Contribution of Kv1.2 Voltage-gated Potassium Channel to D2 Autoreceptor Regulation of Axonal Dopamine Overflow

Impairments in axonal dopamine release are associated with neurological disorders such as schizophrenia and attention deficit hyperactivity disorder and pathophysiological conditions promoting drug abuse and obesity. The D2 dopamine autoreceptor (D2-AR) exerts tight regulatory control of axonal dopa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2011-03, Vol.286 (11), p.9360-9372
Hauptverfasser: Fulton, Stephanie, Thibault, Dominic, Mendez, Jose A., Lahaie, Nicolas, Tirotta, Emanuele, Borrelli, Emiliana, Bouvier, Michel, Tempel, Bruce L., Trudeau, Louis-Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9372
container_issue 11
container_start_page 9360
container_title The Journal of biological chemistry
container_volume 286
creator Fulton, Stephanie
Thibault, Dominic
Mendez, Jose A.
Lahaie, Nicolas
Tirotta, Emanuele
Borrelli, Emiliana
Bouvier, Michel
Tempel, Bruce L.
Trudeau, Louis-Eric
description Impairments in axonal dopamine release are associated with neurological disorders such as schizophrenia and attention deficit hyperactivity disorder and pathophysiological conditions promoting drug abuse and obesity. The D2 dopamine autoreceptor (D2-AR) exerts tight regulatory control of axonal dopamine (DA) release through a mechanism suggested to involve K+ channels. To evaluate the contribution of Kv1 voltage-gated potassium channels of the Shaker gene family to the regulation of axonal DA release by the D2-AR, the present study employed expression analyses, real time measurements of striatal DA overflow, K+ current measurements and immunoprecipitation assays. Kv1.1, -1.2, -1.3, and -1.6 mRNA and protein were detected in midbrain DA neurons purified by fluorescence-activated cell sorting and in primary DA neuron cultures. In addition, Kv1.1, -1.2, and -1.6 were localized to DA axonal processes in the dorsal striatum. By means of fast scan cyclic voltammetry in striatal slice preparations, we found that the inhibition of stimulation-evoked DA overflow by a D2 agonist was attenuated by Kv1.1, -1.2, and -1.6 toxin blockers. A particular role for the Kv1.2 subunit in the process whereby axonal D2-AR inhibits DA overflow was established with the use of a selective Kv1.2 blocker and Kv1.2 knock-out mice. Moreover, we demonstrate the ability of D2-AR activation to increase Kv1.2 currents in co-transfected cells and its reliance on Gβγ subunit signaling along with the physical coupling of D2-AR and Kv1.2-containing channels in striatal tissue. These findings underline the contribution of Kv1.2 in the regulation of nigrostriatal DA release by the D2-AR and thereby offer a novel mechanism by which DA release is regulated.
doi_str_mv 10.1074/jbc.M110.153262
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3059064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820518255</els_id><sourcerecordid>859495756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-a512930791a98a2f22dbe363472cdfd0b529843c80f799f3c4e7ffc1730e88693</originalsourceid><addsrcrecordid>eNp1kUtv1DAURi0EokNhzQ68Y5WpH3ESb5BGU16iqAgoYmc5znXqKomntjMt_x6P0lawwJsry8ff9fVB6CUla0rq8uSqNesv9LATnFXsEVpR0vCCC_rrMVoRwmghmWiO0LMYr0hepaRP0RGjjHNGyxXyWz-l4No5OT9hb_HnPV0z_NMPSfdQ9DpBh7_6pGN084i3l3qaYMDJ41OGN3PyAQzscsHfoJ8HfR-zufWTHvCp3-nRTYDP9xDs4G-eoydWDxFe3NVjdPH-3Y_tx-Ls_MOn7easMHmQVGhBmeSkllTLRjPLWNcCr3hZM9PZjrSCyabkpiG2ltJyU0JtraE1J9A0leTH6O2Su5vbEToDeUo9qF1wow6_lddO_XsyuUvV-73iREhSlTngzV1A8NczxKRGFw0Mg57Az1E1QpZS1KLK5MlCmuBjDGAfulCiDpZUtqQOltRiKd949ffjHvh7LRl4vQBWe6X74KK6-M4I5YRKQSUhmZALAfkT9w6CisbBZKBz2UhSnXf_bf8HzRmrWA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>859495756</pqid></control><display><type>article</type><title>Contribution of Kv1.2 Voltage-gated Potassium Channel to D2 Autoreceptor Regulation of Axonal Dopamine Overflow</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Fulton, Stephanie ; Thibault, Dominic ; Mendez, Jose A. ; Lahaie, Nicolas ; Tirotta, Emanuele ; Borrelli, Emiliana ; Bouvier, Michel ; Tempel, Bruce L. ; Trudeau, Louis-Eric</creator><creatorcontrib>Fulton, Stephanie ; Thibault, Dominic ; Mendez, Jose A. ; Lahaie, Nicolas ; Tirotta, Emanuele ; Borrelli, Emiliana ; Bouvier, Michel ; Tempel, Bruce L. ; Trudeau, Louis-Eric</creatorcontrib><description>Impairments in axonal dopamine release are associated with neurological disorders such as schizophrenia and attention deficit hyperactivity disorder and pathophysiological conditions promoting drug abuse and obesity. The D2 dopamine autoreceptor (D2-AR) exerts tight regulatory control of axonal dopamine (DA) release through a mechanism suggested to involve K+ channels. To evaluate the contribution of Kv1 voltage-gated potassium channels of the Shaker gene family to the regulation of axonal DA release by the D2-AR, the present study employed expression analyses, real time measurements of striatal DA overflow, K+ current measurements and immunoprecipitation assays. Kv1.1, -1.2, -1.3, and -1.6 mRNA and protein were detected in midbrain DA neurons purified by fluorescence-activated cell sorting and in primary DA neuron cultures. In addition, Kv1.1, -1.2, and -1.6 were localized to DA axonal processes in the dorsal striatum. By means of fast scan cyclic voltammetry in striatal slice preparations, we found that the inhibition of stimulation-evoked DA overflow by a D2 agonist was attenuated by Kv1.1, -1.2, and -1.6 toxin blockers. A particular role for the Kv1.2 subunit in the process whereby axonal D2-AR inhibits DA overflow was established with the use of a selective Kv1.2 blocker and Kv1.2 knock-out mice. Moreover, we demonstrate the ability of D2-AR activation to increase Kv1.2 currents in co-transfected cells and its reliance on Gβγ subunit signaling along with the physical coupling of D2-AR and Kv1.2-containing channels in striatal tissue. These findings underline the contribution of Kv1.2 in the regulation of nigrostriatal DA release by the D2-AR and thereby offer a novel mechanism by which DA release is regulated.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M110.153262</identifier><identifier>PMID: 21233214</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Autoreceptor ; Axons - metabolism ; Corpus Striatum - metabolism ; Dopamine ; Dopamine - genetics ; Dopamine - metabolism ; Dopamine Agonists - pharmacology ; Exocytosis ; G Protein-coupled Receptors (GPCR) ; Ion Channels ; Kv1.2 Potassium Channel - genetics ; Kv1.2 Potassium Channel - metabolism ; Male ; Mice ; Mice, Knockout ; Neurobiology ; Neurotransmitters ; Potassium Channels ; Receptors, Dopamine D2 - genetics ; Receptors, Dopamine D2 - metabolism ; Signal Transduction - drug effects ; Signal Transduction - physiology</subject><ispartof>The Journal of biological chemistry, 2011-03, Vol.286 (11), p.9360-9372</ispartof><rights>2011 © 2011 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2011 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-a512930791a98a2f22dbe363472cdfd0b529843c80f799f3c4e7ffc1730e88693</citedby><cites>FETCH-LOGICAL-c532t-a512930791a98a2f22dbe363472cdfd0b529843c80f799f3c4e7ffc1730e88693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059064/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059064/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21233214$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fulton, Stephanie</creatorcontrib><creatorcontrib>Thibault, Dominic</creatorcontrib><creatorcontrib>Mendez, Jose A.</creatorcontrib><creatorcontrib>Lahaie, Nicolas</creatorcontrib><creatorcontrib>Tirotta, Emanuele</creatorcontrib><creatorcontrib>Borrelli, Emiliana</creatorcontrib><creatorcontrib>Bouvier, Michel</creatorcontrib><creatorcontrib>Tempel, Bruce L.</creatorcontrib><creatorcontrib>Trudeau, Louis-Eric</creatorcontrib><title>Contribution of Kv1.2 Voltage-gated Potassium Channel to D2 Autoreceptor Regulation of Axonal Dopamine Overflow</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Impairments in axonal dopamine release are associated with neurological disorders such as schizophrenia and attention deficit hyperactivity disorder and pathophysiological conditions promoting drug abuse and obesity. The D2 dopamine autoreceptor (D2-AR) exerts tight regulatory control of axonal dopamine (DA) release through a mechanism suggested to involve K+ channels. To evaluate the contribution of Kv1 voltage-gated potassium channels of the Shaker gene family to the regulation of axonal DA release by the D2-AR, the present study