Automatic Correspondence on Medical Images: A Comparative Study of Four Methods for Allocating Corresponding Points
The accurate estimation of point correspondences is often required in a wide variety of medical image-processing applications. Numerous point correspondence methods have been proposed in this field, each exhibiting its own characteristics, strengths, and weaknesses. This paper presents a comprehensi...
Gespeichert in:
Veröffentlicht in: | Journal of digital imaging 2010-08, Vol.23 (4), p.399-421 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 421 |
---|---|
container_issue | 4 |
container_start_page | 399 |
container_title | Journal of digital imaging |
container_volume | 23 |
creator | Economopoulos, T. L. Asvestas, P. A. Matsopoulos, G. K. |
description | The accurate estimation of point correspondences is often required in a wide variety of medical image-processing applications. Numerous point correspondence methods have been proposed in this field, each exhibiting its own characteristics, strengths, and weaknesses. This paper presents a comprehensive comparison of four automatic methods for allocating corresponding points, namely the template-matching technique, the iterative closest points approach, the correspondence by sensitivity to movement scheme, and the self-organizing maps algorithm. Initially, the four correspondence methods are described focusing on their distinct characteristics and their parameter selection for common comparisons. The performance of the four methods is then qualitatively and quantitatively compared over a total of 132 two-dimensional image pairs divided into eight sets. The sets comprise of pairs of images obtained using controlled geometry protocols (affine and sinusoidal transforms) and pairs of images subject to unknown transformations. The four methods are statistically evaluated pairwise on all image pairs and individually in terms of specific features of merit based on the correspondence accuracy as well as the registration accuracy. After assessing these evaluation criteria for each method, it was deduced that the self-organizing maps approach outperformed in most cases the other three methods in comparison. |
doi_str_mv | 10.1007/s10278-009-9190-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3046664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733635823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-c8a4f60e85f75d05486cbb38c56a1f1f6ba9c0cb39ba83afb5b73a764f5a97ef3</originalsourceid><addsrcrecordid>eNqFkV1rFDEUhkOp2LX6A3pTQm-8Gj2ZTL56ISyL1ULFQhW8C5lMsp0yk6zJTKH99WbZxVZBvArhPOfJyXkROiHwjgCI95lALWQFoCpFFFSPB2hBOJGVqMWPQ7QAqURFpFRH6FXOdwBEMNG8REdE1YxJkAuUl_MURzP1Fq9iSi5vYuhcsA7HgL-4rrdmwJejWbt8jpeFGTcmFfze4Ztp7h5w9Pgizqmw023sMvYx4eUwRFugsH4m3d6uYx-m_Bq98GbI7s3-PEbfLz5-W32urr5-ulwtryrLAKbKStN4Dk4yL1gHrJHcti2VlnFDPPG8NcqCbalqjaTGt6wV1AjeeGaUcJ4eow8772ZuR9dZF6ZkBr1J_WjSg46m139WQn-r1_FeU2g4500RvN0LUvw5uzzpsc_WDYMJLs5ZC0a5YDXU_ycp5ZTJmhby7C_yrqwvlD1oDlw1jaxlgcgOsinmnJz_PTQBvY1e76LXJXq9jV4_lp7T57996thnXYB6B-RSCmuXnl7-t_UXOzi8yA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>606944828</pqid></control><display><type>article</type><title>Automatic Correspondence on Medical Images: A Comparative Study of Four Methods for Allocating Corresponding Points</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Economopoulos, T. L. ; Asvestas, P. A. ; Matsopoulos, G. K.</creator><creatorcontrib>Economopoulos, T. L. ; Asvestas, P. A. ; Matsopoulos, G. K.</creatorcontrib><description>The accurate estimation of point correspondences is often required in a wide variety of medical image-processing applications. Numerous point correspondence methods have been proposed in this field, each exhibiting its own characteristics, strengths, and weaknesses. This paper presents a comprehensive comparison of four automatic methods for allocating corresponding points, namely the template-matching technique, the iterative closest points approach, the correspondence by sensitivity to movement scheme, and the self-organizing maps algorithm. Initially, the four correspondence methods are described focusing on their distinct characteristics and their parameter selection for common comparisons. The performance of the four methods is then qualitatively and quantitatively compared over a total of 132 two-dimensional image pairs divided into eight sets. The sets comprise of pairs of images obtained using controlled geometry protocols (affine and sinusoidal transforms) and pairs of images subject to unknown transformations. The four methods are statistically evaluated pairwise on all image pairs and individually in terms of specific features of merit based on the correspondence accuracy as well as the registration accuracy. After assessing these evaluation criteria for each method, it was deduced that the self-organizing maps approach outperformed in most cases the other three methods in comparison.