Automatic Correspondence on Medical Images: A Comparative Study of Four Methods for Allocating Corresponding Points

The accurate estimation of point correspondences is often required in a wide variety of medical image-processing applications. Numerous point correspondence methods have been proposed in this field, each exhibiting its own characteristics, strengths, and weaknesses. This paper presents a comprehensi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of digital imaging 2010-08, Vol.23 (4), p.399-421
Hauptverfasser: Economopoulos, T. L., Asvestas, P. A., Matsopoulos, G. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 421
container_issue 4
container_start_page 399
container_title Journal of digital imaging
container_volume 23
creator Economopoulos, T. L.
Asvestas, P. A.
Matsopoulos, G. K.
description The accurate estimation of point correspondences is often required in a wide variety of medical image-processing applications. Numerous point correspondence methods have been proposed in this field, each exhibiting its own characteristics, strengths, and weaknesses. This paper presents a comprehensive comparison of four automatic methods for allocating corresponding points, namely the template-matching technique, the iterative closest points approach, the correspondence by sensitivity to movement scheme, and the self-organizing maps algorithm. Initially, the four correspondence methods are described focusing on their distinct characteristics and their parameter selection for common comparisons. The performance of the four methods is then qualitatively and quantitatively compared over a total of 132 two-dimensional image pairs divided into eight sets. The sets comprise of pairs of images obtained using controlled geometry protocols (affine and sinusoidal transforms) and pairs of images subject to unknown transformations. The four methods are statistically evaluated pairwise on all image pairs and individually in terms of specific features of merit based on the correspondence accuracy as well as the registration accuracy. After assessing these evaluation criteria for each method, it was deduced that the self-organizing maps approach outperformed in most cases the other three methods in comparison.
doi_str_mv 10.1007/s10278-009-9190-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3046664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733635823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-c8a4f60e85f75d05486cbb38c56a1f1f6ba9c0cb39ba83afb5b73a764f5a97ef3</originalsourceid><addsrcrecordid>eNqFkV1rFDEUhkOp2LX6A3pTQm-8Gj2ZTL56ISyL1ULFQhW8C5lMsp0yk6zJTKH99WbZxVZBvArhPOfJyXkROiHwjgCI95lALWQFoCpFFFSPB2hBOJGVqMWPQ7QAqURFpFRH6FXOdwBEMNG8REdE1YxJkAuUl_MURzP1Fq9iSi5vYuhcsA7HgL-4rrdmwJejWbt8jpeFGTcmFfze4Ztp7h5w9Pgizqmw023sMvYx4eUwRFugsH4m3d6uYx-m_Bq98GbI7s3-PEbfLz5-W32urr5-ulwtryrLAKbKStN4Dk4yL1gHrJHcti2VlnFDPPG8NcqCbalqjaTGt6wV1AjeeGaUcJ4eow8772ZuR9dZF6ZkBr1J_WjSg46m139WQn-r1_FeU2g4500RvN0LUvw5uzzpsc_WDYMJLs5ZC0a5YDXU_ycp5ZTJmhby7C_yrqwvlD1oDlw1jaxlgcgOsinmnJz_PTQBvY1e76LXJXq9jV4_lp7T57996thnXYB6B-RSCmuXnl7-t_UXOzi8yA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>606944828</pqid></control><display><type>article</type><title>Automatic Correspondence on Medical Images: A Comparative Study of Four Methods for Allocating Corresponding Points</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Economopoulos, T. L. ; Asvestas, P. A. ; Matsopoulos, G. K.</creator><creatorcontrib>Economopoulos, T. L. ; Asvestas, P. A. ; Matsopoulos, G. K.</creatorcontrib><description>The accurate estimation of point correspondences is often required in a wide variety of medical image-processing applications. Numerous point correspondence methods have been proposed in this field, each exhibiting its own characteristics, strengths, and weaknesses. This paper presents a comprehensive comparison of four automatic methods for allocating corresponding points, namely the template-matching technique, the iterative closest points approach, the correspondence by sensitivity to movement scheme, and the self-organizing maps algorithm. Initially, the four correspondence methods are described focusing on their distinct characteristics and their parameter selection for common comparisons. The performance of the four methods is then qualitatively and quantitatively compared over a total of 132 two-dimensional image pairs divided into eight sets. The sets comprise of pairs of images obtained using controlled geometry protocols (affine and sinusoidal transforms) and pairs of images subject to unknown transformations. The four methods are statistically evaluated pairwise on all image pairs and individually in terms of specific features of merit based on the correspondence accuracy as well as the registration accuracy. After assessing these evaluation criteria for each method, it was deduced that the self-organizing maps approach outperformed in most cases the other three methods in comparison.