HIV-1 Gag Extension: Conformational Changes Require Simultaneous Interaction with Membrane and Nucleic Acid
The retroviral Gag polyprotein mediates viral assembly. The Gag protein has been shown to interact with other Gag proteins, with the viral RNA, and with the cell membrane during the assembly process. Intrinsically disordered regions linking ordered domains make characterization of the protein struct...
Gespeichert in:
Veröffentlicht in: | Journal of molecular biology 2011-02, Vol.406 (2), p.205-214 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 214 |
---|---|
container_issue | 2 |
container_start_page | 205 |
container_title | Journal of molecular biology |
container_volume | 406 |
creator | Datta, Siddhartha A.K. Heinrich, Frank Raghunandan, Sindhu Krueger, Susan Curtis, Joseph E. Rein, Alan Nanda, Hirsh |
description | The retroviral Gag polyprotein mediates viral assembly. The Gag protein has been shown to interact with other Gag proteins, with the viral RNA, and with the cell membrane during the assembly process. Intrinsically disordered regions linking ordered domains make characterization of the protein structure difficult. Through small-angle scattering and molecular modeling, we have previously shown that monomeric human immunodeficiency virus type 1 (HIV-1) Gag protein in solution adopts compact conformations. However, cryo-electron microscopic analysis of immature virions shows that in these particles, HIV-1 Gag protein molecules are rod shaped. These differing results imply that large changes in Gag conformation are possible and may be required for viral formation. By recapitulating key interactions in the assembly process and characterizing the Gag protein using neutron scattering, we have identified interactions capable of reversibly extending the Gag protein. In addition, we demonstrate advanced applications of neutron reflectivity in resolving Gag conformations on a membrane. Several kinds of evidence show that basic residues found on the distal N- and C-terminal domains enable both ends of Gag to bind to either membranes or nucleic acid. These results, together with other published observations, suggest that simultaneous interactions of an HIV-1 Gag molecule with all three components (protein, nucleic acid, and membrane) are required for full extension of the protein.
► Gag protein remains partially compact as a dimer or bound to single-stranded DNA. ► Membrane-bound Gag also adopts bent-over conformations. ► Extended conformations require combined interactions with single-stranded DNA and anionic membranes. |
doi_str_mv | 10.1016/j.jmb.2010.11.051 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3046808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283610012817</els_id><sourcerecordid>874180457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-3449f66c34156dfbd34ea04927214a8a04b702bc2b9ded9feb4a9777ce0a67503</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEokvhB3AB3-CSxV-xHSohVavSrlRAopSr5TiTXS-J3dpJW_49XqVUcOnJtuaZVzN-iuI1wUuCifiwW-6GZknx_k2WuCJPigXBqi6VYOppscCY0pIqJg6KFyntMMYV4-p5cUAJYZwpvih-na1_lgSdmg06uRvBJxf8R7QKvgtxMGN-mR6ttsZvIKHvcD25COjCDVM_Gg9hSmjtR4jG7lF068Yt-gJDE3MRGd-ir5PtwVl0bF37snjWmT7Bq_vzsLj8fPJjdVaefztdr47PS1uxeiwZ53UnhGWcVKLtmpZxMJjXVFLCjcrXRmLaWNrULbR1Bw03tZTSAjZCVpgdFp_m3KupGaC14Mdoen0V3WDibx2M0_9XvNvqTbjRDHOhsMoB7-4DYrieII16cMlC388rayU5UZhXMpPvHyWJkBTLSmKeUTKjNoaUInQPAxGs9zr1Tmedeq9TE6Kzztzz5t9NHjr--svA2xnoTNBmE13Slxc5ocquueBMZOJoJiD_-I2DqJN14C202aQddRvcIwP8AasluiI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1672075704</pqid></control><display><type>article</type><title>HIV-1 Gag Extension: Conformational Changes Require Simultaneous Interaction with Membrane and Nucleic Acid</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Datta, Siddhartha A.K. ; Heinrich, Frank ; Raghunandan, Sindhu ; Krueger, Susan ; Curtis, Joseph E. ; Rein, Alan ; Nanda, Hirsh</creator><creatorcontrib>Datta, Siddhartha A.K. ; Heinrich, Frank ; Raghunandan, Sindhu ; Krueger, Susan ; Curtis, Joseph E. ; Rein, Alan ; Nanda, Hirsh</creatorcontrib><description>The retroviral Gag polyprotein mediates viral assembly. The Gag protein has been shown to interact with other Gag proteins, with the viral RNA, and with the cell membrane during the assembly process. Intrinsically disordered regions linking ordered domains make characterization of the protein structure difficult. Through small-angle scattering and molecular modeling, we have previously shown that monomeric human immunodeficiency virus type 1 (HIV-1) Gag protein in solution adopts compact conformations. However, cryo-electron microscopic analysis of immature virions shows that in these particles, HIV-1 Gag protein molecules are rod shaped. These differing results imply that large changes in Gag conformation are possible and may be required for viral formation. By recapitulating key interactions in the assembly process and characterizing the Gag protein using neutron scattering, we have identified interactions capable of reversibly extending the Gag protein. In addition, we demonstrate advanced applications of neutron reflectivity in resolving Gag conformations on a membrane. Several kinds of evidence show that basic residues found on the distal N- and C-terminal domains enable both ends of Gag to bind to either membranes or nucleic acid. These results, together with other published observations, suggest that simultaneous interactions of an HIV-1 Gag molecule with all three components (protein, nucleic acid, and membrane) are required for full extension of the protein.
