Nephron blood flow dynamics measured by laser speckle contrast imaging

Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubular p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American Journal of Physiology - Renal Physiology 2011-02, Vol.300 (2), p.F319-F329
Hauptverfasser: Holstein-Rathlou, Niels-Henrik, Sosnovtseva, Olga V, Pavlov, Alexey N, Cupples, William A, Sorensen, Charlotte Mehlin, Marsh, Donald J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page F329
container_issue 2
container_start_page F319
container_title American Journal of Physiology - Renal Physiology
container_volume 300
creator Holstein-Rathlou, Niels-Henrik
Sosnovtseva, Olga V
Pavlov, Alexey N
Cupples, William A
Sorensen, Charlotte Mehlin
Marsh, Donald J
description Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubular pressure and flow. Nephrons interact by exchanging electrical signals conducted electrotonically through cells of the vascular wall, leading to synchronization of the TGF-mediated oscillations. Experimental studies of these interactions have been limited to observations on two or at most three nephrons simultaneously. The interacting nephron fields are likely to be more extensive. We have turned to laser speckle contrast imaging to measure the blood flow dynamics of 50-100 nephrons simultaneously on the renal surface of anesthetized rats. We report the application of this method and describe analytic techniques for extracting the desired data and for examining them for evidence of nephron synchronization. Synchronized TGF oscillations were detected in pairs or triplets of nephrons. The amplitude and the frequency of the oscillations changed with time, as did the patterns of synchronization. Synchronization may take place among nephrons not immediately adjacent on the surface of the kidney.
doi_str_mv 10.1152/ajprenal.00417.2010
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3044006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2273017261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-912093a47fcce7a384e15bbfa7d8d33f2af6c5429d602f793575b501b9d5a0d03</originalsourceid><addsrcrecordid>eNpVkFtLAzEQhYMotlZ_gSDB962T215eBClWhaIvCr6FbJJtt-5u1mSr9N-7tRf0aQbmnDOHD6FLAmNCBL1Ry9bbRlVjAE6SMQUCR2jYX2hEeBwf93vGSJSK5H2AzkJYAgAhlJyiASXAU6BiiKbPtl141-C8cs7gonLf2KwbVZc64NqqsPLW4HyNKxWsx6G1-qOyWLum8yp0uKzVvGzm5-ikUFWwF7s5Qm_T-9fJYzR7eXia3M0izRnpooxQyJjiSaG1TRRLuSUizwuVmNQwVlBVxFpwmpkYaJFkTCQiF0DyzAgFBtgI3W5z21VeW6PtpkYlW9_38GvpVCn_X5pyIefuSzLgHCDuA653Ad59rmzo5NKtfE8xyFQwEAmjGxHbirR3IXhbHB4QkBv2cs9e_rKXG_a96-pvt4NnD5v9AHzZgzM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>853057326</pqid></control><display><type>article</type><title>Nephron blood flow dynamics measured by laser speckle contrast imaging</title><source>MEDLINE</source><source>American Physiological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Holstein-Rathlou, Niels-Henrik ; Sosnovtseva, Olga V ; Pavlov, Alexey N ; Cupples, William A ; Sorensen, Charlotte Mehlin ; Marsh, Donald J</creator><creatorcontrib>Holstein-Rathlou, Niels-Henrik ; Sosnovtseva, Olga V ; Pavlov, Alexey N ; Cupples, William A ; Sorensen, Charlotte Mehlin ; Marsh, Donald J</creatorcontrib><description>Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubular pressure and flow. Nephrons interact by exchanging electrical signals conducted electrotonically through cells of the vascular wall, leading to synchronization of the TGF-mediated oscillations. Experimental studies of these interactions have been limited to observations on two or at most three nephrons simultaneously. The interacting nephron fields are likely to be more extensive. We have turned to laser speckle contrast imaging to measure the blood flow dynamics of 50-100 nephrons simultaneously on the renal surface of anesthetized rats. We report the application of this method and describe analytic techniques for extracting the desired data and for examining them for evidence of nephron synchronization. Synchronized TGF oscillations were detected in pairs or triplets of nephrons. The amplitude and the frequency of the oscillations changed with time, as did the patterns of synchronization. Synchronization may take place among nephrons not immediately adjacent on the surface of the kidney.