Small RNA-induced mRNA degradation achieved through both translation block and activated cleavage

Small RNA (sRNA)-induced mRNA degradation occurs through binding of an sRNA to a target mRNA with the concomitant action of the RNA degradosome, which induces an endoribonuclease E (RNase E)-dependent cleavage and degradation of the targeted mRNA. Because many sRNAs bind at the ribosome-binding site...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes & development 2011-02, Vol.25 (4), p.385-396
Hauptverfasser: Prévost, Karine, Desnoyers, Guillaume, Jacques, Jean-François, Lavoie, François, Massé, Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 396
container_issue 4
container_start_page 385
container_title Genes & development
container_volume 25
creator Prévost, Karine
Desnoyers, Guillaume
Jacques, Jean-François
Lavoie, François
Massé, Eric
description Small RNA (sRNA)-induced mRNA degradation occurs through binding of an sRNA to a target mRNA with the concomitant action of the RNA degradosome, which induces an endoribonuclease E (RNase E)-dependent cleavage and degradation of the targeted mRNA. Because many sRNAs bind at the ribosome-binding site (RBS), it is possible that the resulting translation block is sufficient to promote the rapid degradation of the targeted mRNA. Contrary to this mechanism, we report here that the pairing of the sRNA RyhB to the target mRNA sodB initiates mRNA degradation even in the absence of translation on the mRNA target. Remarkably, even though it pairs at the RBS, the sRNA RyhB induces mRNA cleavage in vivo at a distal site located >350 nucleotides (nt) downstream from the RBS, ruling out local cleavage near the pairing site. Both the RNA chaperone Hfq and the RNA degradosome are required for efficient cleavage at the distal site. Thus, beyond translation initiation block, sRNA-induced mRNA cleavage requires several unexpected steps, many of which are determined by structural features of the target mRNA.
doi_str_mv 10.1101/gad.2001711
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3042161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>907159258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-a1f8cbadd839a437102fcd203e7d13482e8b0596d3246ec9fe486682564d03d03</originalsourceid><addsrcrecordid>eNpVkUtr3TAQhUVpaW6Srrov3nVRnI4elqVNIIS0KYQE8liLsSQ_GtlKLftC_n1U7m1oYGAYzseZA4eQzxROKAX6vUN3wgBoTek7sqGV0GUl6vo92YDSUGou9QE5TOk3AEiQ8iM5YJRlSYoNwbsRQyhur8_KYXKr9a4Y81E4383ocBniVKDtB7_NytLPce36oolLXywzTinsiCZE-1jg5DK7DFtcMmyDxy12_ph8aDEk_2m_j8jDj4v788vy6ubnr_Ozq9KKWi0l0lbZBp1TXKPgNQXWWseA-9pRLhTzqoFKS8eZkN7q1gslpWKVFA54niNyuvN9WpvRO-unnDCYp3kYcX42EQfzVpmG3nRxazgIRiXNBl_3BnP8s_q0mHFI1oeAk49rMhpqWmlWqUx-25F2jinNvn39QsH87cTkTsy-k0x_-T_YK_uvBP4CTCWIsQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>907159258</pqid></control><display><type>article</type><title>Small RNA-induced mRNA degradation achieved through both translation block and activated cleavage</title><source>PubMed (Medline)</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Prévost, Karine ; Desnoyers, Guillaume ; Jacques, Jean-François ; Lavoie, François ; Massé, Eric</creator><creatorcontrib>Prévost, Karine ; Desnoyers, Guillaume ; Jacques, Jean-François ; Lavoie, François ; Massé, Eric</creatorcontrib><description>Small RNA (sRNA)-induced mRNA degradation occurs through binding of an sRNA to a target mRNA with the concomitant action of the RNA degradosome, which induces an endoribonuclease E (RNase E)-dependent cleavage and degradation of the targeted mRNA. Because many sRNAs bind at the ribosome-binding site (RBS), it is possible that the resulting translation block is sufficient to promote the rapid degradation of the targeted mRNA. Contrary to this mechanism, we report here that the pairing of the sRNA RyhB to the target mRNA sodB initiates mRNA degradation even in the absence of translation on the mRNA target. Remarkably, even though it pairs at the RBS, the sRNA RyhB induces mRNA cleavage in vivo at a distal site located &gt;350 nucleotides (nt) downstream from the RBS, ruling out local cleavage near the pairing site. Both the RNA chaperone Hfq and the RNA degradosome are required for efficient cleavage at the distal site. Thus, beyond translation initiation block, sRNA-induced mRNA cleavage requires several unexpected steps, many of which are determined by structural features of the target mRNA.