Three-dimensional molecular modeling with single molecule FRET

Single molecule fluorescence energy transfer experiments enable investigations of macromolecular conformation and folding by the introduction of fluorescent dyes at specific sites in the macromolecule. Multiple such experiments can be performed with different labeling site combinations in order to m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of structural biology 2011-03, Vol.173 (3), p.497-505
Hauptverfasser: Brunger, Axel T., Strop, Pavel, Vrljic, Marija, Chu, Steven, Weninger, Keith R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 505
container_issue 3
container_start_page 497
container_title Journal of structural biology
container_volume 173
creator Brunger, Axel T.
Strop, Pavel
Vrljic, Marija
Chu, Steven
Weninger, Keith R.
description Single molecule fluorescence energy transfer experiments enable investigations of macromolecular conformation and folding by the introduction of fluorescent dyes at specific sites in the macromolecule. Multiple such experiments can be performed with different labeling site combinations in order to map complex conformational changes or interactions between multiple molecules. Distances that are derived from such experiments can be used for determination of the fluorophore positions by triangulation. When combined with a known structure of the macromolecule(s) to which the fluorophores are attached, a three-dimensional model of the system can be determined. However, care has to be taken to properly derive distance from fluorescence energy transfer efficiency and to recognize the systematic or random errors for this relationship. Here we review the experimental and computational methods used for three-dimensional modeling based on single molecule fluorescence resonance transfer, and describe recent progress in pushing the limits of this approach to macromolecular complexes.
doi_str_mv 10.1016/j.jsb.2010.09.004
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3051805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S104784771000273X</els_id><sourcerecordid>851933794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-a99d3212ca53c3f32b8a2839e408448b4ad809ff6c083c4a89623236bb14c283</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoVqs_wIv05mlrvnY3QShIaVUoCNJ7yGZn25Tsbk22Ff-9Kf1AL54yYZ55Z3gQuiN4SDDJHlfDVSiGFMc_lkOM-Rm6IlimicjS_HxX8zwRPM976DqEFY4EoeQS9SgWLCc8u0Kj-dIDJKWtoQm2bbQb1K0Ds3Hax6oEZ5vF4Mt2y0GIlYNjGwbTj8n8Bl1U2gW4Pbx9NJ9O5uPXZPb-8jZ-niWGp7hLtJQlo4QanTLDKkYLoalgEjgWnIuC61JgWVWZiYcZroXMKKMsKwrCTQT7aLSPXW-KGkoDTee1U2tva-2_Vaut-ttp7FIt2q1iOCUCpzHg4RDg288NhE7VNhhwTjfQboISKZGM5ZJHkuxJ49sQPFSnLQSrnXW1UtG62llXWKroNM7c_z7vNHHUHIGnPQDR0daCV8FYaAyU1oPpVNnaf-J_ACjmksU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>851933794</pqid></control><display><type>article</type><title>Three-dimensional molecular modeling with single molecule FRET</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Brunger, Axel T. ; Strop, Pavel ; Vrljic, Marija ; Chu, Steven ; Weninger, Keith R.</creator><creatorcontrib>Brunger, Axel T. ; Strop, Pavel ; Vrljic, Marija ; Chu, Steven ; Weninger, Keith R.</creatorcontrib><description>Single molecule fluorescence energy transfer experiments enable investigations of macromolecular conformation and folding by the introduction of fluorescent dyes at specific sites in the macromolecule. Multiple such experiments can be performed with different labeling site combinations in order to map complex conformational changes or interactions between multiple molecules. Distances that are derived from such experiments can be used for determination of the fluorophore positions by triangulation. When combined with a known structure of the macromolecule(s) to which the fluorophores are attached, a three-dimensional model of the system can be determined. However, care has to be taken to properly derive distance from fluorescence energy transfer efficiency and to recognize the systematic or random errors for this relationship. Here we review the experimental and computational methods used for three-dimensional modeling based on single molecule fluorescence resonance transfer, and describe recent progress in pushing the limits of this approach to macromolecular complexes.</description><identifier>ISSN: 1047-8477</identifier><identifier>EISSN: 1095-8657</identifier><identifier>DOI: 10.1016/j.jsb.2010.09.004</identifier><identifier>PMID: 20837146</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Computer Simulation ; Fluorescence Resonance Energy Transfer - methods ; Fluorescent Dyes - chemistry ; FRET ; Image Processing, Computer-Assisted ; Macromolecular Substances - chemistry ; Models, Molecular ; Molecular Conformation ; Molecular dynamics ; Protein–protein interactions ; Single molecule fluorescence</subject><ispartof>Journal of structural biology, 2011-03, Vol.173 (3), p.497-505</ispartof><rights>2010 Elsevier Inc.</rights><rights>Copyright © 2010 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-a99d3212ca53c3f32b8a2839e408448b4ad809ff6c083c4a89623236bb14c283</citedby><cites>FETCH-LOGICAL-c450t-a99d3212ca53c3f32b8a2839e408448b4ad809ff6c083c4a89623236bb14c283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S104784771000273X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20837146$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brunger, Axel T.</creatorcontrib><creatorcontrib>Strop, Pavel</creatorcontrib><creatorcontrib>Vrljic, Marija</creatorcontrib><creatorcontrib>Chu, Steven</creatorcontrib><creatorcontrib>Weninger, Keith R.