Nephron blood flow dynamics measured by laser speckle contrast imaging
Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubular p...
Gespeichert in:
Veröffentlicht in: | American Journal of Physiology - Renal Physiology 2011-02, Vol.300 (2), p.F319-F329 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | F329 |
---|---|
container_issue | 2 |
container_start_page | F319 |
container_title | American Journal of Physiology - Renal Physiology |
container_volume | 300 |
creator | Holstein-Rathlou, Niels-Henrik Sosnovtseva, Olga V Pavlov, Alexey N Cupples, William A Sorensen, Charlotte Mehlin Marsh, Donald J |
description | Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubular pressure and flow. Nephrons interact by exchanging electrical signals conducted electrotonically through cells of the vascular wall, leading to synchronization of the TGF-mediated oscillations. Experimental studies of these interactions have been limited to observations on two or at most three nephrons simultaneously. The interacting nephron fields are likely to be more extensive. We have turned to laser speckle contrast imaging to measure the blood flow dynamics of 50-100 nephrons simultaneously on the renal surface of anesthetized rats. We report the application of this method and describe analytic techniques for extracting the desired data and for examining them for evidence of nephron synchronization. Synchronized TGF oscillations were detected in pairs or triplets of nephrons. The amplitude and the frequency of the oscillations changed with time, as did the patterns of synchronization. Synchronization may take place among nephrons not immediately adjacent on the surface of the kidney. |
doi_str_mv | 10.1152/ajprenal.00417.2010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3044006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2273017261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-912093a47fcce7a384e15bbfa7d8d33f2af6c5429d602f793575b501b9d5a0d03</originalsourceid><addsrcrecordid>eNpVkFtLAzEQhYMotlZ_gSDB962T215eBClWhaIvCr6FbJJtt-5u1mSr9N-7tRf0aQbmnDOHD6FLAmNCBL1Ry9bbRlVjAE6SMQUCR2jYX2hEeBwf93vGSJSK5H2AzkJYAgAhlJyiASXAU6BiiKbPtl141-C8cs7gonLf2KwbVZc64NqqsPLW4HyNKxWsx6G1-qOyWLum8yp0uKzVvGzm5-ikUFWwF7s5Qm_T-9fJYzR7eXia3M0izRnpooxQyJjiSaG1TRRLuSUizwuVmNQwVlBVxFpwmpkYaJFkTCQiF0DyzAgFBtgI3W5z21VeW6PtpkYlW9_38GvpVCn_X5pyIefuSzLgHCDuA653Ad59rmzo5NKtfE8xyFQwEAmjGxHbirR3IXhbHB4QkBv2cs9e_rKXG_a96-pvt4NnD5v9AHzZgzM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>853057326</pqid></control><display><type>article</type><title>Nephron blood flow dynamics measured by laser speckle contrast imaging</title><source>MEDLINE</source><source>American Physiological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Holstein-Rathlou, Niels-Henrik ; Sosnovtseva, Olga V ; Pavlov, Alexey N ; Cupples, William A ; Sorensen, Charlotte Mehlin ; Marsh, Donald J</creator><creatorcontrib>Holstein-Rathlou, Niels-Henrik ; Sosnovtseva, Olga V ; Pavlov, Alexey N ; Cupples, William A ; Sorensen, Charlotte Mehlin ; Marsh, Donald J</creatorcontrib><description>Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubular pressure and flow. Nephrons interact by exchanging electrical signals conducted electrotonically through cells of the vascular wall, leading to synchronization of the TGF-mediated oscillations. Experimental studies of these interactions have been limited to observations on two or at most three nephrons simultaneously. The interacting nephron fields are likely to be more extensive. We have turned to laser speckle contrast imaging to measure the blood flow dynamics of 50-100 nephrons simultaneously on the renal surface of anesthetized rats. We report the application of this method and describe analytic techniques for extracting the desired data and for examining them for evidence of nephron synchronization. Synchronized TGF oscillations were detected in pairs or triplets of nephrons. The amplitude and the frequency of the oscillations changed with time, as did the patterns of synchronization. Synchronization may take place among nephrons not immediately adjacent on the surface of the kidney.