Effect of Pixel Resolution on Texture Features of Breast Masses in Mammograms

The effect of pixel resolution on texture features computed using the gray-level co-occurrence matrix (GLCM) was analyzed in the task of discriminating mammographic breast lesions as benign masses or malignant tumors. Regions in mammograms related to 111 breast masses, including 65 benign masses and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of digital imaging 2010-10, Vol.23 (5), p.547-553
Hauptverfasser: Rangayyan, Rangaraj M., Nguyen, Thanh M., Ayres, Fábio J., Nandi, Asoke K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 553
container_issue 5
container_start_page 547
container_title Journal of digital imaging
container_volume 23
creator Rangayyan, Rangaraj M.
Nguyen, Thanh M.
Ayres, Fábio J.
Nandi, Asoke K.
description The effect of pixel resolution on texture features computed using the gray-level co-occurrence matrix (GLCM) was analyzed in the task of discriminating mammographic breast lesions as benign masses or malignant tumors. Regions in mammograms related to 111 breast masses, including 65 benign masses and 46 malignant tumors, were analyzed at pixel sizes of 50, 100, 200, 400, 600, 800, and 1,000 μm. Classification experiments using each texture feature individually provided accuracy, in terms of the area under the receiver operating characteristics curve (AUC), of up to 0.72. Using the Bayesian classifier and the leave-one-out method, the AUC obtained was in the range 0.73 to 0.75 for the pixel resolutions of 200 to 800 μm, with 14 GLCM-based texture features using adaptive ribbons of pixels around the boundaries of the masses. Texture features computed using the ribbons resulted in higher classification accuracy than the same features computed using the corresponding regions within the mass boundaries. The t test was applied to AUC values obtained using 100 repetitions of random splitting of the texture features from the ribbons of masses into the training and testing sets. The texture features computed with the pixel size of 200 μm provided the highest average AUC with statistically highly significant differences as compared to all of the other pixel sizes tested, except 100 μm.
doi_str_mv 10.1007/s10278-009-9238-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3046677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2413476661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-9db57a3e1f9350fd1bfeaa259c705fe7724cf021b1a8f8c70dfbcbe5c2d755103</originalsourceid><addsrcrecordid>eNp1UVFLwzAQDqK4Of0BvkjxvZq0TZO8CDo2FTYUmeBbSNvL7FibmbQy_70pHU4fhIM77r777uM-hM4JviIYs2tHcMR4iLEIRRT74gANSUp4yCL2doiGmAsWEs7FAJ04t8KYMMqSYzQggtGUp3SI5hOtIW8Co4Pncgvr4AWcWbdNaerAxwK2TWshmILqsutwdxaUa4K5cs43ytpXVWWWVlXuFB1ptXZwtssj9DqdLMYP4ezp_nF8OwvzJOVNKIqMMhUD0SKmWBck06BUREXOMNXAWJTkGkckI4pr7puFzvIMaB4VjFKC4xG66Xk3bVZBkUPdWLWWG1tWyn5Jo0r5d1KX73JpPmWMkzRlzBNc7gis-WjBNXJlWlt7zZJzHCeCxLEHkR6UW-OcBf1zgGDZGSB7A6Q3QHYGyE7ZxW9l-43dxz0g6gHOj-ol2P3l_1m_AUnikps</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880349133</pqid></control><display><type>article</type><title>Effect of Pixel Resolution on Texture Features of Breast Masses in Mammograms</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Rangayyan, Rangaraj M. ; Nguyen, Thanh M. ; Ayres, Fábio J. ; Nandi, Asoke K.</creator><creatorcontrib>Rangayyan, Rangaraj M. ; Nguyen, Thanh M. ; Ayres, Fábio J. ; Nandi, Asoke K.</creatorcontrib><description>The effect of pixel resolution on texture features computed using the gray-level co-occurrence matrix (GLCM) was analyzed in the task of discriminating mammographic breast lesions as benign masses or malignant tumors. Regions in mammograms related to 111 breast masses, including 65 benign masses and 46 malignant tumors, were analyzed at pixel sizes of 50, 100, 200, 400, 600, 800, and 1,000 μm. Classification experiments using each texture feature individually provided accuracy, in terms of the area under the receiver operating characteristics curve (AUC), of up to 0.72. Using the Bayesian classifier and the leave-one-out method, the AUC obtained was in the range 0.73 to 0.75 for the pixel resolutions of 200 to 800 μm, with 14 GLCM-based texture features using adaptive ribbons of pixels around the boundaries of the masses. Texture features computed using the ribbons resulted in higher classification accuracy than the same features computed using the corresponding regions within the mass boundaries. The t test was applied to AUC values obtained using 100 repetitions of random splitting of the texture features from the ribbons of masses into the training and testing sets. The texture features computed with the pixel size of 200 μm provided the highest average AUC with statistically highly significant differences as compared to all of the other pixel sizes tested, except 100 μm.