</description><identifier>ISSN: 0897-1889</identifier><identifier>EISSN: 1618-727X</identifier><identifier>DOI: 10.1007/s10278-009-9190-z</identifier><identifier>PMID: 19255808</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Algorithms ; Biometry - methods ; Criteria ; Diagnostic Imaging - methods ; Digital imaging ; Documentation - methods ; Focusing ; Humans ; Image Processing, Computer-Assisted - methods ; Imaging ; Medical ; Medicine ; Medicine & Public Health ; Pattern Recognition, Automated - methods ; Radiography, Dental - methods ; Radiology ; Retina - diagnostic imaging ; Subtraction Technique ; Transformations ; Transforms</subject><ispartof>Journal of digital imaging, 2010-08, Vol.23 (4), p.399-421</ispartof><rights>Society for Imaging Informatics in Medicine 2009</rights><rights>Society for Imaging Informatics in Medicine 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-c8a4f60e85f75d05486cbb38c56a1f1f6ba9c0cb39ba83afb5b73a764f5a97ef3</citedby><cites>FETCH-LOGICAL-c500t-c8a4f60e85f75d05486cbb38c56a1f1f6ba9c0cb39ba83afb5b73a764f5a97ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3046664/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3046664/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19255808$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Economopoulos, T. L.</creatorcontrib><creatorcontrib>Asvestas, P. A.</creatorcontrib><creatorcontrib>Matsopoulos, G. K.</creatorcontrib><title>Automatic Correspondence on Medical Images: A Comparative Study of Four Methods for Allocating Corresponding Points</title><title>Journal of digital imaging</title><addtitle>J Digit Imaging</addtitle><addtitle>J Digit Imaging</addtitle><description>The accurate estimation of point correspondences is often required in a wide variety of medical image-processing applications. Numerous point correspondence methods have been proposed in this field, each exhibiting its own characteristics, strengths, and weaknesses. This paper presents a comprehensive comparison of four automatic methods for allocating corresponding points, namely the template-matching technique, the iterative closest points approach, the correspondence by sensitivity to movement scheme, and the self-organizing maps algorithm. Initially, the four correspondence methods are described focusing on their distinct characteristics and their parameter selection for common comparisons. The performance of the four methods is then qualitatively and quantitatively compared over a total of 132 two-dimensional image pairs divided into eight sets. The sets comprise of pairs of images obtained using controlled geometry protocols (affine and sinusoidal transforms) and pairs of images subject to unknown transformations. The four methods are statistically evaluated pairwise on all image pairs and individually in terms of specific features of merit based on the correspondence accuracy as well as the registration accuracy. After assessing these evaluation criteria for each method, it was deduced that the self-organizing maps approach outperformed in most cases the other three methods in comparison.</description><subject>Algorithms</subject><subject>Biometry - methods</subject><subject>Criteria</subject><subject>Diagnostic Imaging - methods</subject><subject>Digital imaging</subject><subject>Documentation - methods</subject><subject>Focusing</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Imaging</subject><subject>Medical</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Radiography, Dental - methods</subject><subject>Radiology</subject><subject>Retina - diagnostic imaging</subject><subject>Subtraction Technique</subject><subject>Transformations</subject><subject>Transforms</subject><issn>0897-1889</issn><issn>1618-727X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkV1rFDEUhkOp2LX6A3pTQm-8Gj2ZTL56ISyL1ULFQhW8C5lMsp0yk6zJTKH99WbZxVZBvArhPOfJyXkROiHwjgCI95lALWQFoCpFFFSPB2hBOJGVqMWPQ7QAqURFpFRH6FXOdwBEMNG8REdE1YxJkAuUl_MURzP1Fq9iSi5vYuhcsA7HgL-4rrdmwJejWbt8jpeFGTcmFfze4Ztp7h5w9Pgizqmw023sMvYx4eUwRFugsH4m3d6uYx-m_Bq98GbI7s3-PEbfLz5-W32urr5-ulwtryrLAKbKStN4Dk4yL1gHrJHcti2VlnFDPPG8NcqCbalqjaTGt6wV1AjeeGaUcJ4eow8772ZuR9dZF6ZkBr1J_WjSg46m139WQn-r1_FeU2g4500RvN0LUvw5uzzpsc_WDYMJLs5ZC0a5YDXU_ycp5ZTJmhby7C_yrqwvlD1oDlw1jaxlgcgOsinmnJz_PTQBvY1e76LXJXq9jV4_lp7T57996thnXYB6B-RSCmuXnl7-t_UXOzi8yA</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Economopoulos, T. L.</creator><creator>Asvestas, P. A.</creator><creator>Matsopoulos, G. K.