Three-dimensional molecular modeling with single molecule FRET
Single molecule fluorescence energy transfer experiments enable investigations of macromolecular conformation and folding by the introduction of fluorescent dyes at specific sites in the macromolecule. Multiple such experiments can be performed with different labeling site combinations in order to m...
Gespeichert in:
Veröffentlicht in: | Journal of structural biology 2011-03, Vol.173 (3), p.497-505 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 505 |
---|---|
container_issue | 3 |
container_start_page | 497 |
container_title | Journal of structural biology |
container_volume | 173 |
creator | Brunger, Axel T. Strop, Pavel Vrljic, Marija Chu, Steven Weninger, Keith R. |
description | Single molecule fluorescence energy transfer experiments enable investigations of macromolecular conformation and folding by the introduction of fluorescent dyes at specific sites in the macromolecule. Multiple such experiments can be performed with different labeling site combinations in order to map complex conformational changes or interactions between multiple molecules. Distances that are derived from such experiments can be used for determination of the fluorophore positions by triangulation. When combined with a known structure of the macromolecule(s) to which the fluorophores are attached, a three-dimensional model of the system can be determined. However, care has to be taken to properly derive distance from fluorescence energy transfer efficiency and to recognize the systematic or random errors for this relationship. Here we review the experimental and computational methods used for three-dimensional modeling based on single molecule fluorescence resonance transfer, and describe recent progress in pushing the limits of this approach to macromolecular complexes. |
doi_str_mv | 10.1016/j.jsb.2010.09.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3051805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S104784771000273X</els_id><sourcerecordid>851933794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-a99d3212ca53c3f32b8a2839e408448b4ad809ff6c083c4a89623236bb14c283</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoVqs_wIv05mlrvnY3QShIaVUoCNJ7yGZn25Tsbk22Ff-9Kf1AL54yYZ55Z3gQuiN4SDDJHlfDVSiGFMc_lkOM-Rm6IlimicjS_HxX8zwRPM976DqEFY4EoeQS9SgWLCc8u0Kj-dIDJKWtoQm2bbQb1K0Ds3Hax6oEZ5vF4Mt2y0GIlYNjGwbTj8n8Bl1U2gW4Pbx9NJ9O5uPXZPb-8jZ-niWGp7hLtJQlo4QanTLDKkYLoalgEjgWnIuC61JgWVWZiYcZroXMKKMsKwrCTQT7aLSPXW-KGkoDTee1U2tva-2_Vaut-ttp7FIt2q1iOCUCpzHg4RDg288NhE7VNhhwTjfQboISKZGM5ZJHkuxJ49sQPFSnLQSrnXW1UtG62llXWKroNM7c_z7vNHHUHIGnPQDR0daCV8FYaAyU1oPpVNnaf-J_ACjmksU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>851933794</pqid></control><display><type>article</type><title>Three-dimensional molecular modeling with single molecule FRET</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Brunger, Axel T. ; Strop, Pavel ; Vrljic, Marija ; Chu, Steven ; Weninger, Keith R.</creator><creatorcontrib>Brunger, Axel T. ; Strop, Pavel ; Vrljic, Marija ; Chu, Steven ; Weninger, Keith R.</creatorcontrib><description>Single molecule fluorescence energy transfer experiments enable investigations of macromolecular conformation and folding by the introduction of fluorescent dyes at specific sites in the macromolecule. Multiple such experiments can be performed with different labeling site combinations in order to map complex conformational changes or interactions between multiple molecules. Distances that are derived from such experiments can be used for determination of the fluorophore positions by triangulation. When combined with a known structure of the macromolecule(s) to which the fluorophores are attached, a three-dimensional model of the system can be determined. However, care has to be taken to properly derive distance from fluorescence energy transfer efficiency and to recognize the systematic or random errors for this relationship. Here we review the experimental and computational methods used for three-dimensional modeling based on single molecule fluorescence resonance transfer, and describe recent progress in pushing the limits of this approach to macromolecular complexes.</description><identifier>ISSN: 1047-8477</identifier><identifier>EISSN: 1095-8657</identifier><identifier>DOI: 10.1016/j.jsb.2010.09.004</identifier><identifier>PMID: 20837146</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Computer Simulation ; Fluorescence Resonance Energy Transfer - methods ; Fluorescent Dyes - chemistry ; FRET ; Image Processing, Computer-Assisted ; Macromolecular Substances - chemistry ; Models, Molecular ; Molecular Conformation ; Molecular dynamics ; Protein–protein interactions ; Single molecule fluorescence</subject><ispartof>Journal of structural biology, 2011-03, Vol.173 (3), p.497-505</ispartof><rights>2010 Elsevier Inc.</rights><rights>Copyright © 2010 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-a99d3212ca53c3f32b8a2839e408448b4ad809ff6c083c4a89623236bb14c283</citedby><cites>FETCH-LOGICAL-c450t-a99d3212ca53c3f32b8a2839e408448b4ad809ff6c083c4a89623236bb14c283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S104784771000273X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20837146$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brunger, Axel T.</creatorcontrib><creatorcontrib>Strop, Pavel</creatorcontrib><creatorcontrib>Vrljic, Marija</creatorcontrib><creatorcontrib>Chu, Steven</creatorcontrib><creatorcontrib>Weninger, Keith R.