Determination of cell elasticity through hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher

The optical stretcher is a dual-beam trap capable of stretching individual cells. Previous studies have used either ray- or wave-optical models to compute the optical pressure on the surface of a spherical cell. We have extended the ray-optics model to account for focusing by the spherical interface...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Optics 2009-11, Vol.48 (32), p.6344-6354
Hauptverfasser: Ekpenyong, Andrew E, Posey, Carolyn L, Chaput, Joy L, Burkart, Anya K, Marquardt, Meg M, Smith, Timothy J, Nichols, Michael G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6354
container_issue 32
container_start_page 6344
container_title Applied Optics
container_volume 48
creator Ekpenyong, Andrew E
Posey, Carolyn L
Chaput, Joy L
Burkart, Anya K
Marquardt, Meg M
Smith, Timothy J
Nichols, Michael G
description The optical stretcher is a dual-beam trap capable of stretching individual cells. Previous studies have used either ray- or wave-optical models to compute the optical pressure on the surface of a spherical cell. We have extended the ray-optics model to account for focusing by the spherical interface and the effects of multiple internal reflections. Simulation results for red-blood cells (RBCs) show that internal reflections can lead to significant perturbation of the deformation, leading to a systematic error in the determination of cellular elasticity. Calibration studies show excellent agreement between the predicted and measured escape force, and RBC stiffness measurements are consistent with literature values. Measurements of the elasticity of murine osteogenic cells reveal that these cells are approximately 5.4 times stiffer than RBCs.
doi_str_mv 10.1364/AO.48.006344
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3060047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734134701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-cfdf06461dea1a836574719fc66edf339b64e78f222c43649f59a64f247b847f3</originalsourceid><addsrcrecordid>eNpVkU2P0zAQhi0EYsvCjTPyjQspdjyxkwtStXxKK_UCZ8t1xo1RYhfbWan_gJ9NqlQLnEYz8-qZj5eQ15xtuZDwfrffQrtlTAqAJ2RT86apBJfNU7JhjIlKdqK5IS9y_rlkDXTqObnhXcdAiGZDfn_EgmnywRQfA42OWhxHiqPJxVtfzrQMKc7HgQ7nQ_I9TeZM42npZWpCT20MxYd5nuiEdjDhUp9ij6MPx0dajy6maZ3gw0LEFWFGmkvCYgdML8kzZ8aMr67xlvz4_On73dfqfv_l293uvrIAXams6x2TIHmPhptWyEaB4p2zUmLvhOgOElC1rq5rC8t7Otd0RoKrQR1aUE7ckg8r9zQfJuwthpLMqE_JTyaddTRe_98JftDH-KAFk4yBWgBvr4AUf82Yi558vpxpAsY5ayWAC1CML8p3q9KmmHNC9ziFM33xTu_2Glq9erfI3_y72V_x1SzxB7xlmI8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734134701</pqid></control><display><type>article</type><title>Determination of cell elasticity through hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Ekpenyong, Andrew E ; Posey, Carolyn L ; Chaput, Joy L ; Burkart, Anya K ; Marquardt, Meg M ; Smith, Timothy J ; Nichols, Michael G</creator><creatorcontrib>Ekpenyong, Andrew E ; Posey, Carolyn L ; Chaput, Joy L ; Burkart, Anya K ; Marquardt, Meg M ; Smith, Timothy J ; Nichols, Michael G</creatorcontrib><description>The optical stretcher is a dual-beam trap capable of stretching individual cells. Previous studies have used either ray- or wave-optical models to compute the optical pressure on the surface of a spherical cell. We have extended the ray-optics model to account for focusing by the spherical interface and the effects of multiple internal reflections. Simulation results for red-blood cells (RBCs) show that internal reflections can lead to significant perturbation of the deformation, leading to a systematic error in the determination of cellular elasticity. Calibration studies show excellent agreement between the predicted and measured escape force, and RBC stiffness measurements are consistent with literature values. Measurements of the elasticity of murine osteogenic cells reveal that these cells are approximately 5.4 times stiffer than RBCs.