Three conserved members of the RNase D family have unique and overlapping functions in the processing of 5S, 5.8S, U4, U5, RNase MRP and RNase P RNAs in yeast
The biogenesis of a number of RNA species in eukaryotic cells requires 3′ processing. To determine the enzymes responsible for these trimming events, we created yeast strains lacking specific 3′ to 5′ exonucleases. In this work, we describe the analysis of three members of the RNase D family of exon...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2000-03, Vol.19 (6), p.1357-1365 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1365 |
---|---|
container_issue | 6 |
container_start_page | 1357 |
container_title | The EMBO journal |
container_volume | 19 |
creator | Van Hoof, A Lennertz, P Parker, R |
description | The biogenesis of a number of RNA species in eukaryotic cells requires 3′ processing. To determine the enzymes responsible for these trimming events, we created yeast strains lacking specific 3′ to 5′ exonucleases. In this work, we describe the analysis of three members of the RNase D family of exonucleases (Rex1p, Rex2p and Rex3p). This work led to three important conclusions. First, each of these exonucleases is required for the processing of distinct RNAs. Specifically, Rex1p, Rex2p and Rex3p are required for 5S rRNA, U4 snRNA and MRP RNA trimming, respectively. Secondly, some 3′ exonucleases are redundant with other exonucleases. Specifically, Rex1p and Rex2p function redundantly in 5.8S rRNA maturation, Rex1p, Rex2p and Rex3p are redundant for the processing of U5 snRNA and RNase P RNA, and Rex1p and the exonuclease Rrp6p have an unknown redundant essential function. Thirdly, the demonstration that the Rex proteins can affect reactions that have been attributed previously to the exosome complex indicates that an apparently simple processing step can be surprisingly complex with multiple exonucleases working sequentially in the same pathway. |
doi_str_mv | 10.1093/emboj/19.6.1357 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_305676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70951453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6648-e0cfba2921c6e2804ffa7714550523b0e2dcfc4f2718b73b7f5e57050f39ea533</originalsourceid><addsrcrecordid>eNqFks1v0zAYxiMEYmVw5gYWB05L64_YTg4cxr5gWku1rdrRctPXbUoSFzsp9J_hb8VtqqkgoR1sy3p_z-PHr94oektwn-CMDaCa2uWAZH3RJ4zLZ1GPJALHFEv-POphKkickDQ7il55v8QY81SSl9ERwZKIjPFe9Pt-4QBQbmsPbg0zVAVLcB5Zg5oFoNuR9oDOkdFVUW7QQq8BtXXxowWk6xmya3ClXq2Keo5MW-dNEYxQUe-0K2dz8H5bC2787gTxfhr2SRIWP9l7D2_HO6vuNg7n6c5hA9o3r6MXRpce3uzP42hyeXF_9iW--Xb19ez0Js6FSNIYcG6mmmaU5AJoihNjtJQk4RxzyqYY6Cw3eWKoJOlUsqk0HLjEHBuWgeaMHUefOt9VO61glkPdOF2qlSsq7TbK6kL9XamLhZrbtWKYCymC_uNe72zojW9UVfgcylLXYFuvJM54iMOeBIkMUEpkAD_8Ay5t6-rQBEUyTkWaZWmABh2UO-u9A_OYmGC1HRC1G5CgUEJtByQo3h1-9IDvJiIAaQf8LErYPOWnLoafryXPKE22aXAn9UFVz8EdRP5vnLiTFL6BX4-vafddCckkVw-jKzW8Hp1fJmOhHgL_vuONtkrPXeHV5I5iwjDNEsowZn8AtUTwDw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195268998</pqid></control><display><type>article</type><title>Three conserved members of the RNase D family have unique and overlapping functions in the processing of 5S, 5.8S, U4, U5, RNase MRP and RNase P RNAs in yeast</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Van Hoof, A ; Lennertz, P ; Parker, R</creator><creatorcontrib>Van Hoof, A ; Lennertz, P ; Parker, R</creatorcontrib><description>The biogenesis of a number of RNA species in eukaryotic cells requires 3′ processing. To determine the enzymes responsible for these trimming events, we created yeast strains lacking specific 3′ to 5′ exonucleases. In this work, we describe the analysis of three members of the RNase D family of exonucleases (Rex1p, Rex2p and Rex3p). This work led to three important conclusions. First, each of these exonucleases is required for the processing of distinct RNAs. Specifically, Rex1p, Rex2p and Rex3p are required for 5S rRNA, U4 snRNA and MRP RNA trimming, respectively. Secondly, some 3′ exonucleases are redundant with other exonucleases. Specifically, Rex1p and Rex2p function redundantly in 5.8S rRNA maturation, Rex1p, Rex2p and Rex3p are redundant for the processing of U5 snRNA and RNase P RNA, and Rex1p and the exonuclease Rrp6p have an unknown redundant essential function. Thirdly, the demonstration that the Rex proteins can affect reactions that have been attributed previously to the exosome complex indicates that an apparently simple processing step can be surprisingly complex with multiple exonucleases working sequentially in the same pathway.