HIV-1 Gag Extension: Conformational Changes Require Simultaneous Interaction with Membrane and Nucleic Acid

The retroviral Gag polyprotein mediates viral assembly. The Gag protein has been shown to interact with other Gag proteins, with the viral RNA, and with the cell membrane during the assembly process. Intrinsically disordered regions linking ordered domains make characterization of the protein struct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 2011-02, Vol.406 (2), p.205-214
Hauptverfasser: Datta, Siddhartha A.K., Heinrich, Frank, Raghunandan, Sindhu, Krueger, Susan, Curtis, Joseph E., Rein, Alan, Nanda, Hirsh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 214
container_issue 2
container_start_page 205
container_title Journal of molecular biology
container_volume 406
creator Datta, Siddhartha A.K.
Heinrich, Frank
Raghunandan, Sindhu
Krueger, Susan
Curtis, Joseph E.
Rein, Alan
Nanda, Hirsh
description The retroviral Gag polyprotein mediates viral assembly. The Gag protein has been shown to interact with other Gag proteins, with the viral RNA, and with the cell membrane during the assembly process. Intrinsically disordered regions linking ordered domains make characterization of the protein structure difficult. Through small-angle scattering and molecular modeling, we have previously shown that monomeric human immunodeficiency virus type 1 (HIV-1) Gag protein in solution adopts compact conformations. However, cryo-electron microscopic analysis of immature virions shows that in these particles, HIV-1 Gag protein molecules are rod shaped. These differing results imply that large changes in Gag conformation are possible and may be required for viral formation. By recapitulating key interactions in the assembly process and characterizing the Gag protein using neutron scattering, we have identified interactions capable of reversibly extending the Gag protein. In addition, we demonstrate advanced applications of neutron reflectivity in resolving Gag conformations on a membrane. Several kinds of evidence show that basic residues found on the distal N- and C-terminal domains enable both ends of Gag to bind to either membranes or nucleic acid. These results, together with other published observations, suggest that simultaneous interactions of an HIV-1 Gag molecule with all three components (protein, nucleic acid, and membrane) are required for full extension of the protein. ► Gag protein remains partially compact as a dimer or bound to single-stranded DNA. ► Membrane-bound Gag also adopts bent-over conformations. ► Extended conformations require combined interactions with single-stranded DNA and anionic membranes.
doi_str_mv 10.1016/j.jmb.2010.11.051
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3046808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283610012817</els_id><sourcerecordid>874180457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-3449f66c34156dfbd34ea04927214a8a04b702bc2b9ded9feb4a9777ce0a67503</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEokvhB3AB3-CSxV-xHSohVavSrlRAopSr5TiTXS-J3dpJW_49XqVUcOnJtuaZVzN-iuI1wUuCifiwW-6GZknx_k2WuCJPigXBqi6VYOppscCY0pIqJg6KFyntMMYV4-p5cUAJYZwpvih-na1_lgSdmg06uRvBJxf8R7QKvgtxMGN-mR6ttsZvIKHvcD25COjCDVM_Gg9hSmjtR4jG7lF068Yt-gJDE3MRGd-ir5PtwVl0bF37snjWmT7Bq_vzsLj8fPJjdVaefztdr47PS1uxeiwZ53UnhGWcVKLtmpZxMJjXVFLCjcrXRmLaWNrULbR1Bw03tZTSAjZCVpgdFp_m3KupGaC14Mdoen0V3WDibx2M0_9XvNvqTbjRDHOhsMoB7-4DYrieII16cMlC388rayU5UZhXMpPvHyWJkBTLSmKeUTKjNoaUInQPAxGs9zr1Tmedeq9TE6Kzztzz5t9NHjr--svA2xnoTNBmE13Slxc5ocquueBMZOJoJiD_-I2DqJN14C202aQddRvcIwP8AasluiI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1672075704</pqid></control><display><type>article</type><title>HIV-1 Gag Extension: Conformational Changes Require Simultaneous Interaction with Membrane and Nucleic Acid</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Datta, Siddhartha A.K. ; Heinrich, Frank ; Raghunandan, Sindhu ; Krueger, Susan ; Curtis, Joseph E. ; Rein, Alan ; Nanda, Hirsh</creator><creatorcontrib>Datta, Siddhartha A.K. ; Heinrich, Frank ; Raghunandan, Sindhu ; Krueger, Susan ; Curtis, Joseph E. ; Rein, Alan ; Nanda, Hirsh</creatorcontrib><description>The retroviral Gag polyprotein mediates viral assembly. The Gag protein has been shown to interact with other Gag proteins, with the viral RNA, and with the cell membrane during the assembly process. Intrinsically disordered regions linking ordered domains make characterization of the protein structure difficult. Through small-angle scattering and molecular modeling, we have