</description><identifier>ISSN: 0003-6935</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.48.006344</identifier><identifier>PMID: 19904335</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Computer Simulation ; Elastic Modulus - physiology ; Erythrocytes - cytology ; Erythrocytes - physiology ; Hardness - physiology ; Hardness Tests - methods ; Humans ; Light ; Models, Cardiovascular ; Nephelometry and Turbidimetry - methods ; Optical Tweezers ; Scattering, Radiation</subject><ispartof>Applied Optics, 2009-11, Vol.48 (32), p.6344-6354</ispartof><rights>2009 Optical Society of America 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-cfdf06461dea1a836574719fc66edf339b64e78f222c43649f59a64f247b847f3</citedby><cites>FETCH-LOGICAL-c449t-cfdf06461dea1a836574719fc66edf339b64e78f222c43649f59a64f247b847f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19904335$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ekpenyong, Andrew E</creatorcontrib><creatorcontrib>Posey, Carolyn L</creatorcontrib><creatorcontrib>Chaput, Joy L</creatorcontrib><creatorcontrib>Burkart, Anya K</creatorcontrib><creatorcontrib>Marquardt, Meg M</creatorcontrib><creatorcontrib>Smith, Timothy J</creatorcontrib><creatorcontrib>Nichols, Michael G</creatorcontrib><title>Determination of cell elasticity through hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher</title><title>Applied Optics</title><addtitle>Appl Opt</addtitle><description>The optical stretcher is a dual-beam trap capable of stretching individual cells. Previous studies have used either ray- or wave-optical models to compute the optical pressure on the surface of a spherical cell. We have extended the ray-optics model to account for focusing by the spherical interface and the effects of multiple internal reflections. Simulation results for red-blood cells (RBCs) show that internal reflections can lead to significant perturbation of the deformation, leading to a systematic error in the determination of cellular elasticity. Calibration studies show excellent agreement between the predicted and measured escape force, and RBC stiffness measurements are consistent with literature values. Measurements of the elasticity of murine osteogenic cells reveal that these cells are approximately 5.4 times stiffer than RBCs.</description><subject>Animals</subject><subject>Computer Simulation</subject><subject>Elastic Modulus - physiology</subject><subject>Erythrocytes - cytology</subject><subject>Erythrocytes - physiology</subject><subject>Hardness - physiology</subject><subject>Hardness Tests - methods</subject><subject>Humans</subject><subject>Light</subject><subject>Models, Cardiovascular</subject><subject>Nephelometry and Turbidimetry - methods</subject><subject>Optical Tweezers</subject><subject>Scattering, Radiation</subject><issn>0003-6935</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU2P0zAQhi0EYsvCjTPyjQspdjyxkwtStXxKK_UCZ8t1xo1RYhfbWan_gJ9NqlQLnEYz8-qZj5eQ15xtuZDwfrffQrtlTAqAJ2RT86apBJfNU7JhjIlKdqK5IS9y_rlkDXTqObnhXcdAiGZDfn_EgmnywRQfA42OWhxHiqPJxVtfzrQMKc7HgQ7nQ_I9TeZM42npZWpCT20MxYd5nuiEdjDhUp9ij6MPx0dajy6maZ3gw0LEFWFGmkvCYgdML8kzZ8aMr67xlvz4_On73dfqfv_l293uvrIAXams6x2TIHmPhptWyEaB4p2zUmLvhOgOElC1rq5rC8t7Otd0RoKrQR1aUE7ckg8r9zQfJuwthpLMqE_JTyaddTRe_98JftDH-KAFk4yBWgBvr4AUf82Yi558vpxpAsY5ayWAC1CML8p3q9KmmHNC9ziFM33xTu_2Glq9erfI3_y72V_x1SzxB7xlmI8</recordid><startdate>20091110</startdate><enddate>20091110</enddate><creator>Ekpenyong, Andrew E</creator><creator>Posey, Carolyn L</creator><creator>Chaput, Joy L</creator><creator>Burkart, Anya K</creator><creator>Marquardt, Meg M</creator><creator>Smith, Timothy J</creator><creator>Nichols, Michael G</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091110</creationdate><title>Determination of cell elasticity through hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher</title><author>Ekpenyong, Andrew E ; Posey, Carolyn L ; Chaput, Joy L ; Burkart, Anya K ; Marquardt, Meg M ; Smith, Timothy J ; Nichols, Michael G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-cfdf06461dea1a836574719fc66edf339b64e78f222c43649f59a64f247b847f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Computer Simulation</topic><topic>Elastic Modulus - physiology</topic><topic>Erythrocytes - cytology</topic><topic>Erythrocytes - physiology</topic><topic>Hardness - physiology</topic><topic>Hardness Tests - methods</topic><topic>Humans</topic><topic>Light</topic><topic>Models, Cardiovascular</topic><topic>Nephelometry and Turbidimetry - methods</topic><topic>Optical Tweezers</topic><topic>Scattering, Radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ekpenyong, Andrew E</creatorcontrib><creatorcontrib>Posey, Carolyn L</creatorcontrib><creatorcontrib>Chaput, Joy L</creatorcontrib><creatorcontrib>Burkart, Anya K</creatorcontrib><creatorcontrib>Marquardt, Meg M</creatorcontrib><creatorcontrib>Smith, Timothy J</creatorcontrib><creatorcontrib>Nichols, Michael G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied Optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ekpenyong, Andrew E</au><au>Posey, Carolyn L</au><au>Chaput, Joy L</au><au>Burkart, Anya K</au><au>Marquardt, Meg M</au><au>Smith, Timothy J</au><au>Nichols, Michael G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of cell elasticity through hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher</atitle><jtitle>Applied Optics</jtitle><addtitle>Appl Opt</addtitle><date>2009-11-10</date><risdate>2009</risdate><volume>48</volume><issue>32</issue><spage>6344</spage><epage>6354</epage><pages>6344-6354</pages><issn>0003-6935</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>The optical stretcher is a dual-beam trap capable of stretching individual cells. Previous studies have used either ray- or wave-optical models to compute the optical pressure on the surface of a spherical cell. We have extended the ray-optics model to account for focusing by the spherical interface and the effects of multiple internal reflections. Simulation results for red-blood cells (RBCs) show that internal reflections can lead to significant perturbation of the deformation, leading to a systematic error in the determination of cellular elasticity. Calibration studies show excellent agreement between the predicted and measured escape force, and RBC stiffness measurements are consistent with literature values. Measurements of the elasticity of murine osteogenic cells reveal that these cells are approximately 5.4 times stiffer than RBCs.</abstract><cop>United States</cop><pmid>19904335</pmid><doi>10.1364/AO.48.006344</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6935
ispartof Applied Optics, 2009-11, Vol.48 (32), p.6344-6354
issn 0003-6935
2155-3165
1539-4522
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3060047
source MEDLINE; Alma/SFX Local Collection; Optica Publishing Group Journals
subjects Animals
Computer Simulation
Elastic Modulus - physiology
Erythrocytes - cytology
Erythrocytes - physiology
Hardness - physiology
Hardness Tests - methods
Humans
Light
Models, Cardiovascular
Nephelometry and Turbidimetry - methods
Optical Tweezers
Scattering, Radiation
title Determination of cell elasticity through hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A40%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20cell%20elasticity%20through%20hybrid%20ray%20optics%20and%20continuum%20mechanics%20modeling%20of%20cell%20deformation%20in%20the%20optical%20stretcher&rft.jtitle=Applied%20Optics&rft.au=Ekpenyong,%20Andrew%20E&rft.date=2009-11-10&rft.volume=48&rft.issue=32&rft.spage=6344&rft.epage=6354&rft.pages=6344-6354&rft.issn=0003-6935&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.48.006344&rft_dat=%3Cproquest_pubme%3E734134701%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734134701&rft_id=info:pmid/19904335&rfr_iscdi=true