</description><identifier>ISSN: 0897-1889</identifier><identifier>EISSN: 1618-727X</identifier><identifier>DOI: 10.1007/s10278-009-9238-0</identifier><identifier>PMID: 19756865</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Area Under Curve ; Bayes Theorem ; Breast Neoplasms - diagnostic imaging ; Discriminant Analysis ; Female ; Humans ; Imaging ; Mammography ; Medicine ; Medicine &amp; Public Health ; Pattern Recognition, Automated - methods ; Radiographic Image Enhancement - methods ; Radiographic Image Interpretation, Computer-Assisted - methods ; Radiology ; ROC Curve</subject><ispartof>Journal of digital imaging, 2010-10, Vol.23 (5), p.547-553</ispartof><rights>Society for Imaging Informatics in Medicine 2009</rights><rights>Society for Imaging Informatics in Medicine 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-9db57a3e1f9350fd1bfeaa259c705fe7724cf021b1a8f8c70dfbcbe5c2d755103</citedby><cites>FETCH-LOGICAL-c468t-9db57a3e1f9350fd1bfeaa259c705fe7724cf021b1a8f8c70dfbcbe5c2d755103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3046677/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3046677/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19756865$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rangayyan, Rangaraj M.</creatorcontrib><creatorcontrib>Nguyen, Thanh M.</creatorcontrib><creatorcontrib>Ayres, Fábio J.</creatorcontrib><creatorcontrib>Nandi, Asoke K.</creatorcontrib><title>Effect of Pixel Resolution on Texture Features of Breast Masses in Mammograms</title><title>Journal of digital imaging</title><addtitle>J Digit Imaging</addtitle><addtitle>J Digit Imaging</addtitle><description>The effect of pixel resolution on texture features computed using the gray-level co-occurrence matrix (GLCM) was analyzed in the task of discriminating mammographic breast lesions as benign masses or malignant tumors. Regions in mammograms related to 111 breast masses, including 65 benign masses and 46 malignant tumors, were analyzed at pixel sizes of 50, 100, 200, 400, 600, 800, and 1,000 μm. Classification experiments using each texture feature individually provided accuracy, in terms of the area under the receiver operating characteristics curve (AUC), of up to 0.72. Using the Bayesian classifier and the leave-one-out method, the AUC obtained was in the range 0.73 to 0.75 for the pixel resolutions of 200 to 800 μm, with 14 GLCM-based texture features using adaptive ribbons of pixels around the boundaries of the masses. Texture features computed using the ribbons resulted in higher classification accuracy than the same features computed using the corresponding regions within the mass boundaries. The t test was applied to AUC values obtained using 100 repetitions of random splitting of the texture features from the ribbons of masses into the training and testing sets. The texture features computed with the pixel size of 200 μm provided the highest average AUC with statistically highly significant differences as compared to all of the other pixel sizes tested, except 100 μm.</description><subject>Area Under Curve</subject><subject>Bayes Theorem</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Discriminant Analysis</subject><subject>Female</subject><subject>Humans</subject><subject>Imaging</subject><subject>Mammography</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Radiographic Image Enhancement - methods</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Radiology</subject><subject>ROC Curve</subject><issn>0897-1889</issn><issn>1618-727X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1UVFLwzAQDqK4Of0BvkjxvZq0TZO8CDo2FTYUmeBbSNvL7FibmbQy_70pHU4fhIM77r777uM-hM4JviIYs2tHcMR4iLEIRRT74gANSUp4yCL2doiGmAsWEs7FAJ04t8KYMMqSYzQggtGUp3SI5hOtIW8Co4Pncgvr4AWcWbdNaerAxwK2TWshmILqsutwdxaUa4K5cs43ytpXVWWWVlXuFB1ptXZwtssj9DqdLMYP4ezp_nF8OwvzJOVNKIqMMhUD0SKmWBck06BUREXOMNXAWJTkGkckI4pr7puFzvIMaB4VjFKC4xG66Xk3bVZBkUPdWLWWG1tWyn5Jo0r5d1KX73JpPmWMkzRlzBNc7gis-WjBNXJlWlt7zZJzHCeCxLEHkR6UW-OcBf1zgGDZGSB7A6Q3QHYGyE7ZxW9l-43dxz0g6gHOj-ol2P3l_1m_AUnikps</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Rangayyan, Rangaraj M.</creator><creator>Nguyen, Thanh M.</creator><creator>Ayres, Fábio J.</creator><creator>Nandi, Asoke K.