert in:
Veröffentlicht in: | Cell 2011-01, Vol.144 (1), p.143-156 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 156 |
---|---|
container_issue | 1 |
container_start_page | 143 |
container_title | Cell |
container_volume | 144 |
creator | Nichols, Robert J. Sen, Saunak Choo, Yoe Jin Beltrao, Pedro Zietek, Matylda Chaba, Rachna Lee, Sueyoung Kazmierczak, Krystyna M. Lee, Karis J. Wong, Angela Shales, Michael Lovett, Susan Winkler, Malcolm E. Krogan, Nevan J. Typas, Athanasios Gross, Carol A. |
description | The explosion of sequence information in bacteria makes developing high-throughput, cost-effective approaches to matching genes with phenotypes imperative. Using E. coli as proof of principle, we show that combining large-scale chemical genomics with quantitative fitness measurements provides a high-quality data set rich in discovery. Probing growth profiles of a mutant library in hundreds of conditions in parallel yielded > 10,000 phenotypes that allowed us to study gene essentiality, discover leads for gene function and drug action, and understand higher-order organization of the bacterial chromosome. We highlight new information derived from the study, including insights into a gene involved in multiple antibiotic resistance and the synergy between a broadly used combinatory antibiotic therapy, trimethoprim and sulfonamides. This data set, publicly available at http://ecoliwiki.net/tools/chemgen/, is a valuable resource for both the microbiological and bioinformatic communities, as it provides high-confidence associations between hundreds of annotated and uncharacterized genes as well as inferences about the mode of action of several poorly understood drugs.
[Display omitted]
► Phenomic profiling of E. coli identifies thousands of mutant growth phenotypes ► Patterns of growth phenotypes reveal new functional connections between genes ► Uncharacterized genes linked to many phenotypes tend to be evolutionarily restricted ► Mutant phenotypes generate insights into drug mode of action and drug synergy |
doi_str_mv | 10.1016/j.cell.2010.11.052 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3060659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867410013747</els_id><sourcerecordid>893262027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-4dcc50b5f1517613a8638d302e047c8484d55ca101cf6569f5a6c3dfc7ab601f3</originalsourceid><addsrcrecordid>eNp9kMFO3DAQhq2qqCy0L9ADzY1esoyd2EmkCglWFJBWohLseeSd2OBVNt7aWSTevo6WruDCydL4m39-fYx95zDlwNXZakqm66YCxgGfghSf2IRDU-Ulr8RnNgFoRF6rqjxkRzGuAKCWUn5hh4LzWkIlJuznnyfT--Fl4yib676NpDcm8zbT2aWmwQSnu2yWznxlB1Z30Xx7fY_Z4vfVw-wmn99d384u5jlJDkNetkQSltJyySvFC12rom4LEAbKiuqyLlspSaf-ZJVUjZVaUdFaqvRSAbfFMTvf5W62y7VpyfRD0B1uglvr8IJeO3z_07snfPTPWIACJZsUcPoaEPzfrYkDrl0cRene-G3EuimEEiCqRIodScHHGIzdX-GAo2Fc4biIo2HkHJPhtHTytt9-5b_SBPzYAVZ71I_BRVzcpwSZ9JdKlJCIXzvCJI_PzgSM5ExPpnXB0ICtdx81-Ac5f5Sw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>893262027</pqid></control><display><type>article</type><title>Phenotypic Landscape of a Bacterial Cell</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Nichols, Robert J. ; Sen, Saunak ; Choo, Yoe Jin ; Beltrao, Pedro ; Zietek, Matylda ; Chaba, Rachna ; Lee, Sueyoung ; Kazmierczak, Krystyna M. ; Lee, Karis J. ; Wong, Angela ; Shales, Michael ; Lovett, Susan ; Winkler, Malcolm E. ; Krogan, Nevan J. ; Typas, Athanasios ; Gross, Carol A.</creator><creatorcontrib>Nichols, Robert J. ; Sen, Saunak ; Choo, Yoe Jin ; Beltrao, Pedro ; Zietek, Matylda ; Chaba, Rachna ; Lee, Sueyoung ; Kazmierczak, Krystyna M. ; Lee, Karis J. ; Wong, Angela ; Shales, Michael ; Lovett, Susan ; Winkler, Malcolm E. ; Krogan, Nevan J. ; Typas, Athanasios ; Gross, Carol A.</creatorcontrib><description>The explosion of sequence information in bacteria makes developing high-throughput, cost-effective approaches to matching genes with phenotypes imperative. Using E. coli as proof of principle, we show that combining large-scale chemical genomics with quantitative fitness measurements provides a high-quality data set rich in discovery. Probing growth profiles of a mutant library in hundreds of conditions in parallel yielded > 10,000 phenotypes that allowed us to study gene essentiality, discover leads for gene function and drug action, and understand higher-order organization of the bacterial chromosome. We highlight new information derived from the study, including insights into a gene involved in multiple antibiotic resistance and the synergy between a broadly used combinatory antibiotic therapy, trimethoprim and sulfonamides. This data set, publicly available at http://ecoliwiki.net/tools/chemgen/, is a valuable resource for both the microbiological and bioinformatic communities, as it provides high-confidence associations between hundreds of annotated and uncharacterized genes as well as inferences about the mode of action of several poorly understood drugs.