► Gag protein remains partially compact as a dimer or bound to single-stranded DNA. ► Membrane-bound Gag also adopts bent-over conformations. ► Extended conformations require combined interactions with single-stranded DNA and anionic membranes.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2010.11.051</identifier><identifier>PMID: 21134384</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Cell Membrane ; Cell Membrane - chemistry ; Cell Membrane - metabolism ; Cell membranes ; chemistry ; disordered proteins ; DNA, Viral ; DNA, Viral - chemistry ; DNA, Viral - metabolism ; gag Gene Products, Human Immunodeficiency Virus ; gag Gene Products, Human Immunodeficiency Virus - chemistry ; gag Gene Products, Human Immunodeficiency Virus - metabolism ; Gag protein ; HIV-1 ; HIV-1 - metabolism ; Human immunodeficiency virus 1 ; Humans ; metabolism ; Molecular modelling ; neutron reflectivity ; Neutron scattering ; Neutrons ; nucleic acids ; polyproteins ; Protein Binding ; Protein Conformation ; Protein structure ; proteins ; retroviral assembly ; RNA ; RNA, Viral ; RNA, Viral - chemistry ; RNA, Viral - metabolism ; SANS ; tethered membranes ; virion ; Virions ; Virus Assembly</subject><ispartof>Journal of molecular biology, 2011-02, Vol.406 (2), p.205-214</ispartof><rights>2010</rights><rights>Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-3449f66c34156dfbd34ea04927214a8a04b702bc2b9ded9feb4a9777ce0a67503</citedby><cites>FETCH-LOGICAL-c539t-3449f66c34156dfbd34ea04927214a8a04b702bc2b9ded9feb4a9777ce0a67503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022283610012817$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21134384$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Datta, Siddhartha A.K.</creatorcontrib><creatorcontrib>Heinrich, Frank</creatorcontrib><creatorcontrib>Raghunandan, Sindhu</creatorcontrib><creatorcontrib>Krueger, Susan</creatorcontrib><creatorcontrib>Curtis, Joseph E.</creatorcontrib><creatorcontrib>Rein, Alan</creatorcontrib><creatorcontrib>Nanda, Hirsh</creatorcontrib><title>HIV-1 Gag Extension: Conformational Changes Require Simultaneous Interaction with Membrane and Nucleic Acid</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>The retroviral Gag polyprotein mediates viral assembly. The Gag protein has been shown to interact with other Gag proteins, with the viral RNA, and with the cell membrane during the assembly process. Intrinsically disordered regions linking ordered domains make characterization of the protein structure difficult. Through small-angle scattering and molecular modeling, we have previously shown that monomeric human immunodeficiency virus type 1 (HIV-1) Gag protein in solution adopts compact conformations. However, cryo-electron microscopic analysis of immature virions shows that in these particles, HIV-1 Gag protein molecules are rod shaped. These differing results imply that large changes in Gag conformation are possible and may be required for viral formation. By recapitulating key interactions in the assembly process and characterizing the Gag protein using neutron scattering, we have identified interactions capable of reversibly extending the Gag protein. In addition, we demonstrate advanced applications of neutron reflectivity in resolving Gag conformations on a membrane. Several kinds of evidence show that basic residues found on the distal N- and C-terminal domains enable both ends of Gag to bind to either membranes or nucleic acid. These results, together with other published observations, suggest that simultaneous interactions of an HIV-1 Gag molecule with all three components (protein, nucleic acid, and membrane) are required for full extension of the protein.