previously shown that monomeric human immunodeficiency virus type 1 (HIV-1) Gag protein in solution adopts compact conformations. However, cryo-electron microscopic analysis of immature virions shows that in these particles, HIV-1 Gag protein molecules are rod shaped. These differing results imply that large changes in Gag conformation are possible and may be required for viral formation. By recapitulating key interactions in the assembly process and characterizing the Gag protein using neutron scattering, we have identified interactions capable of reversibly extending the Gag protein. In addition, we demonstrate advanced applications of neutron reflectivity in resolving Gag conformations on a membrane. Several kinds of evidence show that basic residues found on the distal N- and C-terminal domains enable both ends of Gag to bind to either membranes or nucleic acid. These results, together with other published observations, suggest that simultaneous interactions of an HIV-1 Gag molecule with all three components (protein, nucleic acid, and membrane) are required for full extension of the protein. ► Gag protein remains partially compact as a dimer or bound to single-stranded DNA. ► Membrane-bound Gag also adopts bent-over conformations. ► Extended conformations require combined interactions with single-stranded DNA and anionic membranes.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2010.11.051</identifier><identifier>PMID: 21134384</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Cell Membrane ; Cell Membrane - chemistry ; Cell Membrane - metabolism ; Cell membranes ; chemistry ; disordered proteins ; DNA, Viral ; DNA, Viral - chemistry ; DNA, Viral - metabolism ; gag Gene Products, Human Immunodeficiency Virus ; gag Gene Products, Human Immunodeficiency Virus - chemistry ; gag Gene Products, Human Immunodeficiency Virus - metabolism ; Gag protein ; HIV-1 ; HIV-1 - metabolism ; Human immunodeficiency virus 1 ; Humans ; metabolism ; Molecular modelling ; neutron reflectivity ; Neutron scattering ; Neutrons ; nucleic acids ; polyproteins ; Protein Binding ; Protein Conformation ; Protein structure ; proteins ; retroviral assembly ; RNA ; RNA, Viral ; RNA, Viral - chemistry ; RNA, Viral - metabolism ; SANS ; tethered membranes ; virion ; Virions ; Virus Assembly</subject><ispartof>Journal of molecular biology, 2011-02, Vol.406 (2), p.205-214</ispartof><rights>2010</rights><rights>Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-3449f66c34156dfbd34ea04927214a8a04b702bc2b9ded9feb4a9777ce0a67503</citedby><cites>FETCH-LOGICAL-c539t-3449f66c34156dfbd34ea04927214a8a04b702bc2b9ded9feb4a9777ce0a67503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022283610012817$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21134384$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Datta, Siddhartha A.K.</creatorcontrib><creatorcontrib>Heinrich, Frank</creatorcontrib><creatorcontrib>Raghunandan, Sindhu</creatorcontrib><creatorcontrib>Krueger, Susan</creatorcontrib><creatorcontrib>Curtis, Joseph E.</creatorcontrib><creatorcontrib>Rein, Alan</creatorcontrib><creatorcontrib>Nanda, Hirsh</creatorcontrib><title>HIV-1 Gag Extension: Conformational Changes Require Simultaneous Interaction with Membrane and Nucleic Acid</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>The retroviral Gag polyprotein mediates viral assembly. The Gag protein has been shown to interact with other Gag proteins, with the viral RNA, and with the cell membrane during the assembly process. Intrinsically disordered regions linking ordered domains make characterization of the protein structure difficult. Through small-angle scattering and molecular modeling, we have previously shown that monomeric human immunodeficiency virus type 1 (HIV-1) Gag protein in solution adopts compact conformations. However, cryo-electron microscopic analysis of immature virions shows that in these particles, HIV-1 Gag protein molecules are rod shaped. These differing results imply that large changes in Gag conformation are possible and may be required for viral formation. By recapitulating key interactions in the assembly process and characterizing the Gag protein using neutron scattering, we have identified interactions capable of reversibly extending the Gag protein. In addition, we demonstrate advanced applications of neutron reflectivity in resolving Gag conformations on a membrane. Several kinds of evidence show that basic residues found on the distal N- and C-terminal domains enable both ends of Gag to bind to either membranes or nucleic acid. These results, together with other published observations, suggest that simultaneous interactions of an HIV-1 Gag molecule with all three components (protein, nucleic acid, and membrane) are required for full extension of the protein. ► Gag protein remains partially compact as a dimer or bound to single-stranded DNA. ► Membrane-bound Gag also adopts bent-over conformations. ► Extended conformations require combined interactions with single-stranded DNA and anionic membranes.