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SC</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB0</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100801</creationdate><title>Automatic Correspondence on Medical Images: A Comparative Study of Four Methods for Allocating Corresponding Points</title><author>Economopoulos, T. L. ; Asvestas, P. A. ; Matsopoulos, G. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-c8a4f60e85f75d05486cbb38c56a1f1f6ba9c0cb39ba83afb5b73a764f5a97ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Biometry - methods</topic><topic>Criteria</topic><topic>Diagnostic Imaging - methods</topic><topic>Digital imaging</topic><topic>Documentation - methods</topic><topic>Focusing</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Imaging</topic><topic>Medical</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Radiography, Dental - methods</topic><topic>Radiology</topic><topic>Retina - diagnostic imaging</topic><topic>Subtraction Technique</topic><topic>Transformations</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Economopoulos, T. L.</creatorcontrib><creatorcontrib>Asvestas, P. A.</creatorcontrib><creatorcontrib>Matsopoulos, G. K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of digital imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Economopoulos, T. L.</au><au>Asvestas, P. A.</au><au>Matsopoulos, G. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Correspondence on Medical Images: A Comparative Study of Four Methods for Allocating Corresponding Points</atitle><jtitle>Journal of digital imaging</jtitle><stitle>J Digit Imaging</stitle><addtitle>J Digit Imaging</addtitle><date>2010-08-01</date><risdate>2010</risdate><volume>23</volume><issue>4</issue><spage>399</spage><epage>421</epage><pages>399-421</pages><issn>0897-1889</issn><eissn>1618-727X</eissn><abstract>The accurate estimation of point correspondences is often required in a wide variety of medical image-processing applications. Numerous point correspondence methods have been proposed in this field, each exhibiting its own characteristics, strengths, and weaknesses. This paper presents a comprehensive comparison of four automatic methods for allocating corresponding points, namely the template-matching technique, the iterative closest points approach, the correspondence by sensitivity to movement scheme, and the self-organizing maps algorithm. Initially, the four correspondence methods are described focusing on their distinct characteristics and their parameter selection for common comparisons. The performance of the four methods is then qualitatively and quantitatively compared over a total of 132 two-dimensional image pairs divided into eight sets. The sets comprise of pairs of images obtained using controlled geometry protocols (affine and sinusoidal transforms) and pairs of images subject to unknown transformations. The four methods are statistically evaluated pairwise on all image pairs and individually in terms of specific features of merit based on the correspondence accuracy as well as the registration accuracy. After assessing these evaluation criteria for each method, it was deduced that the self-organizing maps approach outperformed in most cases the other three methods in comparison.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><pmid>19255808</pmid><doi>10.1007/s10278-009-9190-z</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-1889 |
ispartof | Journal of digital imaging, 2010-08, Vol.23 (4), p.399-421 |
issn | 0897-1889 1618-727X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3046664 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Algorithms Biometry - methods Criteria Diagnostic Imaging - methods Digital imaging Documentation - methods Focusing Humans Image Processing, Computer-Assisted - methods Imaging Medical Medicine Medicine & Public Health Pattern Recognition, Automated - methods Radiography, Dental - methods Radiology Retina - diagnostic imaging Subtraction Technique Transformations Transforms |
title | Automatic Correspondence on Medical Images: A Comparative Study of Four Methods for Allocating Corresponding Points |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A28%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Correspondence%20on%20Medical%20Images:%20A%20Comparative%20Study%20of%20Four%20Methods%20for%20Allocating%20Corresponding%20Points&rft.jtitle=Journal%20of%20digital%20imaging&rft.au=Economopoulos,%20T.%20L.&rft.date=2010-08-01&rft.volume=23&rft.issue=4&rft.spage=399&rft.epage=421&rft.pages=399-421&rft.issn=0897-1889&rft.eissn=1618-727X&rft_id=info:doi/10.1007/s10278-009-9190-z&rft_dat=%3Cproquest_pubme%3E733635823%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=606944828&rft_id=info:pmid/19255808&rfr_iscdi=true |