Monitoring the growth of individual bacteria using asynchronous magnetic bead rotation sensors

Continuous growth of individual bacteria has been previously studied by direct observation using optical imaging. However, optical microscopy studies are inherently diffraction limited and limited in the number of individual cells that can be continuously monitored. Here we report on the use of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2010-10, Vol.26 (5), p.2751-2755
Hauptverfasser: Kinnunen, Paivo, Sinn, Irene, McNaughton, Brandon H., Newton, Duane W., Burns, Mark A., Kopelman, Raoul
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2755
container_issue 5
container_start_page 2751
container_title Biosensors & bioelectronics
container_volume 26
creator Kinnunen, Paivo
Sinn, Irene
McNaughton, Brandon H.
Newton, Duane W.
Burns, Mark A.
Kopelman, Raoul
description Continuous growth of individual bacteria has been previously studied by direct observation using optical imaging. However, optical microscopy studies are inherently diffraction limited and limited in the number of individual cells that can be continuously monitored. Here we report on the use of the asynchronous magnetic bead rotation (AMBR) sensor, which is not diffraction limited. The AMBR sensor allows for the measurement of nanoscale growth dynamics of individual bacterial cells, over multiple generations. This torque-based magnetic bead sensor monitors variations in drag caused by the attachment and growth of a single bacterial cell. In this manner, we observed the growth and division of individual E. coli bacteria, with 80 nanometer sensitivity to the cell length. Over the life cycle of a cell we observed up to 300 % increase in the rotational period of the biosensor due to increased cell volume. In addition, we observed single bacterial cell growth response to antibiotics. This work demonstrates a non-microscopy based approach for monitoring individual cell growth dynamics, including cell elongation, generation time, lag time, and division, as well as their sensitivity to antibiotics.
doi_str_mv 10.1016/j.bios.2010.10.010
format Article
fullrecord <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3059723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_3059723</sourcerecordid><originalsourceid>FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_30597233</originalsourceid><addsrcrecordid>eNqljL1OwzAURi1ERUPhBZjuCyT4hyRkYUEglm7MWDeJm9wq8a1sp6hvT0EszExH-s7RJ8SdkoWSqrrfFy1xLLT8GYozLkSmHmuTP2hTXopMNmWVl1Vl1uI6xr2UslaNvBJrrc5KKZ2Jjy17ShzID5BGB0PgzzQC74B8T0fqF5ygxS65QAhL_O4wnnw3Bva8RJhx8C5RB63DHgInTMQeovORQ7wRqx1O0d3-ciOeXl_en9_yw9LOru-cTwEnewg0YzhZRrJ_jafRDny0RpZNrY3598EXrYBlwQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Monitoring the growth of individual bacteria using asynchronous magnetic bead rotation sensors</title><source>Elsevier ScienceDirect Journals</source><creator>Kinnunen, Paivo ; Sinn, Irene ; McNaughton, Brandon H. ; Newton, Duane W. ; Burns, Mark A. ; Kopelman, Raoul</creator><creatorcontrib>Kinnunen, Paivo ; Sinn, Irene ; McNaughton, Brandon H. ; Newton, Duane W. ; Burns, Mark A. ; Kopelman, Raoul</creatorcontrib><description>Continuous growth of individual bacteria has been previously studied by direct observation using optical imaging. However, optical microscopy studies are inherently diffraction limited and limited in the number of individual cells that can be continuously monitored. Here we report on the use of the asynchronous magnetic bead rotation (AMBR) sensor, which is not diffraction limited. The AMBR sensor allows for the measurement of nanoscale growth dynamics of individual bacterial cells, over multiple generations. This torque-based magnetic bead sensor monitors variations in drag caused by the attachment and growth of a single bacterial cell. In this manner, we observed the growth and division of individual E. coli bacteria, with 80 nanometer sensitivity to the cell length. Over the life cycle of a cell we observed up to 300 % increase in the rotational period of the biosensor due to increased cell volume. In addition, we observed single bacterial cell growth response to antibiotics. This work demonstrates a non-microscopy based approach for monitoring individual cell growth dynamics, including cell elongation, generation time, lag time, and division, as well as their sensitivity to antibiotics.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2010.10.010</identifier><identifier>PMID: 21095112</identifier><language>eng</language><ispartof>Biosensors &amp; bioelectronics, 2010-10, Vol.26 (5), p.2751-2755</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids></links><search><creatorcontrib>Kinnunen, Paivo</creatorcontrib><creatorcontrib>Sinn, Irene</creatorcontrib><creatorcontrib>McNaughton, Brandon H.</creatorcontrib><creatorcontrib>Newton, Duane W.</creatorcontrib><creatorcontrib>Burns, Mark A.