[Display omitted]
► Phenomic profiling of E. coli identifies thousands of mutant growth phenotypes ► Patterns of growth phenotypes reveal new functional connections between genes ► Uncharacterized genes linked to many phenotypes tend to be evolutionarily restricted ► Mutant phenotypes generate insights into drug mode of action and drug synergy</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2010.11.052</identifier><identifier>PMID: 21185072</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Antibiotic resistance ; Antibiotics ; bacteria ; Bioinformatics ; Chromosomes ; cost effectiveness ; data collection ; Data processing ; Drugs ; Escherichia coli ; Escherichia coli - drug effects ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Fitness ; Gene Deletion ; Gene Expression Profiling ; genes ; Genome, Bacterial ; Genomics ; Landscape ; mechanism of action ; multiple drug resistance ; mutants ; Mutation ; phenotype ; Sulfonamides ; therapeutics ; Trimethoprim</subject><ispartof>Cell, 2011-01, Vol.144 (1), p.143-156</ispartof><rights>2011 Elsevier Inc.</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><rights>2010 Elsevier Inc. All rights reserved. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-4dcc50b5f1517613a8638d302e047c8484d55ca101cf6569f5a6c3dfc7ab601f3</citedby><cites>FETCH-LOGICAL-c510t-4dcc50b5f1517613a8638d302e047c8484d55ca101cf6569f5a6c3dfc7ab601f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cell.2010.11.052$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21185072$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nichols, Robert J.</creatorcontrib><creatorcontrib>Sen, Saunak</creatorcontrib><creatorcontrib>Choo, Yoe Jin</creatorcontrib><creatorcontrib>Beltrao, Pedro</creatorcontrib><creatorcontrib>Zietek, Matylda</creatorcontrib><creatorcontrib>Chaba, Rachna</creatorcontrib><creatorcontrib>Lee, Sueyoung</creatorcontrib><creatorcontrib>Kazmierczak, Krystyna M.</creatorcontrib><creatorcontrib>Lee, Karis J.</creatorcontrib><creatorcontrib>Wong, Angela</creatorcontrib><creatorcontrib>Shales, Michael</creatorcontrib><creatorcontrib>Lovett, Susan</creatorcontrib><creatorcontrib>Winkler, Malcolm E.</creatorcontrib><creatorcontrib>Krogan, Nevan J.</creatorcontrib><creatorcontrib>Typas, Athanasios</creatorcontrib><creatorcontrib>Gross, Carol A.</creatorcontrib><title>Phenotypic Landscape of a Bacterial Cell</title><title>Cell</title><addtitle>Cell</addtitle><description>The explosion of sequence information in bacteria makes developing high-throughput, cost-effective approaches to matching genes with phenotypes imperative. Using E. coli as proof of principle, we show that combining large-scale chemical genomics with quantitative fitness measurements provides a high-quality data set rich in discovery. Probing growth profiles of a mutant library in hundreds of conditions in parallel yielded > 10,000 phenotypes that allowed us to study gene essentiality, discover leads for gene function and drug action, and understand higher-order organization of the bacterial chromosome. We highlight new information derived from the study, including insights into a gene involved in multiple antibiotic resistance and the synergy between a broadly used combinatory antibiotic therapy, trimethoprim and sulfonamides. This data set, publicly available at http://ecoliwiki.net/tools/chemgen/, is a valuable resource for both the microbiological and bioinformatic communities, as it provides high-confidence associations between hundreds of annotated and uncharacterized genes as well as inferences about the mode of action of several poorly understood drugs.
