Resurrection of a functional phosphatidylinositol transfer protein from a pseudo-Sec14 scaffold by directed evolution
Sec14-superfamily proteins integrate the lipid metabolome with phosphoinositide synthesis and signaling via primed presentation of phosphatidylinositol (PtdIns) to PtdIns kinases. Sec14 action as a PtdIns-presentation scaffold requires heterotypic exchange of phosphatidylcholine (PtdCho) for PtdIns,...
Gespeichert in:
Veröffentlicht in: | Molecular biology of the cell 2011-03, Vol.22 (6), p.892-905 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 905 |
---|---|
container_issue | 6 |
container_start_page | 892 |
container_title | Molecular biology of the cell |
container_volume | 22 |
creator | Schaaf, Gabriel Dynowski, Marek Mousley, Carl J Shah, Sweety D Yuan, Peihua Winklbauer, Eva M de Campos, Marília K F Trettin, Kyle Quinones, Mary-Chely Smirnova, Tatyana I Yanagisawa, Lora L Ortlund, Eric A Bankaitis, Vytas A |
description | Sec14-superfamily proteins integrate the lipid metabolome with phosphoinositide synthesis and signaling via primed presentation of phosphatidylinositol (PtdIns) to PtdIns kinases. Sec14 action as a PtdIns-presentation scaffold requires heterotypic exchange of phosphatidylcholine (PtdCho) for PtdIns, or vice versa, in a poorly understood progression of regulated conformational transitions. We identify mutations that confer Sec14-like activities to a functionally inert pseudo-Sec14 (Sfh1), which seemingly conserves all of the structural requirements for Sec14 function. Unexpectedly, the "activation" phenotype results from alteration of residues conserved between Sfh1 and Sec14. Using biochemical and biophysical, structural, and computational approaches, we find the activation mechanism reconfigures atomic interactions between amino acid side chains and internal water in an unusual hydrophilic microenvironment within the hydrophobic Sfh1 ligand-binding cavity. These altered dynamics reconstitute a functional "gating module" that propagates conformational energy from within the hydrophobic pocket to the helical unit that gates pocket access. The net effect is enhanced rates of phospholipid-cycling into and out of the Sfh1* hydrophobic pocket. Taken together, the directed evolution approach reveals an unexpectedly flexible functional engineering of a Sec14-like PtdIns transfer protein-an engineering invisible to standard bioinformatic, crystallographic, and rational mutagenesis approaches. |
doi_str_mv | 10.1091/mbc.e10-11-0903 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3057712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21248202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-b915a2a00eaf9d3b84a199afb61422de41e09eef0d5255e5510121ed746a2a9d3</originalsourceid><addsrcrecordid>eNpVkdtKxDAQhoMoHlavvZO8QHUmTXY3N4KIJxAED9chbSZupNuUpBX27W09oVfJkPm-CfMzdoxwiqDxbF3Vp4RQIBagodxi-6hLXUi1nG-Pd1C6QCXkHjvI-Q0ApZwvdtmeQCGXAsQ-Gx4pDylR3YfY8ui55X5oPyvb8G4Vc7eyfXCbJrQxhz42vE-2zZ4S71LsKbTcp7geuS7T4GLxRDVKnmvrfWwcrzbchclPjtN7bIZJfch2vG0yHX2fM_ZyffV8eVvcP9zcXV7cF7UC2ReVRmWFBSDrtSurpbSotfXVHKUQjiQSaCIPTgmlSCkEFEhuIecjNhIzdv7l7YZqTa6mdvx8Y7oU1jZtTLTB_H9pw8q8xndTglosUIyCsy9BnWLOifwvi2CmBMyYgKGpQDMlMBInf0f-9v-svPwA7w6Gtw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Resurrection of a functional phosphatidylinositol transfer protein from a pseudo-Sec14 scaffold by directed evolution</title><source>PubMed (Medline)</source><source>MEDLINE</source><source>Free Full-Text Journals in Chemistry</source><creator>Schaaf, Gabriel ; Dynowski, Marek ; Mousley, Carl J ; Shah, Sweety D ; Yuan, Peihua ; Winklbauer, Eva M ; de Campos, Marília K F ; Trettin, Kyle ; Quinones, Mary-Chely ; Smirnova, Tatyana I ; Yanagisawa, Lora L ; Ortlund, Eric A ; Bankaitis, Vytas