</description><identifier>ISSN: 0261-4189</identifier><identifier>ISSN: 1460-2075</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1093/emboj/19.6.1357</identifier><identifier>PMID: 10716935</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Conserved Sequence - genetics ; Endoribonucleases - genetics ; Endoribonucleases - metabolism ; enzyme activity ; exonuclease ; exonucleases ; Gene Deletion ; Genes, Fungal - genetics ; Genes, Fungal - physiology ; maturation ; MRP RNA ; processing ; Rex1 protein ; Rex1p protein ; Rex2 protein ; Rex2p protein ; Rex3 protein ; Rex3p protein ; ribonuclease D ; Ribonuclease III ; ribonuclease MRP ; Ribonuclease P ; ribonucleases ; Ribonucleases - genetics ; Ribonucleases - metabolism ; ribosomal RNA ; RNA ; rna maturation ; rna processing ; RNA Processing, Post-Transcriptional - genetics ; RNA Stability ; RNA, Catalytic - genetics ; RNA, Fungal - genetics ; RNA, Fungal - metabolism ; RNA, Ribosomal - genetics ; RNA, Ribosomal - metabolism ; RNA, Ribosomal, 5.8S - genetics ; RNA, Ribosomal, 5.8S - metabolism ; RNA, Ribosomal, 5S - genetics ; RNA, Ribosomal, 5S - metabolism ; RNA, Small Nuclear - genetics ; RNA, Small Nuclear - metabolism ; RNA, Transfer, Arg - genetics ; RNA, Transfer, Arg - metabolism ; rRNA 5S ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins ; small nuclear RNA ; snRNA U4 ; snRNA U5 ; Substrate Specificity ; Yeasts</subject><ispartof>The EMBO journal, 2000-03, Vol.19 (6), p.1357-1365</ispartof><rights>European Molecular Biology Organization 2000</rights><rights>Copyright © 2000 European Molecular Biology Organization</rights><rights>Copyright Oxford University Press(England) Mar 15, 2000</rights><rights>Copyright © 2000 European Molecular Biology Organization 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6648-e0cfba2921c6e2804ffa7714550523b0e2dcfc4f2718b73b7f5e57050f39ea533</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC305676/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC305676/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27903,27904,45553,45554,46388,46812,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10716935$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Van Hoof, A</creatorcontrib><creatorcontrib>Lennertz, P</creatorcontrib><creatorcontrib>Parker, R</creatorcontrib><title>Three conserved members of the RNase D family have unique and overlapping functions in the processing of 5S, 5.8S, U4, U5, RNase MRP and RNase P RNAs in yeast</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>The biogenesis of a number of RNA species in eukaryotic cells requires 3′ processing. To determine the enzymes responsible for these trimming events, we created yeast strains lacking specific 3′ to 5′ exonucleases. In this work, we describe the analysis of three members of the RNase D family of exonucleases (Rex1p, Rex2p and Rex3p). This work led to three important conclusions. First, each of these exonucleases is required for the processing of distinct RNAs. Specifically, Rex1p, Rex2p and Rex3p are required for 5S rRNA, U4 snRNA and MRP RNA trimming, respectively. Secondly, some 3′ exonucleases are redundant with other exonucleases. Specifically, Rex1p and Rex2p function redundantly in 5.8S rRNA maturation, Rex1p, Rex2p and Rex3p are redundant for the processing of U5 snRNA and RNase P RNA, and Rex1p and the exonuclease Rrp6p have an unknown redundant essential function. Thirdly, the demonstration that the Rex proteins can affect reactions that have been attributed previously to the exosome complex indicates that an apparently simple processing step can be surprisingly complex with multiple exonucleases working sequentially in the same pathway.