► Gag protein remains partially compact as a dimer or bound to single-stranded DNA. ► Membrane-bound Gag also adopts bent-over conformations. ► Extended conformations require combined interactions with single-stranded DNA and anionic membranes.</description><subject>Cell Membrane</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - metabolism</subject><subject>Cell membranes</subject><subject>chemistry</subject><subject>disordered proteins</subject><subject>DNA, Viral</subject><subject>DNA, Viral - chemistry</subject><subject>DNA, Viral - metabolism</subject><subject>gag Gene Products, Human Immunodeficiency Virus</subject><subject>gag Gene Products, Human Immunodeficiency Virus - chemistry</subject><subject>gag Gene Products, Human Immunodeficiency Virus - metabolism</subject><subject>Gag protein</subject><subject>HIV-1</subject><subject>HIV-1 - metabolism</subject><subject>Human immunodeficiency virus 1</subject><subject>Humans</subject><subject>metabolism</subject><subject>Molecular modelling</subject><subject>neutron reflectivity</subject><subject>Neutron scattering</subject><subject>Neutrons</subject><subject>nucleic acids</subject><subject>polyproteins</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein structure</subject><subject>proteins</subject><subject>retroviral assembly</subject><subject>RNA</subject><subject>RNA, Viral</subject><subject>RNA, Viral - chemistry</subject><subject>RNA, Viral - metabolism</subject><subject>SANS</subject><subject>tethered membranes</subject><subject>virion</subject><subject>Virions</subject><subject>Virus Assembly</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1v1DAQhiMEokvhB3AB3-CSxV-xHSohVavSrlRAopSr5TiTXS-J3dpJW_49XqVUcOnJtuaZVzN-iuI1wUuCifiwW-6GZknx_k2WuCJPigXBqi6VYOppscCY0pIqJg6KFyntMMYV4-p5cUAJYZwpvih-na1_lgSdmg06uRvBJxf8R7QKvgtxMGN-mR6ttsZvIKHvcD25COjCDVM_Gg9hSmjtR4jG7lF068Yt-gJDE3MRGd-ir5PtwVl0bF37snjWmT7Bq_vzsLj8fPJjdVaefztdr47PS1uxeiwZ53UnhGWcVKLtmpZxMJjXVFLCjcrXRmLaWNrULbR1Bw03tZTSAjZCVpgdFp_m3KupGaC14Mdoen0V3WDibx2M0_9XvNvqTbjRDHOhsMoB7-4DYrieII16cMlC388rayU5UZhXMpPvHyWJkBTLSmKeUTKjNoaUInQPAxGs9zr1Tmedeq9TE6Kzztzz5t9NHjr--svA2xnoTNBmE13Slxc5ocquueBMZOJoJiD_-I2DqJN14C202aQddRvcIwP8AasluiI</recordid><startdate>20110218</startdate><enddate>20110218</enddate><creator>Datta, Siddhartha A.K.</creator><creator>Heinrich, Frank</creator><creator>Raghunandan, Sindhu</creator><creator>Krueger, Susan</creator><creator>Curtis, Joseph E.</creator><creator>Rein, Alan</creator><creator>Nanda, Hirsh</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>7TM</scope><scope>7U9</scope><scope>H94</scope><scope>5PM</scope></search><sort><creationdate>20110218</creationdate><title>HIV-1 Gag Extension: Conformational Changes Require Simultaneous Interaction with Membrane and Nucleic Acid</title><author>Datta, Siddhartha A.K. ; Heinrich, Frank ; Raghunandan, Sindhu ; Krueger, Susan ; Curtis, Joseph E. ; Rein, Alan ; Nanda, Hirsh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-3449f66c34156dfbd34ea04927214a8a04b702bc2b9ded9feb4a9777ce0a67503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cell Membrane</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - metabolism</topic><topic>Cell membranes</topic><topic>chemistry</topic><topic>disordered proteins</topic><topic>DNA, Viral</topic><topic>DNA, Viral - chemistry</topic><topic>DNA, Viral - metabolism</topic><topic>gag Gene Products, Human Immunodeficiency Virus</topic><topic>gag Gene Products, Human Immunodeficiency Virus - chemistry</topic><topic>gag Gene Products, Human Immunodeficiency Virus - metabolism</topic><topic>Gag protein</topic><topic>HIV-1</topic><topic>HIV-1 - metabolism</topic><topic>Human immunodeficiency virus 1</topic><topic>Humans</topic><topic>metabolism</topic><topic>Molecular modelling</topic><topic>neutron reflectivity</topic><topic>Neutron scattering</topic><topic>Neutrons</topic><topic>nucleic acids</topic><topic>polyproteins</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein structure</topic><topic>proteins</topic><topic>retroviral assembly</topic><topic>RNA</topic><topic>RNA, Viral</topic><topic>RNA, Viral - chemistry</topic><topic>RNA, Viral - metabolism</topic><topic>SANS</topic><topic>tethered membranes</topic><topic>virion</topic><topic>Virions</topic><topic>Virus Assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Datta, Siddhartha A.K.