A</creator><contributor>Gilmore, Reid</contributor><creatorcontrib>Schaaf, Gabriel ; Dynowski, Marek ; Mousley, Carl J ; Shah, Sweety D ; Yuan, Peihua ; Winklbauer, Eva M ; de Campos, Marília K F ; Trettin, Kyle ; Quinones, Mary-Chely ; Smirnova, Tatyana I ; Yanagisawa, Lora L ; Ortlund, Eric A ; Bankaitis, Vytas A ; Gilmore, Reid</creatorcontrib><description>Sec14-superfamily proteins integrate the lipid metabolome with phosphoinositide synthesis and signaling via primed presentation of phosphatidylinositol (PtdIns) to PtdIns kinases. Sec14 action as a PtdIns-presentation scaffold requires heterotypic exchange of phosphatidylcholine (PtdCho) for PtdIns, or vice versa, in a poorly understood progression of regulated conformational transitions. We identify mutations that confer Sec14-like activities to a functionally inert pseudo-Sec14 (Sfh1), which seemingly conserves all of the structural requirements for Sec14 function. Unexpectedly, the "activation" phenotype results from alteration of residues conserved between Sfh1 and Sec14. Using biochemical and biophysical, structural, and computational approaches, we find the activation mechanism reconfigures atomic interactions between amino acid side chains and internal water in an unusual hydrophilic microenvironment within the hydrophobic Sfh1 ligand-binding cavity. These altered dynamics reconstitute a functional "gating module" that propagates conformational energy from within the hydrophobic pocket to the helical unit that gates pocket access. The net effect is enhanced rates of phospholipid-cycling into and out of the Sfh1* hydrophobic pocket. Taken together, the directed evolution approach reveals an unexpectedly flexible functional engineering of a Sec14-like PtdIns transfer protein-an engineering invisible to standard bioinformatic, crystallographic, and rational mutagenesis approaches.</description><identifier>ISSN: 1059-1524</identifier><identifier>EISSN: 1939-4586</identifier><identifier>DOI: 10.1091/mbc.e10-11-0903</identifier><identifier>PMID: 21248202</identifier><language>eng</language><publisher>United States: The American Society for Cell Biology</publisher><subject>Amino Acid Sequence ; Cell Cycle Proteins - chemistry ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Chromosomal Proteins, Non-Histone - chemistry ; Chromosomal Proteins, Non-Histone - genetics ; Chromosomal Proteins, Non-Histone - metabolism ; Directed Molecular Evolution ; Endosomes - metabolism ; Golgi Apparatus - metabolism ; Models, Molecular ; Molecular Dynamics Simulation ; Molecular Sequence Data ; Phenotype ; Phosphatidylcholines - chemistry ; Phosphatidylcholines - metabolism ; Phosphatidylinositols - chemistry ; Phosphatidylinositols - metabolism ; Phospholipid Transfer Proteins - chemistry ; Phospholipid Transfer Proteins - genetics ; Phospholipid Transfer Proteins - metabolism ; Protein Conformation ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Sequence Alignment ; Signal Transduction ; trans-Golgi Network - metabolism</subject><ispartof>Molecular biology of the cell, 2011-03, Vol.22 (6), p.892-905</ispartof><rights>2011 Schaaf This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( ).