</description><identifier>ISSN: 0897-1889</identifier><identifier>EISSN: 1618-727X</identifier><identifier>DOI: 10.1007/s10278-009-9190-z</identifier><identifier>PMID: 19255808</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Algorithms ; Biometry - methods ; Criteria ; Diagnostic Imaging - methods ; Digital imaging ; Documentation - methods ; Focusing ; Humans ; Image Processing, Computer-Assisted - methods ; Imaging ; Medical ; Medicine ; Medicine &amp; Public Health ; Pattern Recognition, Automated - methods ; Radiography, Dental - methods ; Radiology ; Retina - diagnostic imaging ; Subtraction Technique ; Transformations ; Transforms</subject><ispartof>Journal of digital imaging, 2010-08, Vol.23 (4), p.399-421</ispartof><rights>Society for Imaging Informatics in Medicine 2009</rights><rights>Society for Imaging Informatics in Medicine 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-c8a4f60e85f75d05486cbb38c56a1f1f6ba9c0cb39ba83afb5b73a764f5a97ef3</citedby><cites>FETCH-LOGICAL-c500t-c8a4f60e85f75d05486cbb38c56a1f1f6ba9c0cb39ba83afb5b73a764f5a97ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3046664/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3046664/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19255808$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Economopoulos, T. L.</creatorcontrib><creatorcontrib>Asvestas, P. A.</creatorcontrib><creatorcontrib>Matsopoulos, G. K.</creatorcontrib><title>Automatic Correspondence on Medical Images: A Comparative Study of Four Methods for Allocating Corresponding Points</title><title>Journal of digital imaging</title><addtitle>J Digit Imaging</addtitle><addtitle>J Digit Imaging</addtitle><description>The accurate estimation of point correspondences is often required in a wide variety of medical image-processing applications. Numerous point correspondence methods have been proposed in this field, each exhibiting its own characteristics, strengths, and weaknesses. This paper presents a comprehensive comparison of four automatic methods for allocating corresponding points, namely the template-matching technique, the iterative closest points approach, the correspondence by sensitivity to movement scheme, and the self-organizing maps algorithm. Initially, the four correspondence methods are described focusing on their distinct characteristics and their parameter selection for common comparisons. The performance of the four methods is then qualitatively and quantitatively compared over a total of 132 two-dimensional image pairs divided into eight sets. The sets comprise of pairs of images obtained using controlled geometry protocols (affine and sinusoidal transforms) and pairs of images subject to unknown transformations. The four methods are statistically evaluated pairwise on all image pairs and individually in terms of specific features of merit based on the correspondence accuracy as well as the registration accuracy. After assessing these evaluation criteria for each method, it was deduced that the self-organizing maps approach outperformed in most cases the other three methods in comparison.</description><subject>Algorithms</subject><subject>Biometry - methods</subject><subject>Criteria</subject><subject>Diagnostic Imaging - methods</subject><subject>Digital imaging</subject><subject>Documentation - methods</subject><subject>Focusing</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Imaging</subject><subject>Medical</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Radiography, Dental - methods</subject><subject>Radiology</subject><subject>Retina - diagnostic imaging</subject><subject>Subtraction Technique</subject><subject>Transformations</subject><subject>Transforms</subject><issn>0897-1889</issn><issn>1618-727X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkV1rFDEUhkOp2LX6A3pTQm-8Gj2ZTL56ISyL1ULFQhW8C5lMsp0yk6zJTKH99WbZxVZBvArhPOfJyXkROiHwjgCI95lALWQFoCpFFFSPB2hBOJGVqMWPQ7QAqURFpFRH6FXOdwBEMNG8REdE1YxJkAuUl_MURzP1Fq9iSi5vYuhcsA7HgL-4rrdmwJejWbt8jpeFGTcmFfze4Ztp7h5w9Pgizqmw023sMvYx4eUwRFugsH4m3d6uYx-m_Bq98GbI7s3-PEbfLz5-W32urr5-ulwtryrLAKbKStN4Dk4yL1gHrJHcti2VlnFDPPG8NcqCbalqjaTGt6wV1AjeeGaUcJ4eow8772ZuR9dZF6ZkBr1J_WjSg46m139WQn-r1_FeU2g4500RvN0LUvw5uzzpsc_WDYMJLs5ZC0a5YDXU_ycp5ZTJmhby7C_yrqwvlD1oDlw1jaxlgcgOsinmnJz_PTQBvY1e76LXJXq9jV4_lp7T57996thnXYB6B-RSCmuXnl7-t_UXOzi8yA</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Economopoulos, T. L.</creator><creator>Asvestas, P. A.</creator><creator>Matsopoulos, G. K.