</description><identifier>ISSN: 0890-9369</identifier><identifier>EISSN: 1549-5477</identifier><identifier>DOI: 10.1101/gad.2001711</identifier><identifier>PMID: 21289064</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Base Sequence ; Endoribonucleases - genetics ; Endoribonucleases - metabolism ; Endoribonucleases - physiology ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli - physiology ; Lac Operon ; Models, Biological ; Multienzyme Complexes - genetics ; Multienzyme Complexes - metabolism ; Multienzyme Complexes - physiology ; Organisms, Genetically Modified ; Polyribonucleotide Nucleotidyltransferase - genetics ; Polyribonucleotide Nucleotidyltransferase - metabolism ; Polyribonucleotide Nucleotidyltransferase - physiology ; Protein Biosynthesis - drug effects ; Protein Biosynthesis - physiology ; Protein Synthesis Inhibitors - pharmacology ; Research Paper ; RNA Helicases - genetics ; RNA Helicases - metabolism ; RNA Helicases - physiology ; RNA Processing, Post-Transcriptional - drug effects ; RNA Processing, Post-Transcriptional - genetics ; RNA Processing, Post-Transcriptional - physiology ; RNA Stability - drug effects ; RNA Stability - physiology ; RNA, Messenger - metabolism ; RNA, Small Interfering - pharmacology ; Superoxide Dismutase - genetics ; Superoxide Dismutase - metabolism ; Transduction, Genetic</subject><ispartof>Genes &amp; development, 2011-02, Vol.25 (4), p.385-396</ispartof><rights>Copyright © 2011 by Cold Spring Harbor Laboratory Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-a1f8cbadd839a437102fcd203e7d13482e8b0596d3246ec9fe486682564d03d03</citedby><cites>FETCH-LOGICAL-c478t-a1f8cbadd839a437102fcd203e7d13482e8b0596d3246ec9fe486682564d03d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3042161/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3042161/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21289064$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prévost, Karine</creatorcontrib><creatorcontrib>Desnoyers, Guillaume</creatorcontrib><creatorcontrib>Jacques, Jean-François</creatorcontrib><creatorcontrib>Lavoie, François</creatorcontrib><creatorcontrib>Massé, Eric</creatorcontrib><title>Small RNA-induced mRNA degradation achieved through both translation block and activated cleavage</title><title>Genes &amp; development</title><addtitle>Genes Dev</addtitle><description>Small RNA (sRNA)-induced mRNA degradation occurs through binding of an sRNA to a target mRNA with the concomitant action of the RNA degradosome, which induces an endoribonuclease E (RNase E)-dependent cleavage and degradation of the targeted mRNA. Because many sRNAs bind at the ribosome-binding site (RBS), it is possible that the resulting translation block is sufficient to promote the rapid degradation of the targeted mRNA. Contrary to this mechanism, we report here that the pairing of the sRNA RyhB to the target mRNA sodB initiates mRNA degradation even in the absence of translation on the mRNA target. Remarkably, even though it pairs at the RBS, the sRNA RyhB induces mRNA cleavage in vivo at a distal site located &gt;350 nucleotides (nt) downstream from the RBS, ruling out local cleavage near the pairing site. Both the RNA chaperone Hfq and the RNA degradosome are required for efficient cleavage at the distal site. Thus, beyond translation initiation block, sRNA-induced mRNA cleavage requires several unexpected steps, many of which are determined by structural features of the target mRNA.