</description><subject>Conserved Sequence - genetics</subject><subject>Endoribonucleases - genetics</subject><subject>Endoribonucleases - metabolism</subject><subject>enzyme activity</subject><subject>exonuclease</subject><subject>exonucleases</subject><subject>Gene Deletion</subject><subject>Genes, Fungal - genetics</subject><subject>Genes, Fungal - physiology</subject><subject>maturation</subject><subject>MRP RNA</subject><subject>processing</subject><subject>Rex1 protein</subject><subject>Rex1p protein</subject><subject>Rex2 protein</subject><subject>Rex2p protein</subject><subject>Rex3 protein</subject><subject>Rex3p protein</subject><subject>ribonuclease D</subject><subject>Ribonuclease III</subject><subject>ribonuclease MRP</subject><subject>Ribonuclease P</subject><subject>ribonucleases</subject><subject>Ribonucleases - genetics</subject><subject>Ribonucleases - metabolism</subject><subject>ribosomal RNA</subject><subject>RNA</subject><subject>rna maturation</subject><subject>rna processing</subject><subject>RNA Processing, Post-Transcriptional - genetics</subject><subject>RNA Stability</subject><subject>RNA, Catalytic - genetics</subject><subject>RNA, Fungal - genetics</subject><subject>RNA, Fungal - metabolism</subject><subject>RNA, Ribosomal - genetics</subject><subject>RNA, Ribosomal - metabolism</subject><subject>RNA, Ribosomal, 5.8S - genetics</subject><subject>RNA, Ribosomal, 5.8S - metabolism</subject><subject>RNA, Ribosomal, 5S - genetics</subject><subject>RNA, Ribosomal, 5S - metabolism</subject><subject>RNA, Small Nuclear - genetics</subject><subject>RNA, Small Nuclear - metabolism</subject><subject>RNA, Transfer, Arg - genetics</subject><subject>RNA, Transfer, Arg - metabolism</subject><subject>rRNA 5S</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>small nuclear RNA</subject><subject>snRNA U4</subject><subject>snRNA U5</subject><subject>Substrate Specificity</subject><subject>Yeasts</subject><issn>0261-4189</issn><issn>1460-2075</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFks1v0zAYxiMEYmVw5gYWB05L64_YTg4cxr5gWku1rdrRctPXbUoSFzsp9J_hb8VtqqkgoR1sy3p_z-PHr94oektwn-CMDaCa2uWAZH3RJ4zLZ1GPJALHFEv-POphKkickDQ7il55v8QY81SSl9ERwZKIjPFe9Pt-4QBQbmsPbg0zVAVLcB5Zg5oFoNuR9oDOkdFVUW7QQq8BtXXxowWk6xmya3ClXq2Keo5MW-dNEYxQUe-0K2dz8H5bC2787gTxfhr2SRIWP9l7D2_HO6vuNg7n6c5hA9o3r6MXRpce3uzP42hyeXF_9iW--Xb19ez0Js6FSNIYcG6mmmaU5AJoihNjtJQk4RxzyqYY6Cw3eWKoJOlUsqk0HLjEHBuWgeaMHUefOt9VO61glkPdOF2qlSsq7TbK6kL9XamLhZrbtWKYCymC_uNe72zojW9UVfgcylLXYFuvJM54iMOeBIkMUEpkAD_8Ay5t6-rQBEUyTkWaZWmABh2UO-u9A_OYmGC1HRC1G5CgUEJtByQo3h1-9IDvJiIAaQf8LErYPOWnLoafryXPKE22aXAn9UFVz8EdRP5vnLiTFL6BX4-vafddCckkVw-jKzW8Hp1fJmOhHgL_vuONtkrPXeHV5I5iwjDNEsowZn8AtUTwDw</recordid><startdate>20000315</startdate><enddate>20000315</enddate><creator>Van Hoof, A</creator><creator>Lennertz, P</creator><creator>Parker, R</creator><general>John Wiley & Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>Oxford University Press</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20000315</creationdate><title>Three conserved members of the RNase D family have unique and overlapping functions in the processing of 5S, 5.8S, U4, U5, RNase MRP and RNase P RNAs in yeast</title><author>Van Hoof, A ; Lennertz, P ; Parker, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6648-e0cfba2921c6e2804ffa7714550523b0e2dcfc4f2718b73b7f5e57050f39ea533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Conserved Sequence - genetics</topic><topic>Endoribonucleases - genetics</topic><topic>Endoribonucleases - metabolism</topic><topic>enzyme activity</topic><topic>exonuclease</topic><topic>exonucleases</topic><topic>Gene Deletion</topic><topic>Genes, Fungal - genetics</topic><topic>Genes, Fungal - physiology</topic><topic>maturation</topic><topic>MRP RNA</topic><topic>processing</topic><topic>Rex1 protein</topic><topic>Rex1p protein</topic><topic>Rex2 protein</topic><topic>Rex2p protein</topic><topic>Rex3 protein</topic><topic>Rex3p protein</topic><topic>ribonuclease D</topic><topic>Ribonuclease III</topic><topic>ribonuclease MRP</topic><topic>Ribonuclease P</topic><topic>ribonucleases</topic><topic>Ribonucleases - genetics</topic><topic>Ribonucleases - metabolism</topic><topic>ribosomal RNA</topic><topic>RNA</topic><topic>rna maturation</topic><topic>rna processing</topic><topic>RNA Processing, Post-Transcriptional - genetics</topic><topic>RNA Stability</topic><topic>RNA, Catalytic - genetics</topic><topic>RNA, Fungal - genetics</topic><topic>RNA, Fungal - metabolism</topic><topic>RNA, Ribosomal - genetics</topic><topic>RNA, Ribosomal - metabolism</topic><topic>RNA, Ribosomal, 5.8S - genetics</topic><topic>RNA, Ribosomal, 5.8S - metabolism</topic><topic>RNA, Ribosomal, 5S - genetics</topic><topic>RNA, Ribosomal, 5S - metabolism</topic><topic>RNA, Small Nuclear - genetics</topic><topic>RNA, Small Nuclear - metabolism</topic><topic>RNA, Transfer, Arg - genetics</topic><topic>RNA, Transfer, Arg - metabolism</topic><topic>rRNA 5S</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>small nuclear RNA</topic><topic>snRNA U4</topic><topic>snRNA U5</topic><topic>Substrate Specificity</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Hoof, A</creatorcontrib><creatorcontrib>Lennertz, P</creatorcontrib><creatorcontrib>Parker, R</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Hoof, A</au><au>Lennertz, P</au><au>Parker, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three conserved members of the RNase D family have unique and overlapping functions in the processing of 5S, 5.8S, U4, U5, RNase MRP and RNase P RNAs in yeast</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2000-03-15</date><risdate>2000</risdate><volume>19</volume><issue>6</issue><spage>1357</spage><epage>1365</epage><pages>1357-1365</pages><issn>0261-4189</issn><issn>1460-2075</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>The biogenesis of a number of RNA species in eukaryotic cells requires 3′ processing. To determine the enzymes responsible for these trimming events, we created yeast strains lacking specific 3′ to 5′ exonucleases. In this work, we describe the analysis of three members of the RNase D family of exonucleases (Rex1p, Rex2p and Rex3p). This work led to three important conclusions. First, each of these exonucleases is required for the processing of distinct RNAs. Specifically, Rex1p, Rex2p and Rex3p are required for 5S rRNA, U4 snRNA and MRP RNA trimming, respectively. Secondly, some 3′ exonucleases are redundant with other exonucleases. Specifically, Rex1p and Rex2p function redundantly in 5.8S rRNA maturation, Rex1p, Rex2p and Rex3p are redundant for the processing of U5 snRNA and RNase P RNA, and Rex1p and the exonuclease Rrp6p have an unknown redundant essential function. Thirdly, the demonstration that the Rex proteins can affect reactions that have been attributed previously to the exosome complex indicates that an apparently simple processing step can be surprisingly complex with multiple exonucleases working sequentially in the same pathway.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>10716935</pmid><doi>10.1093/emboj/19.6.1357</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2000-03, Vol.19 (6), p.1357-1365 |
issn | 0261-4189 1460-2075 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_305676 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Conserved Sequence - genetics Endoribonucleases - genetics Endoribonucleases - metabolism enzyme activity exonuclease exonucleases Gene Deletion Genes, Fungal - genetics Genes, Fungal - physiology maturation MRP RNA processing Rex1 protein Rex1p protein Rex2 protein Rex2p protein Rex3 protein Rex3p protein ribonuclease D Ribonuclease III ribonuclease MRP Ribonuclease P ribonucleases Ribonucleases - genetics Ribonucleases - metabolism ribosomal RNA RNA rna maturation rna processing RNA Processing, Post-Transcriptional - genetics RNA Stability RNA, Catalytic - genetics RNA, Fungal - genetics RNA, Fungal - metabolism RNA, Ribosomal - genetics RNA, Ribosomal - metabolism RNA, Ribosomal, 5.8S - genetics RNA, Ribosomal, 5.8S - metabolism RNA, Ribosomal, 5S - genetics RNA, Ribosomal, 5S - metabolism RNA, Small Nuclear - genetics RNA, Small Nuclear - metabolism RNA, Transfer, Arg - genetics RNA, Transfer, Arg - metabolism rRNA 5S Saccharomyces cerevisiae Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins small nuclear RNA snRNA U4 snRNA U5 Substrate Specificity Yeasts |
title | Three conserved members of the RNase D family have unique and overlapping functions in the processing of 5S, 5.8S, U4, U5, RNase MRP and RNase P RNAs in yeast |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T09%3A15%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%20conserved%20members%20of%20the%20RNase%20D%20family%20have%20unique%20and%20overlapping%20functions%20in%20the%20processing%20of%205S,%205.8S,%20U4,%20U5,%20RNase%20MRP%20and%20RNase%20P%20RNAs%20in%20yeast&rft.jtitle=The%20EMBO%20journal&rft.au=Van%20Hoof,%20A&rft.date=2000-03-15&rft.volume=19&rft.issue=6&rft.spage=1357&rft.epage=1365&rft.pages=1357-1365&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1093/emboj/19.6.1357&rft_dat=%3Cproquest_pubme%3E70951453%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195268998&rft_id=info:pmid/10716935&rfr_iscdi=true |