</creatorcontrib><creatorcontrib>Kopelman, Raoul</creatorcontrib><title>Monitoring the growth of individual bacteria using asynchronous magnetic bead rotation sensors</title><title>Biosensors &amp; bioelectronics</title><description>Continuous growth of individual bacteria has been previously studied by direct observation using optical imaging. However, optical microscopy studies are inherently diffraction limited and limited in the number of individual cells that can be continuously monitored. Here we report on the use of the asynchronous magnetic bead rotation (AMBR) sensor, which is not diffraction limited. The AMBR sensor allows for the measurement of nanoscale growth dynamics of individual bacterial cells, over multiple generations. This torque-based magnetic bead sensor monitors variations in drag caused by the attachment and growth of a single bacterial cell. In this manner, we observed the growth and division of individual E. coli bacteria, with 80 nanometer sensitivity to the cell length. Over the life cycle of a cell we observed up to 300 % increase in the rotational period of the biosensor due to increased cell volume. In addition, we observed single bacterial cell growth response to antibiotics. This work demonstrates a non-microscopy based approach for monitoring individual cell growth dynamics, including cell elongation, generation time, lag time, and division, as well as their sensitivity to antibiotics.</description><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqljL1OwzAURi1ERUPhBZjuCyT4hyRkYUEglm7MWDeJm9wq8a1sp6hvT0EszExH-s7RJ8SdkoWSqrrfFy1xLLT8GYozLkSmHmuTP2hTXopMNmWVl1Vl1uI6xr2UslaNvBJrrc5KKZ2Jjy17ShzID5BGB0PgzzQC74B8T0fqF5ygxS65QAhL_O4wnnw3Bva8RJhx8C5RB63DHgInTMQeovORQ7wRqx1O0d3-ciOeXl_en9_yw9LOru-cTwEnewg0YzhZRrJ_jafRDny0RpZNrY3598EXrYBlwQ</recordid><startdate>20101014</startdate><enddate>20101014</enddate><creator>Kinnunen, Paivo</creator><creator>Sinn, Irene</creator><creator>McNaughton, Brandon H.</creator><creator>Newton, Duane W.</creator><creator>Burns, Mark A.</creator><creator>Kopelman, Raoul</creator><scope>5PM</scope></search><sort><creationdate>20101014</creationdate><title>Monitoring the growth of individual bacteria using asynchronous magnetic bead rotation sensors</title><author>Kinnunen, Paivo ; Sinn, Irene ; McNaughton, Brandon H. ; Newton, Duane W. ; Burns, Mark A. ; Kopelman, Raoul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_30597233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kinnunen, Paivo</creatorcontrib><creatorcontrib>Sinn, Irene</creatorcontrib><creatorcontrib>McNaughton, Brandon H.</creatorcontrib><creatorcontrib>Newton, Duane W.</creatorcontrib><creatorcontrib>Burns, Mark A.</creatorcontrib><creatorcontrib>Kopelman, Raoul</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biosensors &amp; bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kinnunen, Paivo</au><au>Sinn, Irene</au><au>McNaughton, Brandon H.</au><au>Newton, Duane W.</au><au>Burns, Mark A.</au><au>Kopelman, Raoul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring the growth of individual bacteria using asynchronous magnetic bead rotation sensors</atitle><jtitle>Biosensors &amp; bioelectronics</jtitle><date>2010-10-14</date><risdate>2010</risdate><volume>26</volume><issue>5</issue><spage>2751</spage><epage>2755</epage><pages>2751-2755</pages><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>Continuous growth of individual bacteria has been previously studied by direct observation using optical imaging. However, optical microscopy studies are inherently diffraction limited and limited in the number of individual cells that can be continuously monitored. Here we report on the use of the asynchronous magnetic bead rotation (AMBR) sensor, which is not diffraction limited. The AMBR sensor allows for the measurement of nanoscale growth dynamics of individual bacterial cells, over multiple generations. This torque-based magnetic bead sensor monitors variations in drag caused by the attachment and growth of a single bacterial cell. In this manner, we observed the growth and division of individual E. coli bacteria, with 80 nanometer sensitivity to the cell length. Over the life cycle of a cell we observed up to 300 % increase in the rotational period of the biosensor due to increased cell volume. In addition, we observed single bacterial cell growth response to antibiotics. This work demonstrates a non-microscopy based approach for monitoring individual cell growth dynamics, including cell elongation, generation time, lag time, and division, as well as their sensitivity to antibiotics.</abstract><pmid>21095112</pmid><doi>10.1016/j.bios.2010.10.010</doi></addata></record>
fulltext fulltext
identifier ISSN: 0956-5663
ispartof Biosensors & bioelectronics, 2010-10, Vol.26 (5), p.2751-2755
issn 0956-5663
1873-4235
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3059723
source Elsevier ScienceDirect Journals
title Monitoring the growth of individual bacteria using asynchronous magnetic bead rotation sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A48%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20the%20growth%20of%20individual%20bacteria%20using%20asynchronous%20magnetic%20bead%20rotation%20sensors&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Kinnunen,%20Paivo&rft.date=2010-10-14&rft.volume=26&rft.issue=5&rft.spage=2751&rft.epage=2755&rft.pages=2751-2755&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2010.10.010&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_3059723%3C/pubmedcentral%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21095112&rfr_iscdi=true