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-b915a2a00eaf9d3b84a199afb61422de41e09eef0d5255e5510121ed746a2a9d3</citedby><cites>FETCH-LOGICAL-c504t-b915a2a00eaf9d3b84a199afb61422de41e09eef0d5255e5510121ed746a2a9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057712/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057712/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21248202$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gilmore, Reid</contributor><creatorcontrib>Schaaf, Gabriel</creatorcontrib><creatorcontrib>Dynowski, Marek</creatorcontrib><creatorcontrib>Mousley, Carl J</creatorcontrib><creatorcontrib>Shah, Sweety D</creatorcontrib><creatorcontrib>Yuan, Peihua</creatorcontrib><creatorcontrib>Winklbauer, Eva M</creatorcontrib><creatorcontrib>de Campos, Marília K F</creatorcontrib><creatorcontrib>Trettin, Kyle</creatorcontrib><creatorcontrib>Quinones, Mary-Chely</creatorcontrib><creatorcontrib>Smirnova, Tatyana I</creatorcontrib><creatorcontrib>Yanagisawa, Lora L</creatorcontrib><creatorcontrib>Ortlund, Eric A</creatorcontrib><creatorcontrib>Bankaitis, Vytas A</creatorcontrib><title>Resurrection of a functional phosphatidylinositol transfer protein from a pseudo-Sec14 scaffold by directed evolution</title><title>Molecular biology of the cell</title><addtitle>Mol Biol Cell</addtitle><description>Sec14-superfamily proteins integrate the lipid metabolome with phosphoinositide synthesis and signaling via primed presentation of phosphatidylinositol (PtdIns) to PtdIns kinases. Sec14 action as a PtdIns-presentation scaffold requires heterotypic exchange of phosphatidylcholine (PtdCho) for PtdIns, or vice versa, in a poorly understood progression of regulated conformational transitions. We identify mutations that confer Sec14-like activities to a functionally inert pseudo-Sec14 (Sfh1), which seemingly conserves all of the structural requirements for Sec14 function. Unexpectedly, the "activation" phenotype results from alteration of residues conserved between Sfh1 and Sec14. Using biochemical and biophysical, structural, and computational approaches, we find the activation mechanism reconfigures atomic interactions between amino acid side chains and internal water in an unusual hydrophilic microenvironment within the hydrophobic Sfh1 ligand-binding cavity. These altered dynamics reconstitute a functional "gating module" that propagates conformational energy from within the hydrophobic pocket to the helical unit that gates pocket access. The net effect is enhanced rates of phospholipid-cycling into and out of the Sfh1* hydrophobic pocket. Taken together, the directed evolution approach reveals an unexpectedly flexible functional engineering of a Sec14-like PtdIns transfer protein-an engineering invisible to standard bioinformatic, crystallographic, and rational mutagenesis approaches.</description><subject>Amino Acid Sequence</subject><subject>Cell Cycle Proteins - chemistry</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Chromosomal Proteins, Non-Histone - chemistry</subject><subject>Chromosomal Proteins, Non-Histone - genetics</subject><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>Directed Molecular Evolution</subject><subject>Endosomes - metabolism</subject><subject>Golgi Apparatus - metabolism</subject><subject>Models, Molecular</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular Sequence Data</subject><subject>Phenotype</subject><subject>Phosphatidylcholines - chemistry</subject><subject>Phosphatidylcholines - metabolism</subject><subject>Phosphatidylinositols - chemistry</subject><subject>Phosphatidylinositols - metabolism</subject><subject>Phospholipid Transfer Proteins - chemistry</subject><subject>Phospholipid Transfer Proteins - genetics</subject><subject>Phospholipid Transfer Proteins - metabolism</subject><subject>Protein Conformation</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Sequence Alignment</subject><subject>Signal Transduction</subject><subject>trans-Golgi Network - metabolism</subject><issn>1059-1524</issn><issn>1939-4586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkdtKxDAQhoMoHlavvZO8QHUmTXY3N4KIJxAED9chbSZupNuUpBX27W09oVfJkPm-CfMzdoxwiqDxbF3Vp4RQIBagodxi-6hLXUi1nG-Pd1C6QCXkHjvI-Q0ApZwvdtmeQCGXAsQ-Gx4pDylR3YfY8ui55X5oPyvb8G4Vc7eyfXCbJrQxhz42vE-2zZ4S71LsKbTcp7geuS7T4GLxRDVKnmvrfWwcrzbchclPjtN7bIZJfch2vG0yHX2fM_ZyffV8eVvcP9zcXV7cF7UC2ReVRmWFBSDrtSurpbSotfXVHKUQjiQSaCIPTgmlSCkEFEhuIecjNhIzdv7l7YZqTa6mdvx8Y7oU1jZtTLTB_H9pw8q8xndTglosUIyCsy9BnWLOifwvi2CmBMyYgKGpQDMlMBInf0f-9v-svPwA7w6Gtw</recordid><startdate>20110315</startdate><enddate>20110315</enddate><creator>Schaaf, Gabriel</creator><creator>Dynowski, Marek</creator><creator>Mousley, Carl J</creator><creator>Shah, Sweety D</creator><creator>Yuan, Peihua</creator><creator>Winklbauer, Eva M</creator><creator>de Campos, Marília K F</creator><creator>Trettin, Kyle</creator><creator>Quinones, Mary-Chely</creator><creator>Smirnova, Tatyana I</creator><creator>Yanagisawa, Lora L</creator><creator>Ortlund, Eric A</creator><creator>Bankaitis, Vytas A</creator><general>The American Society for Cell Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20110315</creationdate><title>Resurrection of a functional phosphatidylinositol transfer protein from a pseudo-Sec14 scaffold by directed evolution</title><author>Schaaf, Gabriel ; Dynowski, Marek ; Mousley, Carl J ; Shah, Sweety D ; Yuan, Peihua ; Winklbauer, Eva M ; de Campos, Marília K F ; Trettin, Kyle ; Quinones, Mary-Chely ; Smirnova, Tatyana I ; Yanagisawa, Lora L ; Ortlund, Eric A ; Bankaitis, Vytas A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-b915a2a00eaf9d3b84a199afb61422de41e09eef0d5255e5510121ed746a2a9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amino Acid Sequence</topic><topic>Cell Cycle Proteins - chemistry</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Chromosomal Proteins, Non-Histone - chemistry</topic><topic>Chromosomal Proteins, Non-Histone - genetics</topic><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>Directed Molecular Evolution</topic><topic>Endosomes - metabolism</topic><topic>Golgi Apparatus - metabolism</topic><topic>Models, Molecular</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular Sequence Data</topic><topic>Phenotype</topic><topic>Phosphatidylcholines - chemistry</topic><topic>Phosphatidylcholines - metabolism</topic><topic>Phosphatidylinositols - chemistry</topic><topic>Phosphatidylinositols - metabolism</topic><topic>Phospholipid Transfer Proteins - chemistry</topic><topic>Phospholipid Transfer Proteins - genetics</topic><topic>Phospholipid Transfer Proteins - metabolism</topic><topic>Protein Conformation</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Sequence Alignment</topic><topic>Signal Transduction</topic><topic>trans-Golgi Network - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schaaf, Gabriel</creatorcontrib><creatorcontrib>Dynowski, Marek</creatorcontrib><creatorcontrib>Mousley, Carl J</creatorcontrib><creatorcontrib>Shah, Sweety D</creatorcontrib><creatorcontrib>Yuan, Peihua</creatorcontrib><creatorcontrib>Winklbauer, Eva M</creatorcontrib><creatorcontrib>de Campos, Marília K F</creatorcontrib><creatorcontrib>Trettin, Kyle</creatorcontrib><creatorcontrib>Quinones, Mary-Chely</creatorcontrib><creatorcontrib>Smirnova, Tatyana I</creatorcontrib><creatorcontrib>Yanagisawa, Lora L</creatorcontrib><creatorcontrib>Ortlund, Eric A</creatorcontrib><creatorcontrib>Bankaitis, Vytas A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schaaf, Gabriel</au><au>Dynowski, Marek</au><au>Mousley, Carl J</au><au>Shah, Sweety D</au><au>Yuan, Peihua</au><au>Winklbauer, Eva M</au><au>de Campos, Marília K F</au><au>Trettin, Kyle</au><au>Quinones, Mary-Chely</au><au>Smirnova, Tatyana I</au><au>Yanagisawa, Lora L</au><au>Ortlund, Eric A</au><au>Bankaitis, Vytas A</au><au>Gilmore, Reid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resurrection of a functional phosphatidylinositol transfer protein from a pseudo-Sec14 scaffold by directed evolution</atitle><jtitle>Molecular biology of the