[Display omitted]
► Phenomic profiling of E. coli identifies thousands of mutant growth phenotypes ► Patterns of growth phenotypes reveal new functional connections between genes ► Uncharacterized genes linked to many phenotypes tend to be evolutionarily restricted ► Mutant phenotypes generate insights into drug mode of action and drug synergy</description><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>bacteria</subject><subject>Bioinformatics</subject><subject>Chromosomes</subject><subject>cost effectiveness</subject><subject>data collection</subject><subject>Data processing</subject><subject>Drugs</subject><subject>Escherichia coli</subject><subject>Escherichia coli - drug effects</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Fitness</subject><subject>Gene Deletion</subject><subject>Gene Expression Profiling</subject><subject>genes</subject><subject>Genome, Bacterial</subject><subject>Genomics</subject><subject>Landscape</subject><subject>mechanism of action</subject><subject>multiple drug resistance</subject><subject>mutants</subject><subject>Mutation</subject><subject>phenotype</subject><subject>Sulfonamides</subject><subject>therapeutics</subject><subject>Trimethoprim</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMFO3DAQhq2qqCy0L9ADzY1esoyd2EmkCglWFJBWohLseeSd2OBVNt7aWSTevo6WruDCydL4m39-fYx95zDlwNXZakqm66YCxgGfghSf2IRDU-Ulr8RnNgFoRF6rqjxkRzGuAKCWUn5hh4LzWkIlJuznnyfT--Fl4yib676NpDcm8zbT2aWmwQSnu2yWznxlB1Z30Xx7fY_Z4vfVw-wmn99d384u5jlJDkNetkQSltJyySvFC12rom4LEAbKiuqyLlspSaf-ZJVUjZVaUdFaqvRSAbfFMTvf5W62y7VpyfRD0B1uglvr8IJeO3z_07snfPTPWIACJZsUcPoaEPzfrYkDrl0cRene-G3EuimEEiCqRIodScHHGIzdX-GAo2Fc4biIo2HkHJPhtHTytt9-5b_SBPzYAVZ71I_BRVzcpwSZ9JdKlJCIXzvCJI_PzgSM5ExPpnXB0ICtdx81-Ac5f5Sw</recordid><startdate>20110107</startdate><enddate>20110107</enddate><creator>Nichols, Robert J.</creator><creator>Sen, Saunak</creator><creator>Choo, Yoe Jin</creator><creator>Beltrao, Pedro</creator><creator>Zietek, Matylda</creator><creator>Chaba, Rachna</creator><creator>Lee, Sueyoung</creator><creator>Kazmierczak, Krystyna M.</creator><creator>Lee, Karis J.</creator><creator>Wong, Angela</creator><creator>Shales, Michael</creator><creator>Lovett, Susan</creator><creator>Winkler, Malcolm E.</creator><creator>Krogan, Nevan J.</creator><creator>Typas, Athanasios</creator><creator>Gross, Carol A.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20110107</creationdate><title>Phenotypic Landscape of a Bacterial Cell</title><author>Nichols, Robert J. ; Sen, Saunak ; Choo, Yoe Jin ; Beltrao, Pedro ; Zietek, Matylda ; Chaba, Rachna ; Lee, Sueyoung ; Kazmierczak, Krystyna M. ; Lee, Karis J. ; Wong, Angela ; Shales, Michael ; Lovett, Susan ; Winkler, Malcolm E. ; Krogan, Nevan J. ; Typas, Athanasios ; Gross, Carol A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-4dcc50b5f1517613a8638d302e047c8484d55ca101cf6569f5a6c3dfc7ab601f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>bacteria</topic><topic>Bioinformatics</topic><topic>Chromosomes</topic><topic>cost effectiveness</topic><topic>data collection</topic><topic>Data processing</topic><topic>Drugs</topic><topic>Escherichia coli</topic><topic>Escherichia coli - drug effects</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Fitness</topic><topic>Gene Deletion</topic><topic>Gene Expression Profiling</topic><topic>genes</topic><topic>Genome, Bacterial</topic><topic>Genomics</topic><topic>Landscape</topic><topic>mechanism of action</topic><topic>multiple drug resistance</topic><topic>mutants</topic><topic>Mutation</topic><topic>phenotype</topic><topic>Sulfonamides</topic><topic>therapeutics</topic><topic>Trimethoprim</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nichols, Robert J.</creatorcontrib><creatorcontrib>Sen, Saunak</creatorcontrib><creatorcontrib>Choo, Yoe Jin</creatorcontrib><creatorcontrib>Beltrao, Pedro</creatorcontrib><creatorcontrib>Zietek, Matylda</creatorcontrib><creatorcontrib>Chaba, Rachna</creatorcontrib><creatorcontrib>Lee, Sueyoung</creatorcontrib><creatorcontrib>Kazmierczak, Krystyna M.