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SC</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB0</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100801</creationdate><title>Automatic Correspondence on Medical Images: A Comparative Study of Four Methods for Allocating Corresponding Points</title><author>Economopoulos, T. L. ; Asvestas, P. A. ; Matsopoulos, G. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-c8a4f60e85f75d05486cbb38c56a1f1f6ba9c0cb39ba83afb5b73a764f5a97ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Biometry - methods</topic><topic>Criteria</topic><topic>Diagnostic Imaging - methods</topic><topic>Digital imaging</topic><topic>Documentation - methods</topic><topic>Focusing</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Imaging</topic><topic>Medical</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Radiography, Dental - methods</topic><topic>Radiology</topic><topic>Retina - diagnostic imaging</topic><topic>Subtraction Technique</topic><topic>Transformations</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Economopoulos, T. L.</creatorcontrib><creatorcontrib>Asvestas, P. A.</creatorcontrib><creatorcontrib>Matsopoulos, G. K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of digital imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Economopoulos, T. L.</au><au>Asvestas, P. A.</au><au>Matsopoulos, G. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Correspondence on Medical Images: A Comparative Study of Four Methods for Allocating Corresponding Points</atitle><jtitle>Journal of digital imaging</jtitle><stitle>J Digit Imaging</stitle><addtitle>J Digit Imaging</addtitle><date>2010-08-01</date><risdate>2010</risdate><volume>23</volume><issue>4</issue><spage>399</spage><epage>421</epage><pages>399-421</pages><issn>0897-1889</issn><eissn>1618-727X</eissn><abstract>The accurate estimation of point correspondences is often required in a wide variety of medical image-processing applications. Numerous point correspondence methods have been proposed in this field, each exhibiting its own characteristics, strengths, and weaknesses. This paper presents a comprehensive comparison of four automatic methods for allocating corresponding points, namely the template-matching technique, the iterative closest points approach, the correspondence by sensitivity to movement scheme, and the self-organizing maps algorithm. Initially, the four correspondence methods are described focusing on their distinct characteristics and their parameter selection for common comparisons. The performance of the four methods is then qualitatively and quantitatively compared over a total of 132 two-dimensional image pairs divided into eight sets. The sets comprise of pairs of images obtained using controlled geometry protocols (affine and sinusoidal transforms) and pairs of images subject to unknown transformations. The four methods are statistically evaluated pairwise on all image pairs and individually in terms of specific features of merit based on the correspondence accuracy as well as the registration accuracy. After assessing these evaluation criteria for each method, it was deduced that the self-organizing maps approach outperformed in most cases the other three methods in comparison.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><pmid>19255808</pmid><doi>10.1007/s10278-009-9190-z</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-1889
ispartof Journal of digital imaging, 2010-08, Vol.23 (4), p.399-421
issn 0897-1889
1618-727X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3046664
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Algorithms
Biometry - methods
Criteria
Diagnostic Imaging - methods
Digital imaging
Documentation - methods
Focusing
Humans
Image Processing, Computer-Assisted - methods
Imaging
Medical
Medicine
Medicine & Public Health
Pattern Recognition, Automated - methods
Radiography, Dental - methods
Radiology
Retina - diagnostic imaging
Subtraction Technique
Transformations
Transforms
title Automatic Correspondence on Medical Images: A Comparative Study of Four Methods for Allocating Corresponding Points
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A28%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Correspondence%20on%20Medical%20Images:%20A%20Comparative%20Study%20of%20Four%20Methods%20for%20Allocating%20Corresponding%20Points&rft.jtitle=Journal%20of%20digital%20imaging&rft.au=Economopoulos,%20T.%20L.&rft.date=2010-08-01&rft.volume=23&rft.issue=4&rft.spage=399&rft.epage=421&rft.pages=399-421&rft.issn=0897-1889&rft.eissn=1618-727X&rft_id=info:doi/10.1007/s10278-009-9190-z&rft_dat=%3Cproquest_pubme%3E733635823%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=606944828&rft_id=info:pmid/19255808&rfr_iscdi=true