</creatorcontrib><title>Three-dimensional molecular modeling with single molecule FRET</title><title>Journal of structural biology</title><addtitle>J Struct Biol</addtitle><description>Single molecule fluorescence energy transfer experiments enable investigations of macromolecular conformation and folding by the introduction of fluorescent dyes at specific sites in the macromolecule. Multiple such experiments can be performed with different labeling site combinations in order to map complex conformational changes or interactions between multiple molecules. Distances that are derived from such experiments can be used for determination of the fluorophore positions by triangulation. When combined with a known structure of the macromolecule(s) to which the fluorophores are attached, a three-dimensional model of the system can be determined. However, care has to be taken to properly derive distance from fluorescence energy transfer efficiency and to recognize the systematic or random errors for this relationship. Here we review the experimental and computational methods used for three-dimensional modeling based on single molecule fluorescence resonance transfer, and describe recent progress in pushing the limits of this approach to macromolecular complexes.</description><subject>Computer Simulation</subject><subject>Fluorescence Resonance Energy Transfer - methods</subject><subject>Fluorescent Dyes - chemistry</subject><subject>FRET</subject><subject>Image Processing, Computer-Assisted</subject><subject>Macromolecular Substances - chemistry</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Molecular dynamics</subject><subject>Protein–protein interactions</subject><subject>Single molecule fluorescence</subject><issn>1047-8477</issn><issn>1095-8657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEQhoMoVqs_wIv05mlrvnY3QShIaVUoCNJ7yGZn25Tsbk22Ff-9Kf1AL54yYZ55Z3gQuiN4SDDJHlfDVSiGFMc_lkOM-Rm6IlimicjS_HxX8zwRPM976DqEFY4EoeQS9SgWLCc8u0Kj-dIDJKWtoQm2bbQb1K0Ds3Hax6oEZ5vF4Mt2y0GIlYNjGwbTj8n8Bl1U2gW4Pbx9NJ9O5uPXZPb-8jZ-niWGp7hLtJQlo4QanTLDKkYLoalgEjgWnIuC61JgWVWZiYcZroXMKKMsKwrCTQT7aLSPXW-KGkoDTee1U2tva-2_Vaut-ttp7FIt2q1iOCUCpzHg4RDg288NhE7VNhhwTjfQboISKZGM5ZJHkuxJ49sQPFSnLQSrnXW1UtG62llXWKroNM7c_z7vNHHUHIGnPQDR0daCV8FYaAyU1oPpVNnaf-J_ACjmksU</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Brunger, Axel T.</creator><creator>Strop, Pavel</creator><creator>Vrljic, Marija</creator><creator>Chu, Steven</creator><creator>Weninger, Keith R.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110301</creationdate><title>Three-dimensional molecular modeling with single molecule FRET</title><author>Brunger, Axel T. ; Strop, Pavel ; Vrljic, Marija ; Chu, Steven ; Weninger, Keith R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-a99d3212ca53c3f32b8a2839e408448b4ad809ff6c083c4a89623236bb14c283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computer Simulation</topic><topic>Fluorescence Resonance Energy Transfer - methods</topic><topic>Fluorescent Dyes - chemistry</topic><topic>FRET</topic><topic>Image Processing, Computer-Assisted</topic><topic>Macromolecular Substances - chemistry</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Molecular dynamics</topic><topic>Protein–protein interactions</topic><topic>Single molecule fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brunger, Axel T.</creatorcontrib><creatorcontrib>Strop, Pavel</creatorcontrib><creatorcontrib>Vrljic, Marija</creatorcontrib><creatorcontrib>Chu, Steven</creatorcontrib><creatorcontrib>Weninger, Keith R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of structural biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brunger, Axel T.</au><au>Strop, Pavel</au><au>Vrljic, Marija</au><au>Chu, Steven</au><au>Weninger, Keith R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional molecular modeling with single molecule FRET</atitle><jtitle>Journal of structural biology</jtitle><addtitle>J Struct Biol</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>173</volume><issue>3</issue><spage>497</spage><epage>505</epage><pages>497-505</pages><issn>1047-8477</issn><eissn>1095-8657</eissn><abstract>Single molecule fluorescence energy transfer experiments enable investigations of macromolecular conformation and folding by the introduction of fluorescent dyes at specific sites in the macromolecule. Multiple such experiments can be performed with different labeling site combinations in order to map complex conformational changes or interactions between multiple molecules. Distances that are derived from such experiments can be used for determination of the fluorophore positions by triangulation. When combined with a known structure of the macromolecule(s) to which the fluorophores are attached, a three-dimensional model of the system can be determined. However, care has to be taken to properly derive distance from fluorescence energy transfer efficiency and to recognize the systematic or random errors for this relationship. Here we review the experimental and computational methods used for three-dimensional modeling based on single molecule fluorescence resonance transfer, and describe recent progress in pushing the limits of this approach to macromolecular complexes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20837146</pmid><doi>10.1016/j.jsb.2010.09.004</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1047-8477
ispartof Journal of structural biology, 2011-03, Vol.173 (3), p.497-505
issn 1047-8477
1095-8657
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3051805
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Computer Simulation
Fluorescence Resonance Energy Transfer - methods
Fluorescent Dyes - chemistry
FRET
Image Processing, Computer-Assisted
Macromolecular Substances - chemistry
Models, Molecular
Molecular Conformation
Molecular dynamics
Protein–protein interactions
Single molecule fluorescence
title Three-dimensional molecular modeling with single molecule FRET
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A33%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20molecular%20modeling%20with%20single%20molecule%20FRET&rft.jtitle=Journal%20of%20structural%20biology&rft.au=Brunger,%20Axel%20T.&rft.date=2011-03-01&rft.volume=173&rft.issue=3&rft.spage=497&rft.epage=505&rft.pages=497-505&rft.issn=1047-8477&rft.eissn=1095-8657&rft_id=info:doi/10.1016/j.jsb.2010.09.004&rft_dat=%3Cproquest_pubme%3E851933794%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=851933794&rft_id=info:pmid/20837146&rft_els_id=S104784771000273X&rfr_iscdi=true