cell</jtitle><addtitle>Mol Biol Cell</addtitle><date>2011-03-15</date><risdate>2011</risdate><volume>22</volume><issue>6</issue><spage>892</spage><epage>905</epage><pages>892-905</pages><issn>1059-1524</issn><eissn>1939-4586</eissn><abstract>Sec14-superfamily proteins integrate the lipid metabolome with phosphoinositide synthesis and signaling via primed presentation of phosphatidylinositol (PtdIns) to PtdIns kinases. Sec14 action as a PtdIns-presentation scaffold requires heterotypic exchange of phosphatidylcholine (PtdCho) for PtdIns, or vice versa, in a poorly understood progression of regulated conformational transitions. We identify mutations that confer Sec14-like activities to a functionally inert pseudo-Sec14 (Sfh1), which seemingly conserves all of the structural requirements for Sec14 function. Unexpectedly, the "activation" phenotype results from alteration of residues conserved between Sfh1 and Sec14. Using biochemical and biophysical, structural, and computational approaches, we find the activation mechanism reconfigures atomic interactions between amino acid side chains and internal water in an unusual hydrophilic microenvironment within the hydrophobic Sfh1 ligand-binding cavity. These altered dynamics reconstitute a functional "gating module" that propagates conformational energy from within the hydrophobic pocket to the helical unit that gates pocket access. The net effect is enhanced rates of phospholipid-cycling into and out of the Sfh1* hydrophobic pocket. Taken together, the directed evolution approach reveals an unexpectedly flexible functional engineering of a Sec14-like PtdIns transfer protein-an engineering invisible to standard bioinformatic, crystallographic, and rational mutagenesis approaches.</abstract><cop>United States</cop><pub>The American Society for Cell Biology</pub><pmid>21248202</pmid><doi>10.1091/mbc.e10-11-0903</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-1524 |
ispartof | Molecular biology of the cell, 2011-03, Vol.22 (6), p.892-905 |
issn | 1059-1524 1939-4586 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3057712 |
source | PubMed (Medline); MEDLINE; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Cell Cycle Proteins - chemistry Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Chromosomal Proteins, Non-Histone - chemistry Chromosomal Proteins, Non-Histone - genetics Chromosomal Proteins, Non-Histone - metabolism Directed Molecular Evolution Endosomes - metabolism Golgi Apparatus - metabolism Models, Molecular Molecular Dynamics Simulation Molecular Sequence Data Phenotype Phosphatidylcholines - chemistry Phosphatidylcholines - metabolism Phosphatidylinositols - chemistry Phosphatidylinositols - metabolism Phospholipid Transfer Proteins - chemistry Phospholipid Transfer Proteins - genetics Phospholipid Transfer Proteins - metabolism Protein Conformation Saccharomyces cerevisiae - cytology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Sequence Alignment Signal Transduction trans-Golgi Network - metabolism |
title | Resurrection of a functional phosphatidylinositol transfer protein from a pseudo-Sec14 scaffold by directed evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A39%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resurrection%20of%20a%20functional%20phosphatidylinositol%20transfer%20protein%20from%20a%20pseudo-Sec14%20scaffold%20by%20directed%20evolution&rft.jtitle=Molecular%20biology%20of%20the%20cell&rft.au=Schaaf,%20Gabriel&rft.date=2011-03-15&rft.volume=22&rft.issue=6&rft.spage=892&rft.epage=905&rft.pages=892-905&rft.issn=1059-1524&rft.eissn=1939-4586&rft_id=info:doi/10.1091/mbc.e10-11-0903&rft_dat=%3Cpubmed_cross%3E21248202%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21248202&rfr_iscdi=true |