Regulation of alternative splicing by the core spliceosomal machinery

Alternative splicing (AS) plays a major role in the generation of proteomic diversity and in gene regulation. However, the role of the basal splicing machinery in regulating AS remains poorly understood. Here we show that the core snRNP (small nuclear ribonucleoprotein) protein SmB/B' self-regu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes & development 2011-02, Vol.25 (4), p.373-384
Hauptverfasser: Saltzman, Arneet L, Pan, Qun, Blencowe, Benjamin J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 384
container_issue 4
container_start_page 373
container_title Genes & development
container_volume 25
creator Saltzman, Arneet L
Pan, Qun
Blencowe, Benjamin J
description Alternative splicing (AS) plays a major role in the generation of proteomic diversity and in gene regulation. However, the role of the basal splicing machinery in regulating AS remains poorly understood. Here we show that the core snRNP (small nuclear ribonucleoprotein) protein SmB/B' self-regulates its expression by promoting the inclusion of a highly conserved alternative exon in its own pre-mRNA that targets the spliced transcript for nonsense-mediated mRNA decay (NMD). Depletion of SmB/B' in human cells results in reduced levels of snRNPs and a striking reduction in the inclusion levels of hundreds of additional alternative exons, with comparatively few effects on constitutive exon splicing levels. The affected alternative exons are enriched in genes encoding RNA processing and other RNA-binding factors, and a subset of these exons also regulate gene expression by activating NMD. Our results thus demonstrate a role for the core spliceosomal machinery in controlling an exon network that appears to modulate the levels of many RNA processing factors.
doi_str_mv 10.1101/gad.2004811
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3042160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>852901809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-66c90a0892e169a29cf3961fba069ee9c3eb808a7ea954dacfe1413632f83f623</originalsourceid><addsrcrecordid>eNqFkU1Lw0AQhhdRbK2evEtuHiR1ZjfZZC-ClPoBBUH0vGy3kzaSZOtuWui_N9JY9ORpmJmHlxkexi4RxoiAt0uzGHOAJEc8YkNMExWnSZYdsyHkCmIlpBqwsxA-AECClKdswFHwFEU6ZNNXWm4q05auiVwRmaol33TtlqKwrkpbNstovovaFUXW-X5ILrjaVFFt7KpsyO_O2UlhqkAXfR2x94fp2-Qpnr08Pk_uZ7FNsryNpbQKTHcVJ5TKcGULoSQWcwNSESkraJ5DbjIyKk0WxhaECQopeJGLQnIxYnf73PVmXtPCUtN6U-m1L2vjd9qZUv_dNOVKL91WC0g4SugCrvsA7z43FFpdl8FSVZmG3CZoBRmmnCfyXzJPuQLMQXXkzZ603oXgqTjcg6C_DenOkO4NdfTV7xcO7I8S8QWYF40d</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>852901809</pqid></control><display><type>article</type><title>Regulation of alternative splicing by the core spliceosomal machinery</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Saltzman, Arneet L ; Pan, Qun ; Blencowe, Benjamin J</creator><creatorcontrib>Saltzman, Arneet L ; Pan, Qun ; Blencowe, Benjamin J</creatorcontrib><description>Alternative splicing (AS) plays a major role in the generation of proteomic diversity and in gene regulation. However, the role of the basal splicing machinery in regulating AS remains poorly understood. Here we show that the core snRNP (small nuclear ribonucleoprotein) protein SmB/B' self-regulates its expression by promoting the inclusion of a highly conserved alternative exon in its own pre-mRNA that targets the spliced transcript for nonsense-mediated mRNA decay (NMD). Depletion of SmB/B' in human cells results in reduced levels of snRNPs and a striking reduction in the inclusion levels of hundreds of additional alternative exons, with comparatively few effects on constitutive exon splicing levels. The affected alternative exons are enriched in genes encoding RNA processing and other RNA-binding factors, and a subset of these exons also regulate gene expression by activating NMD. Our results thus demonstrate a role for the core spliceosomal machinery in controlling an exon network that appears to modulate the levels of many RNA processing factors.