</description><identifier>ISSN: 1931-857X</identifier><identifier>ISSN: 0363-6127</identifier><identifier>EISSN: 1522-1466</identifier><identifier>DOI: 10.1152/ajprenal.00417.2010</identifier><identifier>PMID: 21048025</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Acetylcholine - pharmacology ; Angiotensin II - pharmacology ; Animals ; Blood ; Call for Papers: Renal Hemodynamics ; Excretory system ; Experiments ; Hemodynamics - physiology ; Kidneys ; Lasers ; Male ; Nephrons - blood supply ; Nephrons - drug effects ; Nephrons - physiology ; Physiology ; Rats ; Rats, Sprague-Dawley ; Renal Circulation - drug effects ; Renal Circulation - physiology ; Rheology - methods ; Rodents</subject><ispartof>American Journal of Physiology - Renal Physiology, 2011-02, Vol.300 (2), p.F319-F329</ispartof><rights>Copyright American Physiological Society Feb 2011</rights><rights>Copyright © 2011 the American Physiological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-912093a47fcce7a384e15bbfa7d8d33f2af6c5429d602f793575b501b9d5a0d03</citedby><cites>FETCH-LOGICAL-c431t-912093a47fcce7a384e15bbfa7d8d33f2af6c5429d602f793575b501b9d5a0d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3039,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21048025$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Holstein-Rathlou, Niels-Henrik</creatorcontrib><creatorcontrib>Sosnovtseva, Olga V</creatorcontrib><creatorcontrib>Pavlov, Alexey N</creatorcontrib><creatorcontrib>Cupples, William A</creatorcontrib><creatorcontrib>Sorensen, Charlotte Mehlin</creatorcontrib><creatorcontrib>Marsh, Donald J</creatorcontrib><title>Nephron blood flow dynamics measured by laser speckle contrast imaging</title><title>American Journal of Physiology - Renal Physiology</title><addtitle>Am J Physiol Renal Physiol</addtitle><description>Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubular pressure and flow. Nephrons interact by exchanging electrical signals conducted electrotonically through cells of the vascular wall, leading to synchronization of the TGF-mediated oscillations. Experimental studies of these interactions have been limited to observations on two or at most three nephrons simultaneously. The interacting nephron fields are likely to be more extensive. We have turned to laser speckle contrast imaging to measure the blood flow dynamics of 50-100 nephrons simultaneously on the renal surface of anesthetized rats. We report the application of this method and describe analytic techniques for extracting the desired data and for examining them for evidence of nephron synchronization. Synchronized TGF oscillations were detected in pairs or triplets of nephrons. The amplitude and the frequency of the oscillations changed with time, as did the patterns of synchronization. Synchronization may take place among nephrons not immediately adjacent on the surface of the kidney.</description><subject>Acetylcholine - pharmacology</subject><subject>Angiotensin II - pharmacology</subject><subject>Animals</subject><subject>Blood</subject><subject>Call for Papers: Renal Hemodynamics</subject><subject>Excretory system</subject><subject>Experiments</subject><subject>Hemodynamics - physiology</subject><subject>Kidneys</subject><subject>Lasers</subject><subject>Male</subject><subject>Nephrons - blood supply</subject><subject>Nephrons - drug effects</subject><subject>Nephrons - physiology</subject><subject>Physiology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Renal Circulation - drug effects</subject><subject>Renal Circulation - physiology</subject><subject>Rheology - methods</subject><subject>Rodents</subject><issn>1931-857X</issn><issn>0363-6127</issn><issn>1522-1466</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkFtLAzEQhYMotlZ_gSDB962T215eBClWhaIvCr6FbJJtt-5u1mSr9N-7tRf0aQbmnDOHD6FLAmNCBL1Ry9bbRlVjAE6SMQUCR2jYX2hEeBwf93vGSJSK5H2AzkJYAgAhlJyiASXAU6BiiKbPtl141-C8cs7gonLf2KwbVZc64NqqsPLW4HyNKxWsx6G1-qOyWLum8yp0uKzVvGzm5-ikUFWwF7s5Qm_T-9fJYzR7eXia3M0izRnpooxQyJjiSaG1TRRLuSUizwuVmNQwVlBVxFpwmpkYaJFkTCQiF0DyzAgFBtgI3W5z21VeW6PtpkYlW9_38GvpVCn_X5pyIefuSzLgHCDuA653Ad59rmzo5NKtfE8xyFQwEAmjGxHbirR3IXhbHB4QkBv2cs9e_rKXG_a96-pvt4NnD5v9AHzZgzM</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Holstein-Rathlou, Niels-Henrik</creator><creator>Sosnovtseva, Olga V</creator><creator>Pavlov, Alexey N</creator><creator>Cupples, William A</creator><creator>Sorensen, Charlotte Mehlin</creator><creator>Marsh, Donald J</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20110201</creationdate><title>Nephron blood flow dynamics measured by laser speckle contrast imaging</title><author>Holstein-Rathlou, Niels-Henrik ; Sosnovtseva, Olga V ; Pavlov, Alexey N ; Cupples, William A ; Sorensen, Charlotte Mehlin ; Marsh, Donald