employed expression analyses, real time measurements of striatal DA overflow, K+ current measurements and immunoprecipitation assays. Kv1.1, -1.2, -1.3, and -1.6 mRNA and protein were detected in midbrain DA neurons purified by fluorescence-activated cell sorting and in primary DA neuron cultures. In addition, Kv1.1, -1.2, and -1.6 were localized to DA axonal processes in the dorsal striatum. By means of fast scan cyclic voltammetry in striatal slice preparations, we found that the inhibition of stimulation-evoked DA overflow by a D2 agonist was attenuated by Kv1.1, -1.2, and -1.6 toxin blockers. A particular role for the Kv1.2 subunit in the process whereby axonal D2-AR inhibits DA overflow was established with the use of a selective Kv1.2 blocker and Kv1.2 knock-out mice. Moreover, we demonstrate the ability of D2-AR activation to increase Kv1.2 currents in co-transfected cells and its reliance on Gβγ subunit signaling along with the physical coupling of D2-AR and Kv1.2-containing channels in striatal tissue. These findings underline the contribution of Kv1.2 in the regulation of nigrostriatal DA release by the D2-AR and thereby offer a novel mechanism by which DA release is regulated.</description><subject>Animals</subject><subject>Autoreceptor</subject><subject>Axons - metabolism</subject><subject>Corpus Striatum - metabolism</subject><subject>Dopamine</subject><subject>Dopamine - genetics</subject><subject>Dopamine - metabolism</subject><subject>Dopamine Agonists - pharmacology</subject><subject>Exocytosis</subject><subject>G Protein-coupled Receptors (GPCR)</subject><subject>Ion Channels</subject><subject>Kv1.2 Potassium Channel - genetics</subject><subject>Kv1.2 Potassium Channel - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Neurobiology</subject><subject>Neurotransmitters</subject><subject>Potassium Channels</subject><subject>Receptors, Dopamine D2 - genetics</subject><subject>Receptors, Dopamine D2 - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUtv1DAURi0EokNhzQ68Y5WpH3ESb5BGU16iqAgoYmc5znXqKomntjMt_x6P0lawwJsry8ff9fVB6CUla0rq8uSqNesv9LATnFXsEVpR0vCCC_rrMVoRwmghmWiO0LMYr0hepaRP0RGjjHNGyxXyWz-l4No5OT9hb_HnPV0z_NMPSfdQ9DpBh7_6pGN084i3l3qaYMDJ41OGN3PyAQzscsHfoJ8HfR-zufWTHvCp3-nRTYDP9xDs4G-eoydWDxFe3NVjdPH-3Y_tx-Ls_MOn7easMHmQVGhBmeSkllTLRjPLWNcCr3hZM9PZjrSCyabkpiG2ltJyU0JtraE1J9A0leTH6O2Su5vbEToDeUo9qF1wow6_lddO_XsyuUvV-73iREhSlTngzV1A8NczxKRGFw0Mg57Az1E1QpZS1KLK5MlCmuBjDGAfulCiDpZUtqQOltRiKd949ffjHvh7LRl4vQBWe6X74KK6-M4I5YRKQSUhmZALAfkT9w6CisbBZKBz2UhSnXf_bf8HzRmrWA</recordid><startdate>20110318</startdate><enddate>20110318</enddate><creator>Fulton, Stephanie</creator><creator>Thibault, Dominic</creator><creator>Mendez, Jose A.</creator><creator>Lahaie, Nicolas</creator><creator>Tirotta, Emanuele</creator><creator>Borrelli, Emiliana</creator><creator>Bouvier, Michel</creator><creator>Tempel, Bruce L.</creator><creator>Trudeau, Louis-Eric</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110318</creationdate><title>Contribution of Kv1.2 Voltage-gated Potassium Channel to D2 Autoreceptor Regulation of Axonal Dopamine Overflow</title><author>Fulton, Stephanie ; Thibault, Dominic ; Mendez, Jose A. ; Lahaie, Nicolas ; Tirotta, Emanuele ; Borrelli, Emiliana ; Bouvier, Michel ; Tempel, Bruce L. ; Trudeau, Louis-Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-a512930791a98a2f22dbe363472cdfd0b529843c80f799f3c4e7ffc1730e88693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Autoreceptor</topic><topic>Axons - metabolism</topic><topic>Corpus Striatum - metabolism</topic><topic>Dopamine</topic><topic>Dopamine - genetics</topic><topic>Dopamine - metabolism</topic><topic>Dopamine Agonists - pharmacology</topic><topic>Exocytosis</topic><topic>G Protein-coupled Receptors (GPCR)</topic><topic>Ion Channels</topic><topic>Kv1.2 Potassium Channel - genetics</topic><topic>Kv1.2 Potassium Channel - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Neurobiology</topic><topic>Neurotransmitters</topic><topic>Potassium Channels</topic><topic>Receptors, Dopamine D2 - genetics</topic><topic>Receptors, Dopamine D2 - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fulton, Stephanie</creatorcontrib><creatorcontrib>Thibault, Dominic</creatorcontrib><creatorcontrib>Mendez, Jose A.