</creatorcontrib><creatorcontrib>Lee, Karis J.</creatorcontrib><creatorcontrib>Wong, Angela</creatorcontrib><creatorcontrib>Shales, Michael</creatorcontrib><creatorcontrib>Lovett, Susan</creatorcontrib><creatorcontrib>Winkler, Malcolm E.</creatorcontrib><creatorcontrib>Krogan, Nevan J.</creatorcontrib><creatorcontrib>Typas, Athanasios</creatorcontrib><creatorcontrib>Gross, Carol A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nichols, Robert J.</au><au>Sen, Saunak</au><au>Choo, Yoe Jin</au><au>Beltrao, Pedro</au><au>Zietek, Matylda</au><au>Chaba, Rachna</au><au>Lee, Sueyoung</au><au>Kazmierczak, Krystyna M.</au><au>Lee, Karis J.</au><au>Wong, Angela</au><au>Shales, Michael</au><au>Lovett, Susan</au><au>Winkler, Malcolm E.</au><au>Krogan, Nevan J.</au><au>Typas, Athanasios</au><au>Gross, Carol A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phenotypic Landscape of a Bacterial Cell</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2011-01-07</date><risdate>2011</risdate><volume>144</volume><issue>1</issue><spage>143</spage><epage>156</epage><pages>143-156</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>The explosion of sequence information in bacteria makes developing high-throughput, cost-effective approaches to matching genes with phenotypes imperative. Using E. coli as proof of principle, we show that combining large-scale chemical genomics with quantitative fitness measurements provides a high-quality data set rich in discovery. Probing growth profiles of a mutant library in hundreds of conditions in parallel yielded > 10,000 phenotypes that allowed us to study gene essentiality, discover leads for gene function and drug action, and understand higher-order organization of the bacterial chromosome. We highlight new information derived from the study, including insights into a gene involved in multiple antibiotic resistance and the synergy between a broadly used combinatory antibiotic therapy, trimethoprim and sulfonamides. This data set, publicly available at http://ecoliwiki.net/tools/chemgen/, is a valuable resource for both the microbiological and bioinformatic communities, as it provides high-confidence associations between hundreds of annotated and uncharacterized genes as well as inferences about the mode of action of several poorly understood drugs.
[Display omitted]
► Phenomic profiling of E. coli identifies thousands of mutant growth phenotypes ► Patterns of growth phenotypes reveal new functional connections between genes ► Uncharacterized genes linked to many phenotypes tend to be evolutionarily restricted ► Mutant phenotypes generate insights into drug mode of action and drug synergy</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21185072</pmid><doi>10.1016/j.cell.2010.11.052</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8674 |
ispartof | Cell, 2011-01, Vol.144 (1), p.143-156 |
issn | 0092-8674 1097-4172 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3060659 |
source | MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Antibiotic resistance Antibiotics bacteria Bioinformatics Chromosomes cost effectiveness data collection Data processing Drugs Escherichia coli Escherichia coli - drug effects Escherichia coli - genetics Escherichia coli - metabolism Fitness Gene Deletion Gene Expression Profiling genes Genome, Bacterial Genomics Landscape mechanism of action multiple drug resistance mutants Mutation phenotype Sulfonamides therapeutics Trimethoprim |
title | Phenotypic Landscape of a Bacterial Cell |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A59%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phenotypic%20Landscape%20of%20a%20Bacterial%20Cell&rft.jtitle=Cell&rft.au=Nichols,%20Robert%20J.&rft.date=2011-01-07&rft.volume=144&rft.issue=1&rft.spage=143&rft.epage=156&rft.pages=143-156&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2010.11.052&rft_dat=%3Cproquest_pubme%3E893262027%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=893262027&rft_id=info:pmid/21185072&rft_els_id=S0092867410013747&rfr_iscdi=true |