Determination of cell elasticity through hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher
The optical stretcher is a dual-beam trap capable of stretching individual cells. Previous studies have used either ray- or wave-optical models to compute the optical pressure on the surface of a spherical cell. We have extended the ray-optics model to account for focusing by the spherical interface...
Gespeichert in:
Veröffentlicht in: | Applied Optics 2009-11, Vol.48 (32), p.6344-6354 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6354 |
---|---|
container_issue | 32 |
container_start_page | 6344 |
container_title | Applied Optics |
container_volume | 48 |
creator | Ekpenyong, Andrew E Posey, Carolyn L Chaput, Joy L Burkart, Anya K Marquardt, Meg M Smith, Timothy J Nichols, Michael G |
description | The optical stretcher is a dual-beam trap capable of stretching individual cells. Previous studies have used either ray- or wave-optical models to compute the optical pressure on the surface of a spherical cell. We have extended the ray-optics model to account for focusing by the spherical interface and the effects of multiple internal reflections. Simulation results for red-blood cells (RBCs) show that internal reflections can lead to significant perturbation of the deformation, leading to a systematic error in the determination of cellular elasticity. Calibration studies show excellent agreement between the predicted and measured escape force, and RBC stiffness measurements are consistent with literature values. Measurements of the elasticity of murine osteogenic cells reveal that these cells are approximately 5.4 times stiffer than RBCs. |
doi_str_mv | 10.1364/AO.48.006344 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3060047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734134701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-cfdf06461dea1a836574719fc66edf339b64e78f222c43649f59a64f247b847f3</originalsourceid><addsrcrecordid>eNpVkU2P0zAQhi0EYsvCjTPyjQspdjyxkwtStXxKK_UCZ8t1xo1RYhfbWan_gJ9NqlQLnEYz8-qZj5eQ15xtuZDwfrffQrtlTAqAJ2RT86apBJfNU7JhjIlKdqK5IS9y_rlkDXTqObnhXcdAiGZDfn_EgmnywRQfA42OWhxHiqPJxVtfzrQMKc7HgQ7nQ_I9TeZM42npZWpCT20MxYd5nuiEdjDhUp9ij6MPx0dajy6maZ3gw0LEFWFGmkvCYgdML8kzZ8aMr67xlvz4_On73dfqfv_l293uvrIAXams6x2TIHmPhptWyEaB4p2zUmLvhOgOElC1rq5rC8t7Otd0RoKrQR1aUE7ckg8r9zQfJuwthpLMqE_JTyaddTRe_98JftDH-KAFk4yBWgBvr4AUf82Yi558vpxpAsY5ayWAC1CML8p3q9KmmHNC9ziFM33xTu_2Glq9erfI3_y72V_x1SzxB7xlmI8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734134701</pqid></control><display><type>article</type><title>Determination of cell elasticity through hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Ekpenyong, Andrew E ; Posey, Carolyn L ; Chaput, Joy L ; Burkart, Anya K ; Marquardt, Meg M ; Smith, Timothy J ; Nichols, Michael G</creator><creatorcontrib>Ekpenyong, Andrew E ; Posey, Carolyn L ; Chaput, Joy L ; Burkart, Anya K ; Marquardt, Meg M ; Smith, Timothy J ; Nichols, Michael G</creatorcontrib><description>The optical stretcher is a dual-beam trap capable of stretching individual cells. Previous studies have used either ray- or wave-optical models to compute the optical pressure on the surface of a spherical cell. We have extended the ray-optics model to account for focusing by the spherical interface and the effects of multiple internal reflections. Simulation results for red-blood cells (RBCs) show that internal reflections can lead to significant perturbation of the deformation, leading to a systematic error in the determination of cellular elasticity. Calibration studies show excellent agreement between the predicted and measured escape force, and RBC stiffness measurements are consistent with literature values. Measurements of the elasticity of murine osteogenic cells reveal that these cells are approximately 5.4 times stiffer than RBCs.