</creatorcontrib><title>Three-dimensional molecular modeling with single molecule FRET</title><title>Journal of structural biology</title><addtitle>J Struct Biol</addtitle><description>Single molecule fluorescence energy transfer experiments enable investigations of macromolecular conformation and folding by the introduction of fluorescent dyes at specific sites in the macromolecule. Multiple such experiments can be performed with different labeling site combinations in order to map complex conformational changes or interactions between multiple molecules. Distances that are derived from such experiments can be used for determination of the fluorophore positions by triangulation. When combined with a known structure of the macromolecule(s) to which the fluorophores are attached, a three-dimensional model of the system can be determined. However, care has to be taken to properly derive distance from fluorescence energy transfer efficiency and to recognize the systematic or random errors for this relationship. Here we review the experimental and computational methods used for three-dimensional modeling based on single molecule fluorescence resonance transfer, and describe recent progress in pushing the limits of this approach to macromolecular complexes.</description><subject>Computer Simulation</subject><subject>Fluorescence Resonance Energy Transfer - methods</subject><subject>Fluorescent Dyes - chemistry</subject><subject>FRET</subject><subject>Image Processing, Computer-Assisted</subject><subject>Macromolecular Substances - chemistry</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Molecular dynamics</subject><subject>Protein–protein interactions</subject><subject>Single molecule fluorescence</subject><issn>1047-8477</issn><issn>1095-8657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEQhoMoVqs_wIv05mlrvnY3QShIaVUoCNJ7yGZn25Tsbk22Ff-9Kf1AL54yYZ55Z3gQuiN4SDDJHlfDVSiGFMc_lkOM-Rm6IlimicjS_HxX8zwRPM976DqEFY4EoeQS9SgWLCc8u0Kj-dIDJKWtoQm2bbQb1K0Ds3Hax6oEZ5vF4Mt2y0GIlYNjGwbTj8n8Bl1U2gW4Pbx9NJ9O5uPXZPb-8jZ-niWGp7hLtJQlo4QanTLDKkYLoalgEjgWnIuC61JgWVWZiYcZroXMKKMsKwrCTQT7aLSPXW-KGkoDTee1U2tva-2_Vaut-ttp7FIt2q1iOCUCpzHg4RDg288NhE7VNhhwTjfQboISKZGM5ZJHkuxJ49sQPFSnLQSrnXW1UtG62llXWKroNM7c_z7vNHHUHIGnPQDR0daCV8FYaAyU1oPpVNnaf-J_ACjmksU</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Brunger, Axel T.</creator><creator>Strop, Pavel</creator><creator>Vrljic, Marija</creator><creator>Chu, Steven</creator><creator>Weninger, Keith R.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110301</creationdate><title>Three-dimensional molecular modeling with single molecule FRET</title><author>Brunger, Axel T. ; Strop, Pavel ; Vrljic, Marija ; Chu, Steven ; Weninger, Keith R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-a99d3212ca53c3f32b8a2839e408448b4ad809ff6c083c4a89623236bb14c283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computer Simulation</topic><topic>Fluorescence Resonance Energy Transfer - methods</topic><topic>Fluorescent Dyes - chemistry</topic><topic>FRET</topic><topic>Image Processing, Computer-Assisted</topic><topic>Macromolecular Substances - chemistry</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Molecular dynamics</topic><topic>Protein–protein interactions</topic><topic>Single molecule fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brunger, Axel T.</creatorcontrib><creatorcontrib>Strop, Pavel</creatorcontrib><creatorcontrib>Vrljic, Marija</creatorcontrib><creatorcontrib>Chu, Steven</creatorcontrib><creatorcontrib>Weninger, Keith R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of structural biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brunger, Axel T.</au><au>Strop, Pavel</au><au>Vrljic, Marija</au><au>Chu, Steven</au><au>Weninger, Keith R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional molecular modeling with single molecule FRET</atitle><jtitle>Journal of structural biology</jtitle><addtitle>J Struct Biol</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>173</volume><issue>3</issue><spage>497</spage><epage>505</epage><pages>497-505</pages><issn>1047-8477</issn><eissn>1095-8657</eissn><abstract>Single molecule fluorescence energy transfer experiments enable investigations of macromolecular conformation and folding by the introduction of fluorescent dyes at specific sites in the macromolecule. Multiple such experiments can be performed with different labeling site combinations in order to map complex conformational changes or interactions between multiple molecules. Distances that are derived from such experiments can be used for determination of the fluorophore positions by triangulation. When combined with a known structure of the macromolecule(s) to which the fluorophores are attached, a three-dimensional model of the system can be determined. However, care has to be taken to properly derive distance from fluorescence energy transfer efficiency and to recognize the systematic or random errors for this relationship. Here we review the experimental and computational methods used for three-dimensional modeling based on single molecule fluorescence resonance transfer, and describe recent progress in pushing the limits of this approach to macromolecular complexes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20837146</pmid><doi>10.1016/j.jsb.2010.09.004</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-8477 |
ispartof | Journal of structural biology, 2011-03, Vol.173 (3), p.497-505 |
issn | 1047-8477 1095-8657 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3051805 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Computer Simulation Fluorescence Resonance Energy Transfer - methods Fluorescent Dyes - chemistry FRET Image Processing, Computer-Assisted Macromolecular Substances - chemistry Models, Molecular Molecular Conformation Molecular dynamics Protein–protein interactions Single molecule fluorescence |
title | Three-dimensional molecular modeling with single molecule FRET |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A33%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20molecular%20modeling%20with%20single%20molecule%20FRET&rft.jtitle=Journal%20of%20structural%20biology&rft.au=Brunger,%20Axel%20T.&rft.date=2011-03-01&rft.volume=173&rft.issue=3&rft.spage=497&rft.epage=505&rft.pages=497-505&rft.issn=1047-8477&rft.eissn=1095-8657&rft_id=info:doi/10.1016/j.jsb.2010.09.004&rft_dat=%3Cproquest_pubme%3E851933794%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=851933794&rft_id=info:pmid/20837146&rft_els_id=S104784771000273X&rfr_iscdi=true |