Identifying gene regulatory networks in schizophrenia

The imaging genetics approach to studying the genetic basis of disease leverages the individual strengths of both neuroimaging and genetic studies by visualizing and quantifying the brain activation patterns in the context of genetic background. Brain imaging as an intermediate phenotype can help cl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2010-11, Vol.53 (3), p.839-847
Hauptverfasser: Potkin, Steven G., Macciardi, Fabio, Guffanti, Guia, Fallon, James H., Wang, Qi, Turner, Jessica A., Lakatos, Anita, Miles, Michael F., Lander, Arthur, Vawter, Marquis P., Xie, Xiaohui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 847
container_issue 3
container_start_page 839
container_title NeuroImage (Orlando, Fla.)
container_volume 53
creator Potkin, Steven G.
Macciardi, Fabio
Guffanti, Guia
Fallon, James H.
Wang, Qi
Turner, Jessica A.
Lakatos, Anita
Miles, Michael F.
Lander, Arthur
Vawter, Marquis P.
Xie, Xiaohui
description The imaging genetics approach to studying the genetic basis of disease leverages the individual strengths of both neuroimaging and genetic studies by visualizing and quantifying the brain activation patterns in the context of genetic background. Brain imaging as an intermediate phenotype can help clarify the functional link among genes, the molecular networks in which they participate, and brain circuitry and function. Integrating genetic data from a genome-wide association study (GWAS) with brain imaging as a quantitative trait (QT) phenotype can increase the statistical power to identify risk genes. A QT analysis using brain imaging (DLPFC activation during a working memory task) as a quantitative trait has identified unanticipated risk genes for schizophrenia. Several of these genes (RSRC1, ARHGAP18, ROBO1-ROBO2, GPC1, TNIK, and CTXN3-SLC12A2) have functions related to progenitor cell proliferation, migration, and differentiation, cytoskeleton reorganization, axonal connectivity, and development of forebrain structures. These genes, however, do not function in isolation but rather through gene regulatory networks. To obtain a deeper understanding how the GWAS-identified genes participate in larger gene regulatory networks, we measured correlations among transcript levels in the mouse and human postmortem tissue and performed a gene set enrichment analysis (GSEA) that identified several microRNA associated with schizophrenia (448, 218, 137). The results of such computational approaches can be further validated in animal experiments in which the networks are experimentally studied and perturbed with specific compounds. Glypican 1 and FGF17 mouse models for example, can be used to study such gene regulatory networks. The model demonstrates epistatic interactions between FGF and glypican on brain development and may be a useful model of negative symptom schizophrenia. ► Brain imaging as a QT phenotype has increased power in identifying risk genes. ► Genes for complex traits do not work in isolation but in gene regulatory networks. ► Schizophrenia associated miRNAs were identified by gene set enrichment analyses. ► Postmortem human and animal transcript levels reveal gene regulatory networks. ► Computational networks identified Glypican1 and FGF17 mouse models of schizophrenia.
doi_str_mv 10.1016/j.neuroimage.2010.06.036
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3055795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811910008803</els_id><sourcerecordid>754004298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-59cb35fae3d148a25aac64343ed00e936f32d97100e5f0d71dd5ac8ce24431123</originalsourceid><addsrcrecordid>eNqFkctu1DAUhiMEoqXwCigSC1YZjq-xN0hQUahUiQ2sLdc-yXjI2IOdtBqevh5NKZdNVz62v_Ofy980LYEVASLfbVYRl5zC1o64olCfQa6AySfNKQEtOi16-vQQC9YpQvRJ86KUDQBowtXz5oSCrLFSp4249BjnMOxDHNsRI7YZx2Wyc8r7NuJ8m_KP0obYFrcOv9JunTEG-7J5Ntip4Kv786z5fvHp2_mX7urr58vzD1edE0zNndDumonBIvO1rqXCWic54ww9AGomB0a97km9iAF8T7wX1imHlHNGCGVnzfuj7m653qJ3tdVsJ7PLdfK8N8kG8-9PDGszphvDQIheiyrw9l4gp58LltlsQ3E4TTZiWopRvaRcAJWPkr3gAJxqVck3_5GbtORY92CIAKm4AnnQU0fK5VRKxuGhawLmYKLZmD8mmoOJBqSpJtbU139P_ZD427UKfDwCWHd_EzCb4gJGhz5kdLPxKTxe5Q7llLNG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506848066</pqid></control><display><type>article</type><title>Identifying gene regulatory networks in schizophrenia</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>ProQuest Central UK/Ireland</source><creator>Potkin, Steven G. ; Macciardi, Fabio ; Guffanti, Guia ; Fallon, James H. ; Wang, Qi ; Turner, Jessica A. ; Lakatos, Anita ; Miles, Michael F. ; Lander, Arthur ; Vawter, Marquis P. ; Xie, Xiaohui</creator><creatorcontrib>Potkin, Steven G. ; Macciardi, Fabio ; Guffanti, Guia ; Fallon, James