</description><subject>Cell Membrane</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - metabolism</subject><subject>Cell membranes</subject><subject>chemistry</subject><subject>disordered proteins</subject><subject>DNA, Viral</subject><subject>DNA, Viral - chemistry</subject><subject>DNA, Viral - metabolism</subject><subject>gag Gene Products, Human Immunodeficiency Virus</subject><subject>gag Gene Products, Human Immunodeficiency Virus - chemistry</subject><subject>gag Gene Products, Human Immunodeficiency Virus - metabolism</subject><subject>Gag protein</subject><subject>HIV-1</subject><subject>HIV-1 - metabolism</subject><subject>Human immunodeficiency virus 1</subject><subject>Humans</subject><subject>metabolism</subject><subject>Molecular modelling</subject><subject>neutron reflectivity</subject><subject>Neutron scattering</subject><subject>Neutrons</subject><subject>nucleic acids</subject><subject>polyproteins</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein structure</subject><subject>proteins</subject><subject>retroviral assembly</subject><subject>RNA</subject><subject>RNA, Viral</subject><subject>RNA, Viral - chemistry</subject><subject>RNA, Viral - metabolism</subject><subject>SANS</subject><subject>tethered membranes</subject><subject>virion</subject><subject>Virions</subject><subject>Virus Assembly</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1v1DAQhiMEokvhB3AB3-CSxV-xHSohVavSrlRAopSr5TiTXS-J3dpJW_49XqVUcOnJtuaZVzN-iuI1wUuCifiwW-6GZknx_k2WuCJPigXBqi6VYOppscCY0pIqJg6KFyntMMYV4-p5cUAJYZwpvih-na1_lgSdmg06uRvBJxf8R7QKvgtxMGN-mR6ttsZvIKHvcD25COjCDVM_Gg9hSmjtR4jG7lF068Yt-gJDE3MRGd-ir5PtwVl0bF37snjWmT7Bq_vzsLj8fPJjdVaefztdr47PS1uxeiwZ53UnhGWcVKLtmpZxMJjXVFLCjcrXRmLaWNrULbR1Bw03tZTSAjZCVpgdFp_m3KupGaC14Mdoen0V3WDibx2M0_9XvNvqTbjRDHOhsMoB7-4DYrieII16cMlC388rayU5UZhXMpPvHyWJkBTLSmKeUTKjNoaUInQPAxGs9zr1Tmedeq9TE6Kzztzz5t9NHjr--svA2xnoTNBmE13Slxc5ocquueBMZOJoJiD_-I2DqJN14C202aQddRvcIwP8AasluiI</recordid><startdate>20110218</startdate><enddate>20110218</enddate><creator>Datta, Siddhartha A.K.</creator><creator>Heinrich, Frank</creator><creator>Raghunandan, Sindhu</creator><creator>Krueger, Susan</creator><creator>Curtis, Joseph E.</creator><creator>Rein, Alan</creator><creator>Nanda, Hirsh</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>7TM</scope><scope>7U9</scope><scope>H94</scope><scope>5PM</scope></search><sort><creationdate>20110218</creationdate><title>HIV-1 Gag Extension: Conformational Changes Require Simultaneous Interaction with Membrane and Nucleic Acid</title><author>Datta, Siddhartha A.K. ; Heinrich, Frank ; Raghunandan, Sindhu ; Krueger, Susan ; Curtis, Joseph E. ; Rein, Alan ; Nanda, Hirsh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-3449f66c34156dfbd34ea04927214a8a04b702bc2b9ded9feb4a9777ce0a67503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cell Membrane</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - metabolism</topic><topic>Cell membranes</topic><topic>chemistry</topic><topic>disordered proteins</topic><topic>DNA, Viral</topic><topic>DNA, Viral - chemistry</topic><topic>DNA, Viral - metabolism</topic><topic>gag Gene Products, Human Immunodeficiency Virus</topic><topic>gag Gene Products, Human Immunodeficiency Virus - chemistry</topic><topic>gag Gene Products, Human Immunodeficiency Virus - metabolism</topic><topic>Gag protein</topic><topic>HIV-1</topic><topic>HIV-1 - metabolism</topic><topic>Human immunodeficiency virus 1</topic><topic>Humans</topic><topic>metabolism</topic><topic>Molecular modelling</topic><topic>neutron reflectivity</topic><topic>Neutron scattering</topic><topic>Neutrons</topic><topic>nucleic acids</topic><topic>polyproteins</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein structure</topic><topic>proteins</topic><topic>retroviral assembly</topic><topic>RNA</topic><topic>RNA, Viral</topic><topic>RNA, Viral - chemistry</topic><topic>RNA, Viral - metabolism</topic><topic>SANS</topic><topic>tethered membranes</topic><topic>virion</topic><topic>Virions</topic><topic>Virus Assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Datta, Siddhartha A.K.