Small RNA-induced mRNA degradation achieved through both translation block and activated cleavage
Small RNA (sRNA)-induced mRNA degradation occurs through binding of an sRNA to a target mRNA with the concomitant action of the RNA degradosome, which induces an endoribonuclease E (RNase E)-dependent cleavage and degradation of the targeted mRNA. Because many sRNAs bind at the ribosome-binding site...
Gespeichert in:
Veröffentlicht in: | Genes & development 2011-02, Vol.25 (4), p.385-396 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 396 |
---|---|
container_issue | 4 |
container_start_page | 385 |
container_title | Genes & development |
container_volume | 25 |
creator | Prévost, Karine Desnoyers, Guillaume Jacques, Jean-François Lavoie, François Massé, Eric |
description | Small RNA (sRNA)-induced mRNA degradation occurs through binding of an sRNA to a target mRNA with the concomitant action of the RNA degradosome, which induces an endoribonuclease E (RNase E)-dependent cleavage and degradation of the targeted mRNA. Because many sRNAs bind at the ribosome-binding site (RBS), it is possible that the resulting translation block is sufficient to promote the rapid degradation of the targeted mRNA. Contrary to this mechanism, we report here that the pairing of the sRNA RyhB to the target mRNA sodB initiates mRNA degradation even in the absence of translation on the mRNA target. Remarkably, even though it pairs at the RBS, the sRNA RyhB induces mRNA cleavage in vivo at a distal site located >350 nucleotides (nt) downstream from the RBS, ruling out local cleavage near the pairing site. Both the RNA chaperone Hfq and the RNA degradosome are required for efficient cleavage at the distal site. Thus, beyond translation initiation block, sRNA-induced mRNA cleavage requires several unexpected steps, many of which are determined by structural features of the target mRNA. |
doi_str_mv | 10.1101/gad.2001711 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3042161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>907159258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-a1f8cbadd839a437102fcd203e7d13482e8b0596d3246ec9fe486682564d03d03</originalsourceid><addsrcrecordid>eNpVkUtr3TAQhUVpaW6Srrov3nVRnI4elqVNIIS0KYQE8liLsSQ_GtlKLftC_n1U7m1oYGAYzseZA4eQzxROKAX6vUN3wgBoTek7sqGV0GUl6vo92YDSUGou9QE5TOk3AEiQ8iM5YJRlSYoNwbsRQyhur8_KYXKr9a4Y81E4383ocBniVKDtB7_NytLPce36oolLXywzTinsiCZE-1jg5DK7DFtcMmyDxy12_ph8aDEk_2m_j8jDj4v788vy6ubnr_Ozq9KKWi0l0lbZBp1TXKPgNQXWWseA-9pRLhTzqoFKS8eZkN7q1gslpWKVFA54niNyuvN9WpvRO-unnDCYp3kYcX42EQfzVpmG3nRxazgIRiXNBl_3BnP8s_q0mHFI1oeAk49rMhpqWmlWqUx-25F2jinNvn39QsH87cTkTsy-k0x_-T_YK_uvBP4CTCWIsQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>907159258</pqid></control><display><type>article</type><title>Small RNA-induced mRNA degradation achieved through both translation block and activated cleavage</title><source>PubMed (Medline)</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Prévost, Karine ; Desnoyers, Guillaume ; Jacques, Jean-François ; Lavoie, François ; Massé, Eric</creator><creatorcontrib>Prévost, Karine ; Desnoyers, Guillaume ; Jacques, Jean-François ; Lavoie, François ; Massé, Eric</creatorcontrib><description>Small RNA (sRNA)-induced mRNA degradation occurs through binding of an sRNA to a target mRNA with the concomitant action of the RNA degradosome, which induces an endoribonuclease E (RNase E)-dependent cleavage and degradation of the targeted mRNA. Because many sRNAs bind at the ribosome-binding site (RBS), it is possible that the resulting translation block is sufficient to promote the rapid degradation of the targeted mRNA. Contrary to this mechanism, we report here that the pairing of the sRNA RyhB to the target mRNA sodB initiates mRNA degradation even in the absence of translation on the mRNA target. Remarkably, even though it pairs at the RBS, the sRNA RyhB induces mRNA cleavage in vivo at a distal site located >350 nucleotides (nt) downstream from the RBS, ruling out local cleavage near the pairing site. Both the RNA chaperone Hfq and the RNA degradosome are required for efficient cleavage at the distal site. Thus, beyond translation initiation block, sRNA-induced mRNA cleavage requires several unexpected steps, many of which are determined by structural features of the target mRNA.