H. ; Wang, Qi ; Turner, Jessica A. ; Lakatos, Anita ; Miles, Michael F. ; Lander, Arthur ; Vawter, Marquis P. ; Xie, Xiaohui</creatorcontrib><description>The imaging genetics approach to studying the genetic basis of disease leverages the individual strengths of both neuroimaging and genetic studies by visualizing and quantifying the brain activation patterns in the context of genetic background. Brain imaging as an intermediate phenotype can help clarify the functional link among genes, the molecular networks in which they participate, and brain circuitry and function. Integrating genetic data from a genome-wide association study (GWAS) with brain imaging as a quantitative trait (QT) phenotype can increase the statistical power to identify risk genes. A QT analysis using brain imaging (DLPFC activation during a working memory task) as a quantitative trait has identified unanticipated risk genes for schizophrenia. Several of these genes (RSRC1, ARHGAP18, ROBO1-ROBO2, GPC1, TNIK, and CTXN3-SLC12A2) have functions related to progenitor cell proliferation, migration, and differentiation, cytoskeleton reorganization, axonal connectivity, and development of forebrain structures. These genes, however, do not function in isolation but rather through gene regulatory networks. To obtain a deeper understanding how the GWAS-identified genes participate in larger gene regulatory networks, we measured correlations among transcript levels in the mouse and human postmortem tissue and performed a gene set enrichment analysis (GSEA) that identified several microRNA associated with schizophrenia (448, 218, 137). The results of such computational approaches can be further validated in animal experiments in which the networks are experimentally studied and perturbed with specific compounds. Glypican 1 and FGF17 mouse models for example, can be used to study such gene regulatory networks. The model demonstrates epistatic interactions between FGF and glypican on brain development and may be a useful model of negative symptom schizophrenia. ► Brain imaging as a QT phenotype has increased power in identifying risk genes. ► Genes for complex traits do not work in isolation but in gene regulatory networks. ► Schizophrenia associated miRNAs were identified by gene set enrichment analyses. ► Postmortem human and animal transcript levels reveal gene regulatory networks. ► Computational networks identified Glypican1 and FGF17 mouse models of schizophrenia.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2010.06.036</identifier><identifier>PMID: 20600988</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animal models ; Animals ; Bipolar disorder ; Diagnostic Imaging - methods ; Fibroblast Growth Factors - biosynthesis ; Gene expression ; Gene Regulatory Networks - genetics ; Genetic Predisposition to Disease ; Genetics ; Genome-Wide Association Study ; Genomes ; Glypicans - biosynthesis ; Humans ; Hypotheses ; Medical imaging ; Mice ; MicroRNAs ; Schizophrenia ; Schizophrenia - genetics ; Studies</subject><ispartof>NeuroImage (Orlando, Fla.), 2010-11, Vol.53 (3), p.839-847</ispartof><rights>2010 Elsevier Inc.</rights><rights>Copyright 2010 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Nov 15, 2010</rights><rights>2010 Elsevier Inc. All rights reserved. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-59cb35fae3d148a25aac64343ed00e936f32d97100e5f0d71dd5ac8ce24431123</citedby><cites>FETCH-LOGICAL-c538t-59cb35fae3d148a25aac64343ed00e936f32d97100e5f0d71dd5ac8ce24431123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1506848066?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20600988$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Potkin, Steven G.</creatorcontrib><creatorcontrib>Macciardi, Fabio</creatorcontrib><creatorcontrib>Guffanti, Guia</creatorcontrib><creatorcontrib>Fallon, James H.</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Turner, Jessica A.</creatorcontrib><creatorcontrib>Lakatos, Anita</creatorcontrib><creatorcontrib>Miles, Michael F.</creatorcontrib><creatorcontrib>Lander, Arthur</creatorcontrib><creatorcontrib>Vawter, Marquis P.