Converting a protein into a switch for biosensing and functional regulation
Proteins that switch conformations in response to a signaling event (e.g., ligand binding or chemical modification) present a unique solution to the design of reagent‐free biosensors as well as molecules whose biological functions are regulated in useful ways. The principal roadblock in the path to...
Gespeichert in:
Veröffentlicht in: | Protein science 2011-01, Vol.20 (1), p.19-29 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 29 |
---|---|
container_issue | 1 |
container_start_page | 19 |
container_title | Protein science |
container_volume | 20 |
creator | Stratton, Margaret M. Loh, Stewart N. |
description | Proteins that switch conformations in response to a signaling event (e.g., ligand binding or chemical modification) present a unique solution to the design of reagent‐free biosensors as well as molecules whose biological functions are regulated in useful ways. The principal roadblock in the path to develop such molecules is that the majority of natural proteins do not change conformation upon binding their cognate ligands or becoming chemically modified. Herein, we review recent protein engineering efforts to introduce switching properties into binding proteins. By co‐opting natural allosteric coupling, joining proteins in creative ways and formulating altogether new switching mechanisms, researchers are learning how to coax conformational changes from proteins that previously had none. These studies are providing some answers to the challenging question: how can one convert a lock‐and‐key binding protein into a molecular switch? |
doi_str_mv | 10.1002/pro.541 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3047058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3282289251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4321-8d1b1bbc6a485ebc211c49caeb867822e4b583218221cef4844d0dce429ebf8f3</originalsourceid><addsrcrecordid>eNp1kU1LJDEQhoOs6Owo_gNp2IOHZTSVTmfSF0EGdxUFRRS8hSRTPUZ6kjHpVvz3ZvxW8JQU9fDwFi8hW0B3gVK2t4hht-KwQgbART2Stbj-RQa0FjCSpZDr5HdKt5RSDqxcI-sMqOAgygE5mQR_j7FzflboIms6dL5wvgt5TA-uszdFE2JhXEjo0zPmp0XTe9u54HVbRJz1rV4OG2S10W3Czdd3SK7-HV5OjkanZ_-PJwenI8tLlgNNwYAxVmguKzSWAVheW41GirFkDLmpZAbzFyw2XHI-pVOLnNVoGtmUQ7L_4l30Zo5547uoW7WIbq7jowraqa8b727ULNyrkvIxze4h2XkVxHDXY-rU3CWLbas9hj4pyYBRKMsqk3--kbehj_nspKDKCavxWPAPn40hpYjNexagatlPnoPK_WRy-3P0d-6tkAz8fQEeXIuPP3nU-cXZUvcERoyaYA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1518257764</pqid></control><display><type>article</type><title>Converting a protein into a switch for biosensing and functional regulation</title><source>MEDLINE</source><source>Wiley Journals</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Stratton, Margaret M. ; Loh, Stewart N.</creator><creatorcontrib>Stratton, Margaret M. ; Loh, Stewart N.</creatorcontrib><description>Proteins that switch conformations in response to a signaling event (e.g., ligand binding or chemical modification) present a unique solution to the design of reagent‐free biosensors as well as molecules whose biological functions are regulated in useful ways. The principal roadblock in the path to develop such molecules is that the majority of natural proteins do not change conformation upon binding their cognate ligands or becoming chemically modified. Herein, we review recent protein engineering efforts to introduce switching properties into binding proteins. By co‐opting natural allosteric coupling, joining proteins in creative ways and formulating altogether new switching mechanisms, researchers are learning how to coax conformational changes from proteins that previously had none. These studies are providing some answers to the challenging question: how can one convert a lock‐and‐key binding protein into a molecular switch?</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.541</identifier><identifier>PMID: 21064163</identifier><identifier>CODEN: PRCIEI</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Allosteric Regulation ; allostery ; alternate frame folding ; Biosensing Techniques - methods ; circular permutation ; folding ; Humans ; intrinsic disorder ; Protein Binding ; Protein Conformation ; Protein Engineering ; Protein Folding ; Proteins ; Recombinant Fusion Proteins - chemistry ; Review ; sensor ; unfolding</subject><ispartof>Protein science, 2011-01, Vol.20 (1), p.19-29</ispartof><rights>Copyright © 2010 The Protein Society</rights><rights>Copyright © 2011 The Protein Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4321-8d1b1bbc6a485ebc211c49caeb867822e4b583218221cef4844d0dce429ebf8f3</citedby><cites>FETCH-LOGICAL-c4321-8d1b1bbc6a485ebc211c49caeb867822e4b583218221cef4844d0dce429ebf8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3047058/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3047058/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21064163$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stratton, Margaret M.</creatorcontrib><creatorcontrib>Loh, Stewart N.