J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-912093a47fcce7a384e15bbfa7d8d33f2af6c5429d602f793575b501b9d5a0d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acetylcholine - pharmacology</topic><topic>Angiotensin II - pharmacology</topic><topic>Animals</topic><topic>Blood</topic><topic>Call for Papers: Renal Hemodynamics</topic><topic>Excretory system</topic><topic>Experiments</topic><topic>Hemodynamics - physiology</topic><topic>Kidneys</topic><topic>Lasers</topic><topic>Male</topic><topic>Nephrons - blood supply</topic><topic>Nephrons - drug effects</topic><topic>Nephrons - physiology</topic><topic>Physiology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Renal Circulation - drug effects</topic><topic>Renal Circulation - physiology</topic><topic>Rheology - methods</topic><topic>Rodents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holstein-Rathlou, Niels-Henrik</creatorcontrib><creatorcontrib>Sosnovtseva, Olga V</creatorcontrib><creatorcontrib>Pavlov, Alexey N</creatorcontrib><creatorcontrib>Cupples, William A</creatorcontrib><creatorcontrib>Sorensen, Charlotte Mehlin</creatorcontrib><creatorcontrib>Marsh, Donald J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American Journal of Physiology - Renal Physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holstein-Rathlou, Niels-Henrik</au><au>Sosnovtseva, Olga V</au><au>Pavlov, Alexey N</au><au>Cupples, William A</au><au>Sorensen, Charlotte Mehlin</au><au>Marsh, Donald J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nephron blood flow dynamics measured by laser speckle contrast imaging</atitle><jtitle>American Journal of Physiology - Renal Physiology</jtitle><addtitle>Am J Physiol Renal Physiol</addtitle><date>2011-02-01</date><risdate>2011</risdate><volume>300</volume><issue>2</issue><spage>F319</spage><epage>F329</epage><pages>F319-F329</pages><issn>1931-857X</issn><issn>0363-6127</issn><eissn>1522-1466</eissn><abstract>Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubular pressure and flow. Nephrons interact by exchanging electrical signals conducted electrotonically through cells of the vascular wall, leading to synchronization of the TGF-mediated oscillations. Experimental studies of these interactions have been limited to observations on two or at most three nephrons simultaneously. The interacting nephron fields are likely to be more extensive. We have turned to laser speckle contrast imaging to measure the blood flow dynamics of 50-100 nephrons simultaneously on the renal surface of anesthetized rats. We report the application of this method and describe analytic techniques for extracting the desired data and for examining them for evidence of nephron synchronization. Synchronized TGF oscillations were detected in pairs or triplets of nephrons. The amplitude and the frequency of the oscillations changed with time, as did the patterns of synchronization. Synchronization may take place among nephrons not immediately adjacent on the surface of the kidney.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>21048025</pmid><doi>10.1152/ajprenal.00417.2010</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1931-857X |
ispartof | American Journal of Physiology - Renal Physiology, 2011-02, Vol.300 (2), p.F319-F329 |
issn | 1931-857X 0363-6127 1522-1466 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3044006 |
source | MEDLINE; American Physiological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Acetylcholine - pharmacology Angiotensin II - pharmacology Animals Blood Call for Papers: Renal Hemodynamics Excretory system Experiments Hemodynamics - physiology Kidneys Lasers Male Nephrons - blood supply Nephrons - drug effects Nephrons - physiology Physiology Rats Rats, Sprague-Dawley Renal Circulation - drug effects Renal Circulation - physiology Rheology - methods Rodents |
title | Nephron blood flow dynamics measured by laser speckle contrast imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T18%3A03%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nephron%20blood%20flow%20dynamics%20measured%20by%20laser%20speckle%20contrast%20imaging&rft.jtitle=American%20Journal%20of%20Physiology%20-%20Renal%20Physiology&rft.au=Holstein-Rathlou,%20Niels-Henrik&rft.date=2011-02-01&rft.volume=300&rft.issue=2&rft.spage=F319&rft.epage=F329&rft.pages=F319-F329&rft.issn=1931-857X&rft.eissn=1522-1466&rft_id=info:doi/10.1152/ajprenal.00417.2010&rft_dat=%3Cproquest_pubme%3E2273017261%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=853057326&rft_id=info:pmid/21048025&rfr_iscdi=true |