</creatorcontrib><creatorcontrib>Xie, Xiaohui</creatorcontrib><title>Identifying gene regulatory networks in schizophrenia</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>The imaging genetics approach to studying the genetic basis of disease leverages the individual strengths of both neuroimaging and genetic studies by visualizing and quantifying the brain activation patterns in the context of genetic background. Brain imaging as an intermediate phenotype can help clarify the functional link among genes, the molecular networks in which they participate, and brain circuitry and function. Integrating genetic data from a genome-wide association study (GWAS) with brain imaging as a quantitative trait (QT) phenotype can increase the statistical power to identify risk genes. A QT analysis using brain imaging (DLPFC activation during a working memory task) as a quantitative trait has identified unanticipated risk genes for schizophrenia. Several of these genes (RSRC1, ARHGAP18, ROBO1-ROBO2, GPC1, TNIK, and CTXN3-SLC12A2) have functions related to progenitor cell proliferation, migration, and differentiation, cytoskeleton reorganization, axonal connectivity, and development of forebrain structures. These genes, however, do not function in isolation but rather through gene regulatory networks. To obtain a deeper understanding how the GWAS-identified genes participate in larger gene regulatory networks, we measured correlations among transcript levels in the mouse and human postmortem tissue and performed a gene set enrichment analysis (GSEA) that identified several microRNA associated with schizophrenia (448, 218, 137). The results of such computational approaches can be further validated in animal experiments in which the networks are experimentally studied and perturbed with specific compounds. Glypican 1 and FGF17 mouse models for example, can be used to study such gene regulatory networks. The model demonstrates epistatic interactions between FGF and glypican on brain development and may be a useful model of negative symptom schizophrenia. ► Brain imaging as a QT phenotype has increased power in identifying risk genes. ► Genes for complex traits do not work in isolation but in gene regulatory networks. ► Schizophrenia associated miRNAs were identified by gene set enrichment analyses. ► Postmortem human and animal transcript levels reveal gene regulatory networks. ► Computational networks identified Glypican1 and FGF17 mouse models of schizophrenia.</description><subject>Animal models</subject><subject>Animals</subject><subject>Bipolar disorder</subject><subject>Diagnostic Imaging - methods</subject><subject>Fibroblast Growth Factors - biosynthesis</subject><subject>Gene expression</subject><subject>Gene Regulatory Networks - genetics</subject><subject>Genetic Predisposition to Disease</subject><subject>Genetics</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Glypicans - biosynthesis</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Medical imaging</subject><subject>Mice</subject><subject>MicroRNAs</subject><subject>Schizophrenia</subject><subject>Schizophrenia - genetics</subject><subject>Studies</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkctu1DAUhiMEoqXwCigSC1YZjq-xN0hQUahUiQ2sLdc-yXjI2IOdtBqevh5NKZdNVz62v_Ofy980LYEVASLfbVYRl5zC1o64olCfQa6AySfNKQEtOi16-vQQC9YpQvRJ86KUDQBowtXz5oSCrLFSp4249BjnMOxDHNsRI7YZx2Wyc8r7NuJ8m_KP0obYFrcOv9JunTEG-7J5Ntip4Kv786z5fvHp2_mX7urr58vzD1edE0zNndDumonBIvO1rqXCWic54ww9AGomB0a97km9iAF8T7wX1imHlHNGCGVnzfuj7m653qJ3tdVsJ7PLdfK8N8kG8-9PDGszphvDQIheiyrw9l4gp58LltlsQ3E4TTZiWopRvaRcAJWPkr3gAJxqVck3_5GbtORY92CIAKm4AnnQU0fK5VRKxuGhawLmYKLZmD8mmoOJBqSpJtbU139P_ZD427UKfDwCWHd_EzCb4gJGhz5kdLPxKTxe5Q7llLNG</recordid><startdate>20101115</startdate><enddate>20101115</enddate><creator>Potkin, Steven G.</creator><creator>Macciardi, Fabio</creator><creator>Guffanti, Guia</creator><creator>Fallon, James H.</creator><creator>Wang, Qi</creator><creator>Turner, Jessica A.</creator><creator>Lakatos, Anita</creator><creator>Miles, Michael F.</creator><creator>Lander, Arthur</creator><creator>Vawter, Marquis P.</creator><creator>Xie, Xiaohui</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope><scope>5PM</scope></search><sort><creationdate>20101115</creationdate><title>Identifying gene regulatory networks in schizophrenia</title><author>Potkin, Steven G. ; Macciardi, Fabio ; Guffanti, Guia ; Fallon, James H. ; Wang, Qi ; Turner, Jessica A. ; Lakatos, Anita ; Miles, Michael F. ; Lander, Arthur ; Vawter, Marquis P. ; Xie, Xiaohui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-59cb35fae3d148a25aac64343ed00e936f32d97100e5f0d71dd5ac8ce24431123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Bipolar disorder</topic><topic>Diagnostic Imaging - methods</topic><topic>Fibroblast Growth Factors - biosynthesis</topic><topic>Gene expression</topic><topic>Gene Regulatory Networks - genetics</topic><topic>Genetic Predisposition to Disease</topic><topic>Genetics</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Glypicans - biosynthesis</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Medical imaging</topic><topic>Mice</topic><topic>MicroRNAs</topic><topic>Schizophrenia</topic><topic>Schizophrenia - genetics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Potkin, Steven G.