Determining the view of chest radiographs

Automatic identification of frontal (posteroanterior/anteroposterior) vs. lateral chest radiographs is an important preprocessing step in computer-assisted diagnosis, content-based image retrieval, as well as picture archiving and communication systems. Here, a new approach is presented. After the r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of digital imaging 2003-12, Vol.16 (3), p.280-291
Hauptverfasser: Lehmann, Thomas M, Güld, O, Keysers, Daniel, Schubert, Henning, Kohnen, Michael, Wein, Berthold B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 291
container_issue 3
container_start_page 280
container_title Journal of digital imaging
container_volume 16
creator Lehmann, Thomas M
Güld, O
Keysers, Daniel
Schubert, Henning
Kohnen, Michael
Wein, Berthold B
description Automatic identification of frontal (posteroanterior/anteroposterior) vs. lateral chest radiographs is an important preprocessing step in computer-assisted diagnosis, content-based image retrieval, as well as picture archiving and communication systems. Here, a new approach is presented. After the radiographs are reduced substantially in size, several distance measures are applied for nearest-neighbor classification. Leaving-one-out experiments were performed based on 1,867 radiographs from clinical routine. For comparison to existing approaches, subsets of 430 and 5 training images are also considered. The overall best correctness of 99.7% is obtained for feature images of 32 x 32 pixels, the tangent distance, and a 5-nearest-neighbor classification scheme. Applying the normalized cross correlation function, correctness yields still 99.6% and 99.3% for feature images of 32 x 32 and 8 x 8 pixel, respectively. Remaining errors are caused by image altering pathologies, metal artifacts, or other interferences with routine conditions. The proposed algorithm outperforms existing but sophisticated approaches and is easily implemented at the same time.
doi_str_mv 10.1007/s10278-003-1655-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3045251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>815875211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-8c3f5498e78ca2231e07c27601c4896431b175a17870d4551b6c75c563e31c693</originalsourceid><addsrcrecordid>eNpdUctKAzEUDaLY-vgANzK4EFyM5iaT3MxGkPqEghsFdyFNM50p7UxNZmr9e1NafK3u4p5zOA9CToBeAqV4FYAyVCmlPAUpRLraIX2QoFJk-LZL-lTlmIJSeY8chDClFFBgtk96kEmZU8n75OLWtc7Pq7qqJ0lbumRZuY-kKRJbutAm3oyrZuLNogxHZK8ws-COt_eQvN7fvQwe0-Hzw9PgZpjajLE2VZYXIsuVQ2UNYxwcRctQUrCZymXGYRRdGECFdJwJASNpUVghueNgZc4PyfVGd9GN5m5sXd16M9MLX82N_9SNqfTfT12VetIsNaeZYAKiwPlWwDfvXUyh51WwbjYztWu6oBEEp5hjBJ79A06bztcxnGYQ-2E5igiCDcj6JgTvim8nQPV6Bb1ZQccV9HoFvYqc098Rfhjb2vkXKNmBTw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216902975</pqid></control><display><type>article</type><title>Determining the view of chest radiographs</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Lehmann, Thomas M ; Güld, O ; Keysers, Daniel ; Schubert, Henning ; Kohnen, Michael ; Wein, Berthold B</creator><creatorcontrib>Lehmann, Thomas M ; Güld, O ; Keysers, Daniel ; Schubert, Henning ; Kohnen, Michael ; Wein, Berthold B</creatorcontrib><description>Automatic identification of frontal (posteroanterior/anteroposterior) vs. lateral chest radiographs is an important preprocessing step in computer-assisted diagnosis, content-based image retrieval, as well as picture archiving and communication systems. Here, a new approach is presented. After the radiographs are reduced substantially in size, several distance measures are applied for nearest-neighbor classification. Leaving-one-out experiments were performed based on 1,867 radiographs from clinical routine. For comparison to existing approaches, subsets of 430 and 5 training images are also considered. The overall best correctness of 99.7% is obtained for feature images of 32 x 32 pixels, the tangent distance, and a 5-nearest-neighbor classification scheme. Applying the normalized cross correlation function, correctness yields still 99.6% and 99.3% for feature images of 32 x 32 and 8 x 8 pixel, respectively. Remaining errors are caused by image altering pathologies, metal artifacts, or other interferences with routine conditions. The proposed algorithm outperforms existing but sophisticated approaches and is easily implemented at the same time.