</description><identifier>ISSN: 1931-857X</identifier><identifier>ISSN: 0363-6127</identifier><identifier>EISSN: 1522-1466</identifier><identifier>DOI: 10.1152/ajprenal.00417.2010</identifier><identifier>PMID: 21048025</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Acetylcholine - pharmacology ; Angiotensin II - pharmacology ; Animals ; Blood ; Call for Papers: Renal Hemodynamics ; Excretory system ; Experiments ; Hemodynamics - physiology ; Kidneys ; Lasers ; Male ; Nephrons - blood supply ; Nephrons - drug effects ; Nephrons - physiology ; Physiology ; Rats ; Rats, Sprague-Dawley ; Renal Circulation - drug effects ; Renal Circulation - physiology ; Rheology - methods ; Rodents</subject><ispartof>American Journal of Physiology - Renal Physiology, 2011-02, Vol.300 (2), p.F319-F329</ispartof><rights>Copyright American Physiological Society Feb 2011</rights><rights>Copyright © 2011 the American Physiological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-912093a47fcce7a384e15bbfa7d8d33f2af6c5429d602f793575b501b9d5a0d03</citedby><cites>FETCH-LOGICAL-c431t-912093a47fcce7a384e15bbfa7d8d33f2af6c5429d602f793575b501b9d5a0d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3039,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21048025$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Holstein-Rathlou, Niels-Henrik</creatorcontrib><creatorcontrib>Sosnovtseva, Olga V</creatorcontrib><creatorcontrib>Pavlov, Alexey N</creatorcontrib><creatorcontrib>Cupples, William A</creatorcontrib><creatorcontrib>Sorensen, Charlotte Mehlin</creatorcontrib><creatorcontrib>Marsh, Donald J</creatorcontrib><title>Nephron blood flow dynamics measured by laser speckle contrast imaging</title><title>American Journal of Physiology - Renal Physiology</title><addtitle>Am J Physiol Renal Physiol</addtitle><description>Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubular pressure and flow. Nephrons interact by exchanging electrical signals conducted electrotonically through cells of the vascular wall, leading to synchronization of the TGF-mediated oscillations. Experimental studies of these interactions have been limited to observations on two or at most three nephrons simultaneously. The interacting nephron fields are likely to be more extensive. We have turned to laser speckle contrast imaging to measure the blood flow dynamics of 50-100 nephrons simultaneously on the renal surface of anesthetized rats. We report the application of this method and describe analytic techniques for extracting the desired data and for examining them for evidence of nephron synchronization. Synchronized TGF oscillations were detected in pairs or triplets of nephrons. The amplitude and the frequency of the oscillations changed with time, as did the patterns of synchronization. Synchronization may take place among nephrons not immediately adjacent on the surface of the kidney.</description><subject>Acetylcholine - pharmacology</subject><subject>Angiotensin II - pharmacology</subject><subject>Animals</subject><subject>Blood</subject><subject>Call for Papers: Renal Hemodynamics</subject><subject>Excretory system</subject><subject>Experiments</subject><subject>Hemodynamics - physiology</subject><subject>Kidneys</subject><subject>Lasers</subject><subject>Male</subject><subject>Nephrons - blood supply</subject><subject>Nephrons - drug effects</subject><subject>Nephrons - physiology</subject><subject>Physiology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Renal Circulation - drug effects</subject><subject>Renal Circulation - physiology</subject><subject>Rheology - methods</subject><subject>Rodents</subject><issn>1931-857X</issn><issn>0363-6127</issn><issn>1522-1466</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkFtLAzEQhYMotlZ_gSDB962T215eBClWhaIvCr6FbJJtt-5u1mSr9N-7tRf0aQbmnDOHD6FLAmNCBL1Ry9bbRlVjAE6SMQUCR2jYX2hEeBwf93vGSJSK5H2AzkJYAgAhlJyiASXAU6BiiKbPtl141-C8cs7gonLf2KwbVZc64NqqsPLW4HyNKxWsx6G1-qOyWLum8yp0uKzVvGzm5-ikUFWwF7s5Qm_T-9fJYzR7eXia3M0izRnpooxQyJjiSaG1TRRLuSUizwuVmNQwVlBVxFpwmpkYaJFkTCQiF0DyzAgFBtgI3W5z21VeW6PtpkYlW9_38GvpVCn_X5pyIefuSzLgHCDuA653Ad59rmzo5NKtfE8xyFQwEAmjGxHbirR3IXhbHB4QkBv2cs9e_rKXG_a96-pvt4NnD5v9AHzZgzM</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Holstein-Rathlou, Niels-Henrik</creator><creator>Sosnovtseva, Olga V</creator><creator>Pavlov, Alexey N</creator><creator>Cupples, William A</creator><creator>Sorensen, Charlotte Mehlin</creator><creator>Marsh, Donald J</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20110201</creationdate><title>Nephron blood flow dynamics measured by laser speckle contrast imaging</title><author>Holstein-Rathlou, Niels-Henrik ; Sosnovtseva, Olga V ; Pavlov, Alexey N ; Cupples, William A ; Sorensen, Charlotte Mehlin ; Marsh, Donald