</description><identifier>ISSN: 0890-9369</identifier><identifier>EISSN: 1549-5477</identifier><identifier>DOI: 10.1101/gad.2004811</identifier><identifier>PMID: 21325135</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Alternative Splicing - genetics ; Alternative Splicing - physiology ; Base Sequence ; Conserved Sequence ; Gene Expression Regulation ; Gene Knockdown Techniques ; HeLa Cells ; Humans ; Models, Biological ; Molecular Sequence Data ; Mutation - physiology ; Regulatory Elements, Transcriptional - physiology ; Research Paper ; Ribonucleoproteins, Small Nuclear - genetics ; Ribonucleoproteins, Small Nuclear - metabolism ; Ribonucleoproteins, Small Nuclear - physiology ; RNA Precursors - metabolism ; RNA Processing, Post-Transcriptional - genetics ; RNA Processing, Post-Transcriptional - physiology ; snRNP Core Proteins - genetics ; snRNP Core Proteins - metabolism ; Spliceosomes - metabolism ; Spliceosomes - physiology ; Transfection</subject><ispartof>Genes &amp; development, 2011-02, Vol.25 (4), p.373-384</ispartof><rights>Copyright © 2011 by Cold Spring Harbor Laboratory Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-66c90a0892e169a29cf3961fba069ee9c3eb808a7ea954dacfe1413632f83f623</citedby><cites>FETCH-LOGICAL-c478t-66c90a0892e169a29cf3961fba069ee9c3eb808a7ea954dacfe1413632f83f623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3042160/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3042160/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21325135$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saltzman, Arneet L</creatorcontrib><creatorcontrib>Pan, Qun</creatorcontrib><creatorcontrib>Blencowe, Benjamin J</creatorcontrib><title>Regulation of alternative splicing by the core spliceosomal machinery</title><title>Genes &amp; development</title><addtitle>Genes Dev</addtitle><description>Alternative splicing (AS) plays a major role in the generation of proteomic diversity and in gene regulation. However, the role of the basal splicing machinery in regulating AS remains poorly understood. Here we show that the core snRNP (small nuclear ribonucleoprotein) protein SmB/B' self-regulates its expression by promoting the inclusion of a highly conserved alternative exon in its own pre-mRNA that targets the spliced transcript for nonsense-mediated mRNA decay (NMD). Depletion of SmB/B' in human cells results in reduced levels of snRNPs and a striking reduction in the inclusion levels of hundreds of additional alternative exons, with comparatively few effects on constitutive exon splicing levels. The affected alternative exons are enriched in genes encoding RNA processing and other RNA-binding factors, and a subset of these exons also regulate gene expression by activating NMD. Our results thus demonstrate a role for the core spliceosomal machinery in controlling an exon network that appears to modulate the levels of many RNA processing factors.</description><subject>Alternative Splicing - genetics</subject><subject>Alternative Splicing - physiology</subject><subject>Base Sequence</subject><subject>Conserved Sequence</subject><subject>Gene Expression Regulation</subject><subject>Gene Knockdown Techniques</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Models, Biological</subject><subject>Molecular Sequence Data</subject><subject>Mutation - physiology</subject><subject>Regulatory Elements, Transcriptional - physiology</subject><subject>Research Paper</subject><subject>Ribonucleoproteins, Small Nuclear - genetics</subject><subject>Ribonucleoproteins, Small Nuclear - metabolism</subject><subject>Ribonucleoproteins, Small Nuclear - physiology</subject><subject>RNA Precursors - metabolism</subject><subject>RNA Processing, Post-Transcriptional - genetics</subject><subject>RNA Processing, Post-Transcriptional - physiology</subject><subject>snRNP Core Proteins - genetics</subject><subject>snRNP Core Proteins - metabolism</subject><subject>Spliceosomes - metabolism</subject><subject>Spliceosomes - physiology</subject><subject>Transfection</subject><issn>0890-9369</issn><issn>1549-5477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1Lw0AQhhdRbK2evEtuHiR1ZjfZZC-ClPoBBUH0vGy3kzaSZOtuWui_N9JY9ORpmJmHlxkexi4RxoiAt0uzGHOAJEc8YkNMExWnSZYdsyHkCmIlpBqwsxA-AECClKdswFHwFEU6ZNNXWm4q05auiVwRmaol33TtlqKwrkpbNstovovaFUXW-X5ILrjaVFFt7KpsyO_O2UlhqkAXfR2x94fp2-Qpnr08Pk_uZ7FNsryNpbQKTHcVJ5TKcGULoSQWcwNSESkraJ5DbjIyKk0WxhaECQopeJGLQnIxYnf73PVmXtPCUtN6U-m1L2vjd9qZUv_dNOVKL91WC0g4SugCrvsA7z43FFpdl8FSVZmG3CZoBRmmnCfyXzJPuQLMQXXkzZ603oXgqTjcg6C_DenOkO4NdfTV7xcO7I8S8QWYF40d</recordid><startdate>20110215</startdate><enddate>20110215</enddate><creator>Saltzman, Arneet L</creator><creator>Pan, Qun</creator><creator>Blencowe, Benjamin J</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20110215</creationdate><title>Regulation of alternative splicing by the core spliceosomal machinery</title><author>Saltzman, Arneet L ; Pan, Qun ; Blencowe, Benjamin J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-66c90a0892e169a29cf3961fba069ee9c3eb808a7ea954dacfe1413632f83f623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alternative