</creatorcontrib><creatorcontrib>Macciardi, Fabio</creatorcontrib><creatorcontrib>Guffanti, Guia</creatorcontrib><creatorcontrib>Fallon, James H.</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Turner, Jessica A.</creatorcontrib><creatorcontrib>Lakatos, Anita</creatorcontrib><creatorcontrib>Miles, Michael F.</creatorcontrib><creatorcontrib>Lander, Arthur</creatorcontrib><creatorcontrib>Vawter, Marquis P.</creatorcontrib><creatorcontrib>Xie, Xiaohui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Potkin, Steven G.</au><au>Macciardi, Fabio</au><au>Guffanti, Guia</au><au>Fallon, James H.</au><au>Wang, Qi</au><au>Turner, Jessica A.</au><au>Lakatos, Anita</au><au>Miles, Michael F.</au><au>Lander, Arthur</au><au>Vawter, Marquis P.</au><au>Xie, Xiaohui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying gene regulatory networks in schizophrenia</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2010-11-15</date><risdate>2010</risdate><volume>53</volume><issue>3</issue><spage>839</spage><epage>847</epage><pages>839-847</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>The imaging genetics approach to studying the genetic basis of disease leverages the individual strengths of both neuroimaging and genetic studies by visualizing and quantifying the brain activation patterns in the context of genetic background. Brain imaging as an intermediate phenotype can help clarify the functional link among genes, the molecular networks in which they participate, and brain circuitry and function. Integrating genetic data from a genome-wide association study (GWAS) with brain imaging as a quantitative trait (QT) phenotype can increase the statistical power to identify risk genes. A QT analysis using brain imaging (DLPFC activation during a working memory task) as a quantitative trait has identified unanticipated risk genes for schizophrenia. Several of these genes (RSRC1, ARHGAP18, ROBO1-ROBO2, GPC1, TNIK, and CTXN3-SLC12A2) have functions related to progenitor cell proliferation, migration, and differentiation, cytoskeleton reorganization, axonal connectivity, and development of forebrain structures. These genes, however, do not function in isolation but rather through gene regulatory networks. To obtain a deeper understanding how the GWAS-identified genes participate in larger gene regulatory networks, we measured correlations among transcript levels in the mouse and human postmortem tissue and performed a gene set enrichment analysis (GSEA) that identified several microRNA associated with schizophrenia (448, 218, 137). The results of such computational approaches can be further validated in animal experiments in which the networks are experimentally studied and perturbed with specific compounds. Glypican 1 and FGF17 mouse models for example, can be used to study such gene regulatory networks. The model demonstrates epistatic interactions between FGF and glypican on brain development and may be a useful model of negative symptom schizophrenia. ► Brain imaging as a QT phenotype has increased power in identifying risk genes. ► Genes for complex traits do not work in isolation but in gene regulatory networks. ► Schizophrenia associated miRNAs were identified by gene set enrichment analyses. ► Postmortem human and animal transcript levels reveal gene regulatory networks. ► Computational networks identified Glypican1 and FGF17 mouse models of schizophrenia.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20600988</pmid><doi>10.1016/j.neuroimage.2010.06.036</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2010-11, Vol.53 (3), p.839-847
issn 1053-8119
1095-9572
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3055795
source MEDLINE; Elsevier ScienceDirect Journals Complete; ProQuest Central UK/Ireland
subjects Animal models
Animals
Bipolar disorder
Diagnostic Imaging - methods
Fibroblast Growth Factors - biosynthesis
Gene expression
Gene Regulatory Networks - genetics
Genetic Predisposition to Disease
Genetics
Genome-Wide Association Study
Genomes
Glypicans - biosynthesis
Humans
Hypotheses
Medical imaging
Mice
MicroRNAs
Schizophrenia
Schizophrenia - genetics
Studies
title Identifying gene regulatory networks in schizophrenia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A39%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20gene%20regulatory%20networks%20in%20schizophrenia&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Potkin,%20Steven%20G.&rft.date=2010-11-15&rft.volume=53&rft.issue=3&rft.spage=839&rft.epage=847&rft.pages=839-847&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2010.06.036&rft_dat=%3Cproquest_pubme%3E754004298%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506848066&rft_id=info:pmid/20600988&rft_els_id=S1053811910008803&rfr_iscdi=true