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SC</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB0</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope></search><sort><creationdate>20101001</creationdate><title>Effect of Pixel Resolution on Texture Features of Breast Masses in Mammograms</title><author>Rangayyan, Rangaraj M. ; Nguyen, Thanh M. ; Ayres, Fábio J. ; Nandi, Asoke K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-9db57a3e1f9350fd1bfeaa259c705fe7724cf021b1a8f8c70dfbcbe5c2d755103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Area Under Curve</topic><topic>Bayes Theorem</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Discriminant Analysis</topic><topic>Female</topic><topic>Humans</topic><topic>Imaging</topic><topic>Mammography</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Radiographic Image Enhancement - methods</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Radiology</topic><topic>ROC Curve</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rangayyan, Rangaraj M.</creatorcontrib><creatorcontrib>Nguyen, Thanh M.</creatorcontrib><creatorcontrib>Ayres, Fábio J.</creatorcontrib><creatorcontrib>Nandi, Asoke K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of digital imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rangayyan, Rangaraj M.</au><au>Nguyen, Thanh M.</au><au>Ayres, Fábio J.</au><au>Nandi, Asoke K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Pixel Resolution on Texture Features of Breast Masses in Mammograms</atitle><jtitle>Journal of digital imaging</jtitle><stitle>J Digit Imaging</stitle><addtitle>J Digit Imaging</addtitle><date>2010-10-01</date><risdate>2010</risdate><volume>23</volume><issue>5</issue><spage>547</spage><epage>553</epage><pages>547-553</pages><issn>0897-1889</issn><eissn>1618-727X</eissn><abstract>The effect of pixel resolution on texture features computed using the gray-level co-occurrence matrix (GLCM) was analyzed in the task of discriminating mammographic breast lesions as benign masses or malignant tumors. Regions in mammograms related to 111 breast masses, including 65 benign masses and 46 malignant tumors, were analyzed at pixel sizes of 50, 100, 200, 400, 600, 800, and 1,000 μm. Classification experiments using each texture feature individually provided accuracy, in terms of the area under the receiver operating characteristics curve (AUC), of up to 0.72. Using the Bayesian classifier and the leave-one-out method, the AUC obtained was in the range 0.73 to 0.75 for the pixel resolutions of 200 to 800 μm, with 14 GLCM-based texture features using adaptive ribbons of pixels around the boundaries of the masses. Texture features computed using the ribbons resulted in higher classification accuracy than the same features computed using the corresponding regions within the mass boundaries. The t test was applied to AUC values obtained using 100 repetitions of random splitting of the texture features from the ribbons of masses into the training and testing sets. The texture features computed with the pixel size of 200 μm provided the highest average AUC with statistically highly significant differences as compared to all of the other pixel sizes tested, except 100 μm.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><pmid>19756865</pmid><doi>10.1007/s10278-009-9238-0</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-1889
ispartof Journal of digital imaging, 2010-10, Vol.23 (5), p.547-553
issn 0897-1889
1618-727X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3046677
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Area Under Curve
Bayes Theorem
Breast Neoplasms - diagnostic imaging
Discriminant Analysis
Female
Humans
Imaging
Mammography
Medicine
Medicine & Public Health
Pattern Recognition, Automated - methods
Radiographic Image Enhancement - methods
Radiographic Image Interpretation, Computer-Assisted - methods
Radiology
ROC Curve
title Effect of Pixel Resolution on Texture Features of Breast Masses in Mammograms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A07%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Pixel%20Resolution%20on%20Texture%20Features%20of%20Breast%20Masses%20in%20Mammograms&rft.jtitle=Journal%20of%20digital%20imaging&rft.au=Rangayyan,%20Rangaraj%20M.&rft.date=2010-10-01&rft.volume=23&rft.issue=5&rft.spage=547&rft.epage=553&rft.pages=547-553&rft.issn=0897-1889&rft.eissn=1618-727X&rft_id=info:doi/10.1007/s10278-009-9238-0&rft_dat=%3Cproquest_pubme%3E2413476661%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=880349133&rft_id=info:pmid/19756865&rfr_iscdi=true