</description><identifier>ISSN: 0897-1889</identifier><identifier>EISSN: 1618-727X</identifier><identifier>DOI: 10.1007/s10278-003-1655-x</identifier><identifier>PMID: 14669063</identifier><language>eng</language><publisher>United States: Springer Nature B.V</publisher><subject>Humans ; Models, Statistical ; Radiographic Image Interpretation, Computer-Assisted ; Radiography, Thoracic - methods ; Radiography, Thoracic - standards ; Software</subject><ispartof>Journal of digital imaging, 2003-12, Vol.16 (3), p.280-291</ispartof><rights>Springer-Verlag 2003</rights><rights>SCAR (Society for Computer Applications in Radiology) 2003</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-8c3f5498e78ca2231e07c27601c4896431b175a17870d4551b6c75c563e31c693</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3045251/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3045251/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14669063$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lehmann, Thomas M</creatorcontrib><creatorcontrib>Güld, O</creatorcontrib><creatorcontrib>Keysers, Daniel</creatorcontrib><creatorcontrib>Schubert, Henning</creatorcontrib><creatorcontrib>Kohnen, Michael</creatorcontrib><creatorcontrib>Wein, Berthold B</creatorcontrib><title>Determining the view of chest radiographs</title><title>Journal of digital imaging</title><addtitle>J Digit Imaging</addtitle><description>Automatic identification of frontal (posteroanterior/anteroposterior) vs. lateral chest radiographs is an important preprocessing step in computer-assisted diagnosis, content-based image retrieval, as well as picture archiving and communication systems. Here, a new approach is presented. After the radiographs are reduced substantially in size, several distance measures are applied for nearest-neighbor classification. Leaving-one-out experiments were performed based on 1,867 radiographs from clinical routine. For comparison to existing approaches, subsets of 430 and 5 training images are also considered. The overall best correctness of 99.7% is obtained for feature images of 32 x 32 pixels, the tangent distance, and a 5-nearest-neighbor classification scheme. Applying the normalized cross correlation function, correctness yields still 99.6% and 99.3% for feature images of 32 x 32 and 8 x 8 pixel, respectively. Remaining errors are caused by image altering pathologies, metal artifacts, or other interferences with routine conditions. The proposed algorithm outperforms existing but sophisticated approaches and is easily implemented at the same time.</description><subject>Humans</subject><subject>Models, Statistical</subject><subject>Radiographic Image Interpretation, Computer-Assisted</subject><subject>Radiography, Thoracic - methods</subject><subject>Radiography, Thoracic - standards</subject><subject>Software</subject><issn>0897-1889</issn><issn>1618-727X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNpdUctKAzEUDaLY-vgANzK4EFyM5iaT3MxGkPqEghsFdyFNM50p7UxNZmr9e1NafK3u4p5zOA9CToBeAqV4FYAyVCmlPAUpRLraIX2QoFJk-LZL-lTlmIJSeY8chDClFFBgtk96kEmZU8n75OLWtc7Pq7qqJ0lbumRZuY-kKRJbutAm3oyrZuLNogxHZK8ws-COt_eQvN7fvQwe0-Hzw9PgZpjajLE2VZYXIsuVQ2UNYxwcRctQUrCZymXGYRRdGECFdJwJASNpUVghueNgZc4PyfVGd9GN5m5sXd16M9MLX82N_9SNqfTfT12VetIsNaeZYAKiwPlWwDfvXUyh51WwbjYztWu6oBEEp5hjBJ79A06bztcxnGYQ-2E5igiCDcj6JgTvim8nQPV6Bb1ZQccV9HoFvYqc098Rfhjb2vkXKNmBTw</recordid><startdate>20031201</startdate><enddate>20031201</enddate><creator>Lehmann, Thomas M</creator><creator>Güld, O</creator><creator>Keysers, Daniel</creator><creator>Schubert, Henning</creator><creator>Kohnen, Michael</creator><creator>Wein, Berthold B</creator><general>Springer