</creatorcontrib><creatorcontrib>Lahaie, Nicolas</creatorcontrib><creatorcontrib>Tirotta, Emanuele</creatorcontrib><creatorcontrib>Borrelli, Emiliana</creatorcontrib><creatorcontrib>Bouvier, Michel</creatorcontrib><creatorcontrib>Tempel, Bruce L.</creatorcontrib><creatorcontrib>Trudeau, Louis-Eric</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fulton, Stephanie</au><au>Thibault, Dominic</au><au>Mendez, Jose A.</au><au>Lahaie, Nicolas</au><au>Tirotta, Emanuele</au><au>Borrelli, Emiliana</au><au>Bouvier, Michel</au><au>Tempel, Bruce L.</au><au>Trudeau, Louis-Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contribution of Kv1.2 Voltage-gated Potassium Channel to D2 Autoreceptor Regulation of Axonal Dopamine Overflow</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2011-03-18</date><risdate>2011</risdate><volume>286</volume><issue>11</issue><spage>9360</spage><epage>9372</epage><pages>9360-9372</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Impairments in axonal dopamine release are associated with neurological disorders such as schizophrenia and attention deficit hyperactivity disorder and pathophysiological conditions promoting drug abuse and obesity. The D2 dopamine autoreceptor (D2-AR) exerts tight regulatory control of axonal dopamine (DA) release through a mechanism suggested to involve K+ channels. To evaluate the contribution of Kv1 voltage-gated potassium channels of the Shaker gene family to the regulation of axonal DA release by the D2-AR, the present study employed expression analyses, real time measurements of striatal DA overflow, K+ current measurements and immunoprecipitation assays. Kv1.1, -1.2, -1.3, and -1.6 mRNA and protein were detected in midbrain DA neurons purified by fluorescence-activated cell sorting and in primary DA neuron cultures. In addition, Kv1.1, -1.2, and -1.6 were localized to DA axonal processes in the dorsal striatum. By means of fast scan cyclic voltammetry in striatal slice preparations, we found that the inhibition of stimulation-evoked DA overflow by a D2 agonist was attenuated by Kv1.1, -1.2, and -1.6 toxin blockers. A particular role for the Kv1.2 subunit in the process whereby axonal D2-AR inhibits DA overflow was established with the use of a selective Kv1.2 blocker and Kv1.2 knock-out mice. Moreover, we demonstrate the ability of D2-AR activation to increase Kv1.2 currents in co-transfected cells and its reliance on Gβγ subunit signaling along with the physical coupling of D2-AR and Kv1.2-containing channels in striatal tissue. These findings underline the contribution of Kv1.2 in the regulation of nigrostriatal DA release by the D2-AR and thereby offer a novel mechanism by which DA release is regulated.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21233214</pmid><doi>10.1074/jbc.M110.153262</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2011-03, Vol.286 (11), p.9360-9372
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3059064
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
Autoreceptor
Axons - metabolism
Corpus Striatum - metabolism
Dopamine
Dopamine - genetics
Dopamine - metabolism
Dopamine Agonists - pharmacology
Exocytosis
G Protein-coupled Receptors (GPCR)
Ion Channels
Kv1.2 Potassium Channel - genetics
Kv1.2 Potassium Channel - metabolism
Male
Mice
Mice, Knockout
Neurobiology
Neurotransmitters
Potassium Channels
Receptors, Dopamine D2 - genetics
Receptors, Dopamine D2 - metabolism
Signal Transduction - drug effects
Signal Transduction - physiology
title Contribution of Kv1.2 Voltage-gated Potassium Channel to D2 Autoreceptor Regulation of Axonal Dopamine Overflow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A10%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contribution%20of%20Kv1.2%20Voltage-gated%20Potassium%20Channel%20to%20D2%20Autoreceptor%20Regulation%20of%20Axonal%20Dopamine%20Overflow&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Fulton,%20Stephanie&rft.date=2011-03-18&rft.volume=286&rft.issue=11&rft.spage=9360&rft.epage=9372&rft.pages=9360-9372&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M110.153262&rft_dat=%3Cproquest_pubme%3E859495756%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=859495756&rft_id=info:pmid/21233214&rft_els_id=S0021925820518255&rfr_iscdi=true