</description><identifier>ISSN: 0890-9369</identifier><identifier>EISSN: 1549-5477</identifier><identifier>DOI: 10.1101/gad.2001711</identifier><identifier>PMID: 21289064</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Base Sequence ; Endoribonucleases - genetics ; Endoribonucleases - metabolism ; Endoribonucleases - physiology ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli - physiology ; Lac Operon ; Models, Biological ; Multienzyme Complexes - genetics ; Multienzyme Complexes - metabolism ; Multienzyme Complexes - physiology ; Organisms, Genetically Modified ; Polyribonucleotide Nucleotidyltransferase - genetics ; Polyribonucleotide Nucleotidyltransferase - metabolism ; Polyribonucleotide Nucleotidyltransferase - physiology ; Protein Biosynthesis - drug effects ; Protein Biosynthesis - physiology ; Protein Synthesis Inhibitors - pharmacology ; Research Paper ; RNA Helicases - genetics ; RNA Helicases - metabolism ; RNA Helicases - physiology ; RNA Processing, Post-Transcriptional - drug effects ; RNA Processing, Post-Transcriptional - genetics ; RNA Processing, Post-Transcriptional - physiology ; RNA Stability - drug effects ; RNA Stability - physiology ; RNA, Messenger - metabolism ; RNA, Small Interfering - pharmacology ; Superoxide Dismutase - genetics ; Superoxide Dismutase - metabolism ; Transduction, Genetic</subject><ispartof>Genes & development, 2011-02, Vol.25 (4), p.385-396</ispartof><rights>Copyright © 2011 by Cold Spring Harbor Laboratory Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-a1f8cbadd839a437102fcd203e7d13482e8b0596d3246ec9fe486682564d03d03</citedby><cites>FETCH-LOGICAL-c478t-a1f8cbadd839a437102fcd203e7d13482e8b0596d3246ec9fe486682564d03d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3042161/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3042161/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21289064$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prévost, Karine</creatorcontrib><creatorcontrib>Desnoyers, Guillaume</creatorcontrib><creatorcontrib>Jacques, Jean-François</creatorcontrib><creatorcontrib>Lavoie, François</creatorcontrib><creatorcontrib>Massé, Eric</creatorcontrib><title>Small RNA-induced mRNA degradation achieved through both translation block and activated cleavage</title><title>Genes & development</title><addtitle>Genes Dev</addtitle><description>Small RNA (sRNA)-induced mRNA degradation occurs through binding of an sRNA to a target mRNA with the concomitant action of the RNA degradosome, which induces an endoribonuclease E (RNase E)-dependent cleavage and degradation of the targeted mRNA. Because many sRNAs bind at the ribosome-binding site (RBS), it is possible that the resulting translation block is sufficient to promote the rapid degradation of the targeted mRNA. Contrary to this mechanism, we report here that the pairing of the sRNA RyhB to the target mRNA sodB initiates mRNA degradation even in the absence of translation on the mRNA target. Remarkably, even though it pairs at the RBS, the sRNA RyhB induces mRNA cleavage in vivo at a distal site located >350 nucleotides (nt) downstream from the RBS, ruling out local cleavage near the pairing site. Both the RNA chaperone Hfq and the RNA degradosome are required for efficient cleavage at the distal site. Thus, beyond translation initiation block, sRNA-induced mRNA cleavage requires several unexpected steps, many of which are determined by structural features of the target mRNA.