</creatorcontrib><title>Converting a protein into a switch for biosensing and functional regulation</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>Proteins that switch conformations in response to a signaling event (e.g., ligand binding or chemical modification) present a unique solution to the design of reagent‐free biosensors as well as molecules whose biological functions are regulated in useful ways. The principal roadblock in the path to develop such molecules is that the majority of natural proteins do not change conformation upon binding their cognate ligands or becoming chemically modified. Herein, we review recent protein engineering efforts to introduce switching properties into binding proteins. By co‐opting natural allosteric coupling, joining proteins in creative ways and formulating altogether new switching mechanisms, researchers are learning how to coax conformational changes from proteins that previously had none. These studies are providing some answers to the challenging question: how can one convert a lock‐and‐key binding protein into a molecular switch?</description><subject>Allosteric Regulation</subject><subject>allostery</subject><subject>alternate frame folding</subject><subject>Biosensing Techniques - methods</subject><subject>circular permutation</subject><subject>folding</subject><subject>Humans</subject><subject>intrinsic disorder</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Engineering</subject><subject>Protein Folding</subject><subject>Proteins</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Review</subject><subject>sensor</subject><subject>unfolding</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1LJDEQhoOs6Owo_gNp2IOHZTSVTmfSF0EGdxUFRRS8hSRTPUZ6kjHpVvz3ZvxW8JQU9fDwFi8hW0B3gVK2t4hht-KwQgbART2Stbj-RQa0FjCSpZDr5HdKt5RSDqxcI-sMqOAgygE5mQR_j7FzflboIms6dL5wvgt5TA-uszdFE2JhXEjo0zPmp0XTe9u54HVbRJz1rV4OG2S10W3Czdd3SK7-HV5OjkanZ_-PJwenI8tLlgNNwYAxVmguKzSWAVheW41GirFkDLmpZAbzFyw2XHI-pVOLnNVoGtmUQ7L_4l30Zo5547uoW7WIbq7jowraqa8b727ULNyrkvIxze4h2XkVxHDXY-rU3CWLbas9hj4pyYBRKMsqk3--kbehj_nspKDKCavxWPAPn40hpYjNexagatlPnoPK_WRy-3P0d-6tkAz8fQEeXIuPP3nU-cXZUvcERoyaYA</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Stratton, Margaret M.</creator><creator>Loh, Stewart N.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201101</creationdate><title>Converting a protein into a switch for biosensing and functional regulation</title><author>Stratton, Margaret M. ; Loh, Stewart N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4321-8d1b1bbc6a485ebc211c49caeb867822e4b583218221cef4844d0dce429ebf8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Allosteric Regulation</topic><topic>allostery</topic><topic>alternate frame folding</topic><topic>Biosensing Techniques - methods</topic><topic>circular permutation</topic><topic>folding</topic><topic>Humans</topic><topic>intrinsic disorder</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Engineering</topic><topic>Protein Folding</topic><topic>Proteins</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Review</topic><topic>sensor</topic><topic>unfolding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stratton, Margaret M.</creatorcontrib><creatorcontrib>Loh, Stewart N.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stratton, Margaret M.</au><au>Loh, Stewart N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Converting a protein into a switch for biosensing and functional regulation</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2011-01</date><risdate>2011</risdate><volume>20</volume><issue>1</issue><spage>19</spage><epage>29</epage><pages>19-29</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><coden>PRCIEI</coden><abstract>Proteins that switch conformations in response to a signaling event (e.g., ligand binding or chemical modification) present a unique solution to the design of reagent‐free biosensors as well as molecules whose biological functions are regulated in useful ways. The principal roadblock in the path to develop such molecules is that the majority of natural proteins do not change conformation upon binding their cognate ligands or becoming chemically modified. Herein, we review recent protein engineering efforts to introduce switching properties into binding proteins. By co‐opting natural allosteric coupling, joining proteins in creative ways and formulating altogether new switching mechanisms, researchers are learning how to coax conformational changes from proteins that previously had none. These studies are providing some answers to the challenging question: how can one convert a lock‐and‐key binding protein into a molecular switch?</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>21064163</pmid><doi>10.1002/pro.541</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0961-8368 |
ispartof | Protein science, 2011-01, Vol.20 (1), p.19-29 |
issn | 0961-8368 1469-896X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3047058 |
source | MEDLINE; Wiley Journals; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Allosteric Regulation allostery alternate frame folding Biosensing Techniques - methods circular permutation folding Humans intrinsic disorder Protein Binding Protein Conformation Protein Engineering Protein Folding Proteins Recombinant Fusion Proteins - chemistry Review sensor unfolding |
title | Converting a protein into a switch for biosensing and functional regulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A03%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Converting%20a%20protein%20into%20a%20switch%20for%20biosensing%20and%20functional%20regulation&rft.jtitle=Protein%20science&rft.au=Stratton,%20Margaret%20M.&rft.date=2011-01&rft.volume=20&rft.issue=1&rft.spage=19&rft.epage=29&rft.pages=19-29&rft.issn=0961-8368&rft.eissn=1469-896X&rft.coden=PRCIEI&rft_id=info:doi/10.1002/pro.541&rft_dat=%3Cproquest_pubme%3E3282289251%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1518257764&rft_id=info:pmid/21064163&rfr_iscdi=true |