</creatorcontrib><creatorcontrib>Heinrich, Frank</creatorcontrib><creatorcontrib>Raghunandan, Sindhu</creatorcontrib><creatorcontrib>Krueger, Susan</creatorcontrib><creatorcontrib>Curtis, Joseph E.</creatorcontrib><creatorcontrib>Rein, Alan</creatorcontrib><creatorcontrib>Nanda, Hirsh</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Datta, Siddhartha A.K.</au><au>Heinrich, Frank</au><au>Raghunandan, Sindhu</au><au>Krueger, Susan</au><au>Curtis, Joseph E.</au><au>Rein, Alan</au><au>Nanda, Hirsh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HIV-1 Gag Extension: Conformational Changes Require Simultaneous Interaction with Membrane and Nucleic Acid</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2011-02-18</date><risdate>2011</risdate><volume>406</volume><issue>2</issue><spage>205</spage><epage>214</epage><pages>205-214</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>The retroviral Gag polyprotein mediates viral assembly. The Gag protein has been shown to interact with other Gag proteins, with the viral RNA, and with the cell membrane during the assembly process. Intrinsically disordered regions linking ordered domains make characterization of the protein structure difficult. Through small-angle scattering and molecular modeling, we have previously shown that monomeric human immunodeficiency virus type 1 (HIV-1) Gag protein in solution adopts compact conformations. However, cryo-electron microscopic analysis of immature virions shows that in these particles, HIV-1 Gag protein molecules are rod shaped. These differing results imply that large changes in Gag conformation are possible and may be required for viral formation. By recapitulating key interactions in the assembly process and characterizing the Gag protein using neutron scattering, we have identified interactions capable of reversibly extending the Gag protein. In addition, we demonstrate advanced applications of neutron reflectivity in resolving Gag conformations on a membrane. Several kinds of evidence show that basic residues found on the distal N- and C-terminal domains enable both ends of Gag to bind to either membranes or nucleic acid. These results, together with other published observations, suggest that simultaneous interactions of an HIV-1 Gag molecule with all three components (protein, nucleic acid, and membrane) are required for full extension of the protein. ► Gag protein remains partially compact as a dimer or bound to single-stranded DNA. ► Membrane-bound Gag also adopts bent-over conformations. ► Extended conformations require combined interactions with single-stranded DNA and anionic membranes.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>21134384</pmid><doi>10.1016/j.jmb.2010.11.051</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 2011-02, Vol.406 (2), p.205-214
issn 0022-2836
1089-8638
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3046808
source MEDLINE; Elsevier ScienceDirect Journals
subjects Cell Membrane
Cell Membrane - chemistry
Cell Membrane - metabolism
Cell membranes
chemistry
disordered proteins
DNA, Viral
DNA, Viral - chemistry
DNA, Viral - metabolism
gag Gene Products, Human Immunodeficiency Virus
gag Gene Products, Human Immunodeficiency Virus - chemistry
gag Gene Products, Human Immunodeficiency Virus - metabolism
Gag protein
HIV-1
HIV-1 - metabolism
Human immunodeficiency virus 1
Humans
metabolism
Molecular modelling
neutron reflectivity
Neutron scattering
Neutrons
nucleic acids
polyproteins
Protein Binding
Protein Conformation
Protein structure
proteins
retroviral assembly
RNA
RNA, Viral
RNA, Viral - chemistry
RNA, Viral - metabolism
SANS
tethered membranes
virion
Virions
Virus Assembly
title HIV-1 Gag Extension: Conformational Changes Require Simultaneous Interaction with Membrane and Nucleic Acid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A26%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HIV-1%20Gag%20Extension:%20Conformational%20Changes%20Require%20Simultaneous%20Interaction%20with%20Membrane%20and%20Nucleic%20Acid&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Datta,%20Siddhartha%20A.K.&rft.date=2011-02-18&rft.volume=406&rft.issue=2&rft.spage=205&rft.epage=214&rft.pages=205-214&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2010.11.051&rft_dat=%3Cproquest_pubme%3E874180457%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1672075704&rft_id=info:pmid/21134384&rft_els_id=S0022283610012817&rfr_iscdi=true