Splicing - genetics</topic><topic>Alternative Splicing - physiology</topic><topic>Base Sequence</topic><topic>Conserved Sequence</topic><topic>Gene Expression Regulation</topic><topic>Gene Knockdown Techniques</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Models, Biological</topic><topic>Molecular Sequence Data</topic><topic>Mutation - physiology</topic><topic>Regulatory Elements, Transcriptional - physiology</topic><topic>Research Paper</topic><topic>Ribonucleoproteins, Small Nuclear - genetics</topic><topic>Ribonucleoproteins, Small Nuclear - metabolism</topic><topic>Ribonucleoproteins, Small Nuclear - physiology</topic><topic>RNA Precursors - metabolism</topic><topic>RNA Processing, Post-Transcriptional - genetics</topic><topic>RNA Processing, Post-Transcriptional - physiology</topic><topic>snRNP Core Proteins - genetics</topic><topic>snRNP Core Proteins - metabolism</topic><topic>Spliceosomes - metabolism</topic><topic>Spliceosomes - physiology</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saltzman, Arneet L</creatorcontrib><creatorcontrib>Pan, Qun</creatorcontrib><creatorcontrib>Blencowe, Benjamin J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes &amp; development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saltzman, Arneet L</au><au>Pan, Qun</au><au>Blencowe, Benjamin J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of alternative splicing by the core spliceosomal machinery</atitle><jtitle>Genes &amp; development</jtitle><addtitle>Genes Dev</addtitle><date>2011-02-15</date><risdate>2011</risdate><volume>25</volume><issue>4</issue><spage>373</spage><epage>384</epage><pages>373-384</pages><issn>0890-9369</issn><eissn>1549-5477</eissn><abstract>Alternative splicing (AS) plays a major role in the generation of proteomic diversity and in gene regulation. However, the role of the basal splicing machinery in regulating AS remains poorly understood. Here we show that the core snRNP (small nuclear ribonucleoprotein) protein SmB/B' self-regulates its expression by promoting the inclusion of a highly conserved alternative exon in its own pre-mRNA that targets the spliced transcript for nonsense-mediated mRNA decay (NMD). Depletion of SmB/B' in human cells results in reduced levels of snRNPs and a striking reduction in the inclusion levels of hundreds of additional alternative exons, with comparatively few effects on constitutive exon splicing levels. The affected alternative exons are enriched in genes encoding RNA processing and other RNA-binding factors, and a subset of these exons also regulate gene expression by activating NMD. Our results thus demonstrate a role for the core spliceosomal machinery in controlling an exon network that appears to modulate the levels of many RNA processing factors.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>21325135</pmid><doi>10.1101/gad.2004811</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0890-9369
ispartof Genes & development, 2011-02, Vol.25 (4), p.373-384
issn 0890-9369
1549-5477
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3042160
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Alternative Splicing - genetics
Alternative Splicing - physiology
Base Sequence
Conserved Sequence
Gene Expression Regulation
Gene Knockdown Techniques
HeLa Cells
Humans
Models, Biological
Molecular Sequence Data
Mutation - physiology
Regulatory Elements, Transcriptional - physiology
Research Paper
Ribonucleoproteins, Small Nuclear - genetics
Ribonucleoproteins, Small Nuclear - metabolism
Ribonucleoproteins, Small Nuclear - physiology
RNA Precursors - metabolism
RNA Processing, Post-Transcriptional - genetics
RNA Processing, Post-Transcriptional - physiology
snRNP Core Proteins - genetics
snRNP Core Proteins - metabolism
Spliceosomes - metabolism
Spliceosomes - physiology
Transfection
title Regulation of alternative splicing by the core spliceosomal machinery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T03%3A15%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20alternative%20splicing%20by%20the%20core%20spliceosomal%20machinery&rft.jtitle=Genes%20&%20development&rft.au=Saltzman,%20Arneet%20L&rft.date=2011-02-15&rft.volume=25&rft.issue=4&rft.spage=373&rft.epage=384&rft.pages=373-384&rft.issn=0890-9369&rft.eissn=1549-5477&rft_id=info:doi/10.1101/gad.2004811&rft_dat=%3Cproquest_pubme%3E852901809%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=852901809&rft_id=info:pmid/21325135&rfr_iscdi=true