J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-912093a47fcce7a384e15bbfa7d8d33f2af6c5429d602f793575b501b9d5a0d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acetylcholine - pharmacology</topic><topic>Angiotensin II - pharmacology</topic><topic>Animals</topic><topic>Blood</topic><topic>Call for Papers: Renal Hemodynamics</topic><topic>Excretory system</topic><topic>Experiments</topic><topic>Hemodynamics - physiology</topic><topic>Kidneys</topic><topic>Lasers</topic><topic>Male</topic><topic>Nephrons - blood supply</topic><topic>Nephrons - drug effects</topic><topic>Nephrons - physiology</topic><topic>Physiology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Renal Circulation - drug effects</topic><topic>Renal Circulation - physiology</topic><topic>Rheology - methods</topic><topic>Rodents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holstein-Rathlou, Niels-Henrik</creatorcontrib><creatorcontrib>Sosnovtseva, Olga V</creatorcontrib><creatorcontrib>Pavlov, Alexey N</creatorcontrib><creatorcontrib>Cupples, William A</creatorcontrib><creatorcontrib>Sorensen, Charlotte Mehlin</creatorcontrib><creatorcontrib>Marsh, Donald J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American Journal of Physiology - Renal Physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holstein-Rathlou, Niels-Henrik</au><au>Sosnovtseva, Olga V</au><au>Pavlov, Alexey N</au><au>Cupples, William A</au><au>Sorensen, Charlotte Mehlin</au><au>Marsh, Donald J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nephron blood flow dynamics measured by laser speckle contrast imaging</atitle><jtitle>American Journal of Physiology - Renal Physiology</jtitle><addtitle>Am J Physiol Renal Physiol</addtitle><date>2011-02-01</date><risdate>2011</risdate><volume>300</volume><issue>2</issue><spage>F319</spage><epage>F329</epage><pages>F319-F329</pages><issn>1931-857X</issn><issn>0363-6127</issn><eissn>1522-1466</eissn><abstract>Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubular pressure and flow. Nephrons interact by exchanging electrical signals conducted electrotonically through cells of the vascular wall, leading to synchronization of the TGF-mediated oscillations. Experimental studies of these interactions have been limited to observations on two or at most three nephrons simultaneously. The interacting nephron fields are likely to be more extensive. We have turned to laser speckle contrast imaging to measure the blood flow dynamics of 50-100 nephrons simultaneously on the renal surface of anesthetized rats. We report the application of this method and describe analytic techniques for extracting the desired data and for examining them for evidence of nephron synchronization. Synchronized TGF oscillations were detected in pairs or triplets of nephrons. The amplitude and the frequency of the oscillations changed with time, as did the patterns of synchronization. Synchronization may take place among nephrons not immediately adjacent on the surface of the kidney.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>21048025</pmid><doi>10.1152/ajprenal.00417.2010</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1931-857X
ispartof American Journal of Physiology - Renal Physiology, 2011-02, Vol.300 (2), p.F319-F329
issn 1931-857X
0363-6127
1522-1466
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3044006
source MEDLINE; American Physiological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Acetylcholine - pharmacology
Angiotensin II - pharmacology
Animals
Blood
Call for Papers: Renal Hemodynamics
Excretory system
Experiments
Hemodynamics - physiology
Kidneys
Lasers
Male
Nephrons - blood supply
Nephrons - drug effects
Nephrons - physiology
Physiology
Rats
Rats, Sprague-Dawley
Renal Circulation - drug effects
Renal Circulation - physiology
Rheology - methods
Rodents
title Nephron blood flow dynamics measured by laser speckle contrast imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T18%3A03%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nephron%20blood%20flow%20dynamics%20measured%20by%20laser%20speckle%20contrast%20imaging&rft.jtitle=American%20Journal%20of%20Physiology%20-%20Renal%20Physiology&rft.au=Holstein-Rathlou,%20Niels-Henrik&rft.date=2011-02-01&rft.volume=300&rft.issue=2&rft.spage=F319&rft.epage=F329&rft.pages=F319-F329&rft.issn=1931-857X&rft.eissn=1522-1466&rft_id=info:doi/10.1152/ajprenal.00417.2010&rft_dat=%3Cproquest_pubme%3E2273017261%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=853057326&rft_id=info:pmid/21048025&rfr_iscdi=true