</description><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Base Sequence</subject><subject>Endoribonucleases - genetics</subject><subject>Endoribonucleases - metabolism</subject><subject>Endoribonucleases - physiology</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli - physiology</subject><subject>Lac Operon</subject><subject>Models, Biological</subject><subject>Multienzyme Complexes - genetics</subject><subject>Multienzyme Complexes - metabolism</subject><subject>Multienzyme Complexes - physiology</subject><subject>Organisms, Genetically Modified</subject><subject>Polyribonucleotide Nucleotidyltransferase - genetics</subject><subject>Polyribonucleotide Nucleotidyltransferase - metabolism</subject><subject>Polyribonucleotide Nucleotidyltransferase - physiology</subject><subject>Protein Biosynthesis - drug effects</subject><subject>Protein Biosynthesis - physiology</subject><subject>Protein Synthesis Inhibitors - pharmacology</subject><subject>Research Paper</subject><subject>RNA Helicases - genetics</subject><subject>RNA Helicases - metabolism</subject><subject>RNA Helicases - physiology</subject><subject>RNA Processing, Post-Transcriptional - drug effects</subject><subject>RNA Processing, Post-Transcriptional - genetics</subject><subject>RNA Processing, Post-Transcriptional - physiology</subject><subject>RNA Stability - drug effects</subject><subject>RNA Stability - physiology</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA, Small Interfering - pharmacology</subject><subject>Superoxide Dismutase - genetics</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Transduction, Genetic</subject><issn>0890-9369</issn><issn>1549-5477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUtr3TAQhUVpaW6Srrov3nVRnI4elqVNIIS0KYQE8liLsSQ_GtlKLftC_n1U7m1oYGAYzseZA4eQzxROKAX6vUN3wgBoTek7sqGV0GUl6vo92YDSUGou9QE5TOk3AEiQ8iM5YJRlSYoNwbsRQyhur8_KYXKr9a4Y81E4383ocBniVKDtB7_NytLPce36oolLXywzTinsiCZE-1jg5DK7DFtcMmyDxy12_ph8aDEk_2m_j8jDj4v788vy6ubnr_Ozq9KKWi0l0lbZBp1TXKPgNQXWWseA-9pRLhTzqoFKS8eZkN7q1gslpWKVFA54niNyuvN9WpvRO-unnDCYp3kYcX42EQfzVpmG3nRxazgIRiXNBl_3BnP8s_q0mHFI1oeAk49rMhpqWmlWqUx-25F2jinNvn39QsH87cTkTsy-k0x_-T_YK_uvBP4CTCWIsQ</recordid><startdate>20110215</startdate><enddate>20110215</enddate><creator>Prévost, Karine</creator><creator>Desnoyers, Guillaume</creator><creator>Jacques, Jean-François</creator><creator>Lavoie, François</creator><creator>Massé, Eric</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20110215</creationdate><title>Small RNA-induced mRNA degradation achieved through both translation block and activated cleavage</title><author>Prévost, Karine ; Desnoyers, Guillaume ; Jacques, Jean-François ; Lavoie, François ; Massé, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-a1f8cbadd839a437102fcd203e7d13482e8b0596d3246ec9fe486682564d03d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Base Sequence</topic><topic>Endoribonucleases - genetics</topic><topic>Endoribonucleases - metabolism</topic><topic>Endoribonucleases - physiology</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli - physiology</topic><topic>Lac Operon</topic><topic>Models, Biological</topic><topic>Multienzyme Complexes - genetics</topic><topic>Multienzyme Complexes - metabolism</topic><topic>Multienzyme Complexes - physiology</topic><topic>Organisms, Genetically Modified</topic><topic>Polyribonucleotide Nucleotidyltransferase - genetics</topic><topic>Polyribonucleotide Nucleotidyltransferase - metabolism</topic><topic>Polyribonucleotide Nucleotidyltransferase - physiology</topic><topic>Protein Biosynthesis - drug effects</topic><topic>Protein Biosynthesis - physiology</topic><topic>Protein Synthesis Inhibitors - pharmacology</topic><topic>Research Paper</topic><topic>RNA Helicases - genetics</topic><topic>RNA Helicases - metabolism</topic><topic>RNA Helicases - physiology</topic><topic>RNA Processing, Post-Transcriptional - drug effects</topic><topic>RNA Processing, Post-Transcriptional - genetics</topic><topic>RNA Processing, Post-Transcriptional - physiology</topic><topic>RNA Stability - drug effects</topic><topic>RNA Stability - physiology</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA, Small Interfering - pharmacology</topic><topic>Superoxide Dismutase - genetics</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Transduction, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prévost, Karine</creatorcontrib><creatorcontrib>Desnoyers, Guillaume</creatorcontrib><creatorcontrib>Jacques, Jean-François</creatorcontrib><creatorcontrib>Lavoie, François</creatorcontrib><creatorcontrib>Massé, Eric</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes &amp; development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prévost, Karine</au><au>Desnoyers, Guillaume</au><au>Jacques, Jean-François</au><au>Lavoie, François</au><au>Massé, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small RNA-induced mRNA degradation achieved through both translation block and activated cleavage</atitle><jtitle>Genes &amp; development</jtitle><addtitle>Genes Dev</addtitle><date>2011-02-15</date><risdate>2011</risdate><volume>25</volume><issue>4</issue><spage>385</spage><epage>396</epage><pages>385-396</pages><issn>0890-9369</issn><eissn>1549-5477</eissn><abstract>Small RNA (sRNA)-induced mRNA degradation occurs through binding of an sRNA to a target mRNA with the concomitant action of the RNA degradosome, which induces an endoribonuclease E (RNase E)-dependent cleavage and degradation of the targeted mRNA. Because many sRNAs bind at the ribosome-binding site (RBS), it is possible that the resulting translation block is sufficient to promote the rapid degradation of the targeted mRNA. Contrary to this mechanism, we report here that the pairing of the sRNA RyhB to the target mRNA sodB initiates mRNA degradation even in the absence of translation on the mRNA target. Remarkably, even though it pairs at the RBS, the sRNA RyhB induces mRNA cleavage in vivo at a distal site located &gt;350 nucleotides (nt) downstream from the RBS, ruling out local cleavage near the pairing site. Both the RNA chaperone Hfq and the RNA degradosome are required for efficient cleavage at the distal site. Thus, beyond translation initiation block, sRNA-induced mRNA cleavage requires several unexpected steps, many of which are determined by structural features of the target mRNA.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>21289064</pmid><doi>10.1101/gad.2001711</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0890-9369
ispartof Genes & development, 2011-02, Vol.25 (4), p.385-396
issn 0890-9369
1549-5477
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3042161
source PubMed (Medline); MEDLINE; EZB-FREE-00999 freely available EZB journals
subjects Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Base Sequence
Endoribonucleases - genetics
Endoribonucleases - metabolism
Endoribonucleases - physiology
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli - physiology
Lac Operon
Models, Biological
Multienzyme Complexes - genetics
Multienzyme Complexes - metabolism
Multienzyme Complexes - physiology
Organisms, Genetically Modified
Polyribonucleotide Nucleotidyltransferase - genetics
Polyribonucleotide Nucleotidyltransferase - metabolism
Polyribonucleotide Nucleotidyltransferase - physiology
Protein Biosynthesis - drug effects
Protein Biosynthesis - physiology
Protein Synthesis Inhibitors - pharmacology
Research Paper
RNA Helicases - genetics
RNA Helicases - metabolism
RNA Helicases - physiology
RNA Processing, Post-Transcriptional - drug effects
RNA Processing, Post-Transcriptional - genetics
RNA Processing, Post-Transcriptional - physiology
RNA Stability - drug effects
RNA Stability - physiology
RNA, Messenger - metabolism
RNA, Small Interfering - pharmacology
Superoxide Dismutase - genetics
Superoxide Dismutase - metabolism
Transduction, Genetic
title Small RNA-induced mRNA degradation achieved through both translation block and activated cleavage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A05%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20RNA-induced%20mRNA%20degradation%20achieved%20through%20both%20translation%20block%20and%20activated%20cleavage&rft.jtitle=Genes%20&%20development&rft.au=Pr%C3%A9vost,%20Karine&rft.date=2011-02-15&rft.volume=25&rft.issue=4&rft.spage=385&rft.epage=396&rft.pages=385-396&rft.issn=0890-9369&rft.eissn=1549-5477&rft_id=info:doi/10.1101/gad.2001711&rft_dat=%3Cproquest_pubme%3E907159258%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=907159258&rft_id=info:pmid/21289064&rfr_iscdi=true