</creatorcontrib><creatorcontrib>Heinrich, Frank</creatorcontrib><creatorcontrib>Raghunandan, Sindhu</creatorcontrib><creatorcontrib>Krueger, Susan</creatorcontrib><creatorcontrib>Curtis, Joseph E.</creatorcontrib><creatorcontrib>Rein, Alan</creatorcontrib><creatorcontrib>Nanda, Hirsh</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Datta, Siddhartha A.K.</au><au>Heinrich, Frank</au><au>Raghunandan, Sindhu</au><au>Krueger, Susan</au><au>Curtis, Joseph E.</au><au>Rein, Alan</au><au>Nanda, Hirsh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HIV-1 Gag Extension: Conformational Changes Require Simultaneous Interaction with Membrane and Nucleic Acid</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2011-02-18</date><risdate>2011</risdate><volume>406</volume><issue>2</issue><spage>205</spage><epage>214</epage><pages>205-214</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>The retroviral Gag polyprotein mediates viral assembly. The Gag protein has been shown to interact with other Gag proteins, with the viral RNA, and with the cell membrane during the assembly process. Intrinsically disordered regions linking ordered domains make characterization of the protein structure difficult. Through small-angle scattering and molecular modeling, we have previously shown that monomeric human immunodeficiency virus type 1 (HIV-1) Gag protein in solution adopts compact conformations. However, cryo-electron microscopic analysis of immature virions shows that in these particles, HIV-1 Gag protein molecules are rod shaped. These differing results imply that large changes in Gag conformation are possible and may be required for viral formation. By recapitulating key interactions in the assembly process and characterizing the Gag protein using neutron scattering, we have identified interactions capable of reversibly extending the Gag protein. In addition, we demonstrate advanced applications of neutron reflectivity in resolving Gag conformations on a membrane. Several kinds of evidence show that basic residues found on the distal N- and C-terminal domains enable both ends of Gag to bind to either membranes or nucleic acid. These results, together with other published observations, suggest that simultaneous interactions of an HIV-1 Gag molecule with all three components (protein, nucleic acid, and membrane) are required for full extension of the protein.
► Gag protein remains partially compact as a dimer or bound to single-stranded DNA. ► Membrane-bound Gag also adopts bent-over conformations. ► Extended conformations require combined interactions with single-stranded DNA and anionic membranes.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>21134384</pmid><doi>10.1016/j.jmb.2010.11.051</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2836 |
ispartof | Journal of molecular biology, 2011-02, Vol.406 (2), p.205-214 |
issn | 0022-2836 1089-8638 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3046808 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Cell Membrane Cell Membrane - chemistry Cell Membrane - metabolism Cell membranes chemistry disordered proteins DNA, Viral DNA, Viral - chemistry DNA, Viral - metabolism gag Gene Products, Human Immunodeficiency Virus gag Gene Products, Human Immunodeficiency Virus - chemistry gag Gene Products, Human Immunodeficiency Virus - metabolism Gag protein HIV-1 HIV-1 - metabolism Human immunodeficiency virus 1 Humans metabolism Molecular modelling neutron reflectivity Neutron scattering Neutrons nucleic acids polyproteins Protein Binding Protein Conformation Protein structure proteins retroviral assembly RNA RNA, Viral RNA, Viral - chemistry RNA, Viral - metabolism SANS tethered membranes virion Virions Virus Assembly |
title | HIV-1 Gag Extension: Conformational Changes Require Simultaneous Interaction with Membrane and Nucleic Acid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A26%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HIV-1%20Gag%20Extension:%20Conformational%20Changes%20Require%20Simultaneous%20Interaction%20with%20Membrane%20and%20Nucleic%20Acid&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Datta,%20Siddhartha%20A.K.&rft.date=2011-02-18&rft.volume=406&rft.issue=2&rft.spage=205&rft.epage=214&rft.pages=205-214&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2010.11.051&rft_dat=%3Cproquest_pubme%3E874180457%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1672075704&rft_id=info:pmid/21134384&rft_els_id=S0022283610012817&rfr_iscdi=true |