Nature B.V</general><general>Springer-Verlag</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SC</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB0</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20031201</creationdate><title>Determining the view of chest radiographs</title><author>Lehmann, Thomas M ; Güld, O ; Keysers, Daniel ; Schubert, Henning ; Kohnen, Michael ; Wein, Berthold B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-8c3f5498e78ca2231e07c27601c4896431b175a17870d4551b6c75c563e31c693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Humans</topic><topic>Models, Statistical</topic><topic>Radiographic Image Interpretation, Computer-Assisted</topic><topic>Radiography, Thoracic - methods</topic><topic>Radiography, Thoracic - standards</topic><topic>Software</topic><toplevel>online_resources</toplevel><creatorcontrib>Lehmann, Thomas M</creatorcontrib><creatorcontrib>Güld, O</creatorcontrib><creatorcontrib>Keysers, Daniel</creatorcontrib><creatorcontrib>Schubert, Henning</creatorcontrib><creatorcontrib>Kohnen, Michael</creatorcontrib><creatorcontrib>Wein, Berthold B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of digital imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lehmann, Thomas M</au><au>Güld, O</au><au>Keysers, Daniel</au><au>Schubert, Henning</au><au>Kohnen, Michael</au><au>Wein, Berthold B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining the view of chest radiographs</atitle><jtitle>Journal of digital imaging</jtitle><addtitle>J Digit Imaging</addtitle><date>2003-12-01</date><risdate>2003</risdate><volume>16</volume><issue>3</issue><spage>280</spage><epage>291</epage><pages>280-291</pages><issn>0897-1889</issn><eissn>1618-727X</eissn><abstract>Automatic identification of frontal (posteroanterior/anteroposterior) vs. lateral chest radiographs is an important preprocessing step in computer-assisted diagnosis, content-based image retrieval, as well as picture archiving and communication systems. Here, a new approach is presented. After the radiographs are reduced substantially in size, several distance measures are applied for nearest-neighbor classification. Leaving-one-out experiments were performed based on 1,867 radiographs from clinical routine. For comparison to existing approaches, subsets of 430 and 5 training images are also considered. The overall best correctness of 99.7% is obtained for feature images of 32 x 32 pixels, the tangent distance, and a 5-nearest-neighbor classification scheme. Applying the normalized cross correlation function, correctness yields still 99.6% and 99.3% for feature images of 32 x 32 and 8 x 8 pixel, respectively. Remaining errors are caused by image altering pathologies, metal artifacts, or other interferences with routine conditions. The proposed algorithm outperforms existing but sophisticated approaches and is easily implemented at the same time.</abstract><cop>United States</cop><pub>Springer Nature B.V</pub><pmid>14669063</pmid><doi>10.1007/s10278-003-1655-x</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-1889
ispartof Journal of digital imaging, 2003-12, Vol.16 (3), p.280-291
issn 0897-1889
1618-727X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3045251
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Humans
Models, Statistical
Radiographic Image Interpretation, Computer-Assisted
Radiography, Thoracic - methods
Radiography, Thoracic - standards
Software
title Determining the view of chest radiographs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A22%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20the%20view%20of%20chest%20radiographs&rft.jtitle=Journal%20of%20digital%20imaging&rft.au=Lehmann,%20Thomas%20M&rft.date=2003-12-01&rft.volume=16&rft.issue=3&rft.spage=280&rft.epage=291&rft.pages=280-291&rft.issn=0897-1889&rft.eissn=1618-727X&rft_id=info:doi/10.1007/s10278-003-1655-x&rft_dat=%3Cproquest_pubme%3E815875211%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=216902975&rft_id=info:pmid/14669063&rfr_iscdi=true