</description><identifier>ISSN: 0003-6935</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.48.006344</identifier><identifier>PMID: 19904335</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Computer Simulation ; Elastic Modulus - physiology ; Erythrocytes - cytology ; Erythrocytes - physiology ; Hardness - physiology ; Hardness Tests - methods ; Humans ; Light ; Models, Cardiovascular ; Nephelometry and Turbidimetry - methods ; Optical Tweezers ; Scattering, Radiation</subject><ispartof>Applied Optics, 2009-11, Vol.48 (32), p.6344-6354</ispartof><rights>2009 Optical Society of America 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-cfdf06461dea1a836574719fc66edf339b64e78f222c43649f59a64f247b847f3</citedby><cites>FETCH-LOGICAL-c449t-cfdf06461dea1a836574719fc66edf339b64e78f222c43649f59a64f247b847f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19904335$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ekpenyong, Andrew E</creatorcontrib><creatorcontrib>Posey, Carolyn L</creatorcontrib><creatorcontrib>Chaput, Joy L</creatorcontrib><creatorcontrib>Burkart, Anya K</creatorcontrib><creatorcontrib>Marquardt, Meg M</creatorcontrib><creatorcontrib>Smith, Timothy J</creatorcontrib><creatorcontrib>Nichols, Michael G</creatorcontrib><title>Determination of cell elasticity through hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher</title><title>Applied Optics</title><addtitle>Appl Opt</addtitle><description>The optical stretcher is a dual-beam trap capable of stretching individual cells. Previous studies have used either ray- or wave-optical models to compute the optical pressure on the surface of a spherical cell. We have extended the ray-optics model to account for focusing by the spherical interface and the effects of multiple internal reflections. Simulation results for red-blood cells (RBCs) show that internal reflections can lead to significant perturbation of the deformation, leading to a systematic error in the determination of cellular elasticity. Calibration studies show excellent agreement between the predicted and measured escape force, and RBC stiffness measurements are consistent with literature values. Measurements of the elasticity of murine osteogenic cells reveal that these cells are approximately 5.4 times stiffer than RBCs.</description><subject>Animals</subject><subject>Computer Simulation</subject><subject>Elastic Modulus - physiology</subject><subject>Erythrocytes - cytology</subject><subject>Erythrocytes - physiology</subject><subject>Hardness - physiology</subject><subject>Hardness Tests - methods</subject><subject>Humans</subject><subject>Light</subject><subject>Models, Cardiovascular</subject><subject>Nephelometry and Turbidimetry - methods</subject><subject>Optical Tweezers</subject><subject>Scattering, Radiation</subject><issn>0003-6935</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU2P0zAQhi0EYsvCjTPyjQspdjyxkwtStXxKK_UCZ8t1xo1RYhfbWan_gJ9NqlQLnEYz8-qZj5eQ15xtuZDwfrffQrtlTAqAJ2RT86apBJfNU7JhjIlKdqK5IS9y_rlkDXTqObnhXcdAiGZDfn_EgmnywRQfA42OWhxHiqPJxVtfzrQMKc7HgQ7nQ_I9TeZM42npZWpCT20MxYd5nuiEdjDhUp9ij6MPx0dajy6maZ3gw0LEFWFGmkvCYgdML8kzZ8aMr67xlvz4_On73dfqfv_l293uvrIAXams6x2TIHmPhptWyEaB4p2zUmLvhOgOElC1rq5rC8t7Otd0RoKrQR1aUE7ckg8r9zQfJuwthpLMqE_JTyaddTRe_98JftDH-KAFk4yBWgBvr4AUf82Yi558vpxpAsY5ayWAC1CML8p3q9KmmHNC9ziFM33xTu_2Glq9erfI3_y72V_x1SzxB7xlmI8</recordid><startdate>20091110</startdate><enddate>20091110</enddate><creator>Ekpenyong, Andrew E</creator><creator>Posey, Carolyn L</creator><creator>Chaput, Joy L</creator><creator>Burkart, Anya K</creator><creator>Marquardt, Meg M</creator><creator>Smith, Timothy J</creator><creator>Nichols, Michael G</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091110</creationdate><title>Determination of cell elasticity through hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher</title><author>Ekpenyong, Andrew E ; Posey, Carolyn L ; Chaput, Joy L ; Burkart, Anya K ; Marquardt, Meg M ; Smith, Timothy J ; Nichols, Michael G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-cfdf06461dea1a836574719fc66edf339b64e78f222c43649f59a64f247b847f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Computer Simulation</topic><topic>Elastic Modulus - physiology</topic><topic>Erythrocytes - cytology</topic><topic>Erythrocytes - physiology</topic><topic>Hardness - physiology</topic><topic>Hardness Tests - methods</topic><topic>Humans</topic><topic>Light</topic><topic>Models, Cardiovascular</topic><topic>Nephelometry and Turbidimetry - methods</topic><topic>Optical Tweezers</topic><topic>Scattering, Radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ekpenyong, Andrew E</creatorcontrib><creatorcontrib>Posey, Carolyn L</creatorcontrib><creatorcontrib>Chaput, Joy L</creatorcontrib><creatorcontrib>Burkart, Anya K</creatorcontrib><creatorcontrib>Marquardt, Meg M</creatorcontrib><creatorcontrib>Smith, Timothy J</creatorcontrib><creatorcontrib>Nichols, Michael G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied Optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ekpenyong, Andrew E</au><au>Posey, Carolyn L</au><au>Chaput, Joy L</au><au>Burkart, Anya K</au><au>Marquardt, Meg M</au><au>Smith, Timothy J</au><au>Nichols, Michael G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of cell elasticity through hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher</atitle><jtitle>Applied Optics</jtitle><addtitle>Appl Opt</addtitle><date>2009-11-10</date><risdate>2009</risdate><volume>48</volume><issue>32</issue><spage>6344</spage><epage>6354</epage><pages>6344-6354</pages><issn>0003-6935</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>The optical stretcher is a dual-beam trap capable of stretching individual cells. Previous studies have used either ray- or wave-optical models to compute the optical pressure on the surface of a spherical cell. We have extended the ray-optics model to account for focusing by the spherical interface and the effects of multiple internal reflections. Simulation results for red-blood cells (RBCs) show that internal reflections can lead to significant perturbation of the deformation, leading to a systematic error in the determination of cellular elasticity. Calibration studies show excellent agreement between the predicted and measured escape force, and RBC stiffness measurements are consistent with literature values. Measurements of the elasticity of murine osteogenic cells reveal that these cells are approximately 5.4 times stiffer than RBCs.</abstract><cop>United States</cop><pmid>19904335</pmid><doi>10.1364/AO.48.006344</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6935 |
ispartof | Applied Optics, 2009-11, Vol.48 (32), p.6344-6354 |
issn | 0003-6935 2155-3165 1539-4522 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3060047 |
source | MEDLINE; Alma/SFX Local Collection; Optica Publishing Group Journals |
subjects | Animals Computer Simulation Elastic Modulus - physiology Erythrocytes - cytology Erythrocytes - physiology Hardness - physiology Hardness Tests - methods Humans Light Models, Cardiovascular Nephelometry and Turbidimetry - methods Optical Tweezers Scattering, Radiation |
title | Determination of cell elasticity through hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A40%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20cell%20elasticity%20through%20hybrid%20ray%20optics%20and%20continuum%20mechanics%20modeling%20of%20cell%20deformation%20in%20the%20optical%20stretcher&rft.jtitle=Applied%20Optics&rft.au=Ekpenyong,%20Andrew%20E&rft.date=2009-11-10&rft.volume=48&rft.issue=32&rft.spage=6344&rft.epage=6354&rft.pages=6344-6354&rft.issn=0003-6935&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.48.006344&rft_dat=%3Cproquest_pubme%3E734134701%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734134701&rft_id=info:pmid/19904335&rfr_iscdi=true |