</description><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Base Sequence</subject><subject>Endoribonucleases - genetics</subject><subject>Endoribonucleases - metabolism</subject><subject>Endoribonucleases - physiology</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli - physiology</subject><subject>Lac Operon</subject><subject>Models, Biological</subject><subject>Multienzyme Complexes - genetics</subject><subject>Multienzyme Complexes - metabolism</subject><subject>Multienzyme Complexes - physiology</subject><subject>Organisms, Genetically Modified</subject><subject>Polyribonucleotide Nucleotidyltransferase - genetics</subject><subject>Polyribonucleotide Nucleotidyltransferase - metabolism</subject><subject>Polyribonucleotide Nucleotidyltransferase - physiology</subject><subject>Protein Biosynthesis - drug effects</subject><subject>Protein Biosynthesis - physiology</subject><subject>Protein Synthesis Inhibitors - pharmacology</subject><subject>Research Paper</subject><subject>RNA Helicases - genetics</subject><subject>RNA Helicases - metabolism</subject><subject>RNA Helicases - physiology</subject><subject>RNA Processing, Post-Transcriptional - drug effects</subject><subject>RNA Processing, Post-Transcriptional - genetics</subject><subject>RNA Processing, Post-Transcriptional - physiology</subject><subject>RNA Stability - drug effects</subject><subject>RNA Stability - physiology</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA, Small Interfering - pharmacology</subject><subject>Superoxide Dismutase - genetics</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Transduction, Genetic</subject><issn>0890-9369</issn><issn>1549-5477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUtr3TAQhUVpaW6Srrov3nVRnI4elqVNIIS0KYQE8liLsSQ_GtlKLftC_n1U7m1oYGAYzseZA4eQzxROKAX6vUN3wgBoTek7sqGV0GUl6vo92YDSUGou9QE5TOk3AEiQ8iM5YJRlSYoNwbsRQyhur8_KYXKr9a4Y81E4383ocBniVKDtB7_NytLPce36oolLXywzTinsiCZE-1jg5DK7DFtcMmyDxy12_ph8aDEk_2m_j8jDj4v788vy6ubnr_Ozq9KKWi0l0lbZBp1TXKPgNQXWWseA-9pRLhTzqoFKS8eZkN7q1gslpWKVFA54niNyuvN9WpvRO-unnDCYp3kYcX42EQfzVpmG3nRxazgIRiXNBl_3BnP8s_q0mHFI1oeAk49rMhpqWmlWqUx-25F2jinNvn39QsH87cTkTsy-k0x_-T_YK_uvBP4CTCWIsQ</recordid><startdate>20110215</startdate><enddate>20110215</enddate><creator>Prévost, Karine</creator><creator>Desnoyers, Guillaume</creator><creator>Jacques, Jean-François</creator><creator>Lavoie, François</creator><creator>Massé, Eric</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20110215</creationdate><title>Small RNA-induced mRNA degradation achieved through both translation block and activated cleavage</title><author>Prévost, Karine ; Desnoyers, Guillaume ; Jacques, Jean-François ; Lavoie, François ; Massé, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-a1f8cbadd839a437102fcd203e7d13482e8b0596d3246ec9fe486682564d03d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Base Sequence</topic><topic>Endoribonucleases - genetics</topic><topic>Endoribonucleases - metabolism</topic><topic>Endoribonucleases - physiology</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli - physiology</topic><topic>Lac Operon</topic><topic>Models, Biological</topic><topic>Multienzyme Complexes - genetics</topic><topic>Multienzyme Complexes - metabolism</topic><topic>Multienzyme Complexes - physiology</topic><topic>Organisms, Genetically Modified</topic><topic>Polyribonucleotide Nucleotidyltransferase - genetics</topic><topic>Polyribonucleotide Nucleotidyltransferase - metabolism</topic><topic>Polyribonucleotide Nucleotidyltransferase - physiology</topic><topic>Protein Biosynthesis - drug effects</topic><topic>Protein Biosynthesis - physiology</topic><topic>Protein Synthesis Inhibitors - pharmacology</topic><topic>Research Paper</topic><topic>RNA Helicases - genetics</topic><topic>RNA Helicases - metabolism</topic><topic>RNA Helicases - physiology</topic><topic>RNA Processing, Post-Transcriptional - drug effects</topic><topic>RNA Processing, Post-Transcriptional - genetics</topic><topic>RNA Processing, Post-Transcriptional - physiology</topic><topic>RNA Stability - drug effects</topic><topic>RNA Stability - physiology</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA, Small Interfering - pharmacology</topic><topic>Superoxide Dismutase - genetics</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Transduction, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prévost, Karine</creatorcontrib><creatorcontrib>Desnoyers, Guillaume</creatorcontrib><creatorcontrib>Jacques, Jean-François</creatorcontrib><creatorcontrib>Lavoie, François</creatorcontrib><creatorcontrib>Massé, Eric</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes & development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prévost, Karine</au><au>Desnoyers, Guillaume</au><au>Jacques, Jean-François</au><au>Lavoie, François</au><au>Massé, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small RNA-induced mRNA degradation achieved through both translation block and activated cleavage</atitle><jtitle>Genes & development</jtitle><addtitle>Genes Dev</addtitle><date>2011-02-15</date><risdate>2011</risdate><volume>25</volume><issue>4</issue><spage>385</spage><epage>396</epage><pages>385-396</pages><issn>0890-9369</issn><eissn>1549-5477</eissn><abstract>Small RNA (sRNA)-induced mRNA degradation occurs through binding of an sRNA to a target mRNA with the concomitant action of the RNA degradosome, which induces an endoribonuclease E (RNase E)-dependent cleavage and degradation of the targeted mRNA. Because many sRNAs bind at the ribosome-binding site (RBS), it is possible that the resulting translation block is sufficient to promote the rapid degradation of the targeted mRNA. Contrary to this mechanism, we report here that the pairing of the sRNA RyhB to the target mRNA sodB initiates mRNA degradation even in the absence of translation on the mRNA target. Remarkably, even though it pairs at the RBS, the sRNA RyhB induces mRNA cleavage in vivo at a distal site located >350 nucleotides (nt) downstream from the RBS, ruling out local cleavage near the pairing site. Both the RNA chaperone Hfq and the RNA degradosome are required for efficient cleavage at the distal site. Thus, beyond translation initiation block, sRNA-induced mRNA cleavage requires several unexpected steps, many of which are determined by structural features of the target mRNA.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>21289064</pmid><doi>10.1101/gad.2001711</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0890-9369 |
ispartof | Genes & development, 2011-02, Vol.25 (4), p.385-396 |
issn | 0890-9369 1549-5477 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3042161 |
source | PubMed (Medline); MEDLINE; EZB-FREE-00999 freely available EZB journals |
subjects | Bacterial Proteins - genetics Bacterial Proteins - metabolism Base Sequence Endoribonucleases - genetics Endoribonucleases - metabolism Endoribonucleases - physiology Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli - physiology Lac Operon Models, Biological Multienzyme Complexes - genetics Multienzyme Complexes - metabolism Multienzyme Complexes - physiology Organisms, Genetically Modified Polyribonucleotide Nucleotidyltransferase - genetics Polyribonucleotide Nucleotidyltransferase - metabolism Polyribonucleotide Nucleotidyltransferase - physiology Protein Biosynthesis - drug effects Protein Biosynthesis - physiology Protein Synthesis Inhibitors - pharmacology Research Paper RNA Helicases - genetics RNA Helicases - metabolism RNA Helicases - physiology RNA Processing, Post-Transcriptional - drug effects RNA Processing, Post-Transcriptional - genetics RNA Processing, Post-Transcriptional - physiology RNA Stability - drug effects RNA Stability - physiology RNA, Messenger - metabolism RNA, Small Interfering - pharmacology Superoxide Dismutase - genetics Superoxide Dismutase - metabolism Transduction, Genetic |
title | Small RNA-induced mRNA degradation achieved through both translation block and activated cleavage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A05%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20RNA-induced%20mRNA%20degradation%20achieved%20through%20both%20translation%20block%20and%20activated%20cleavage&rft.jtitle=Genes%20&%20development&rft.au=Pr%C3%A9vost,%20Karine&rft.date=2011-02-15&rft.volume=25&rft.issue=4&rft.spage=385&rft.epage=396&rft.pages=385-396&rft.issn=0890-9369&rft.eissn=1549-5477&rft_id=info:doi/10.1101/gad.2001711&rft_dat=%3Cproquest_pubme%3E907159258%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=907159258&rft_id=info:pmid/21289064&rfr_iscdi=true |