Regulation of alternative splicing by the core spliceosomal machinery
Alternative splicing (AS) plays a major role in the generation of proteomic diversity and in gene regulation. However, the role of the basal splicing machinery in regulating AS remains poorly understood. Here we show that the core snRNP (small nuclear ribonucleoprotein) protein SmB/B' self-regu...
Gespeichert in:
Veröffentlicht in: | Genes & development 2011-02, Vol.25 (4), p.373-384 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 384 |
---|---|
container_issue | 4 |
container_start_page | 373 |
container_title | Genes & development |
container_volume | 25 |
creator | Saltzman, Arneet L Pan, Qun Blencowe, Benjamin J |
description | Alternative splicing (AS) plays a major role in the generation of proteomic diversity and in gene regulation. However, the role of the basal splicing machinery in regulating AS remains poorly understood. Here we show that the core snRNP (small nuclear ribonucleoprotein) protein SmB/B' self-regulates its expression by promoting the inclusion of a highly conserved alternative exon in its own pre-mRNA that targets the spliced transcript for nonsense-mediated mRNA decay (NMD). Depletion of SmB/B' in human cells results in reduced levels of snRNPs and a striking reduction in the inclusion levels of hundreds of additional alternative exons, with comparatively few effects on constitutive exon splicing levels. The affected alternative exons are enriched in genes encoding RNA processing and other RNA-binding factors, and a subset of these exons also regulate gene expression by activating NMD. Our results thus demonstrate a role for the core spliceosomal machinery in controlling an exon network that appears to modulate the levels of many RNA processing factors. |
doi_str_mv | 10.1101/gad.2004811 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3042160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>852901809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-66c90a0892e169a29cf3961fba069ee9c3eb808a7ea954dacfe1413632f83f623</originalsourceid><addsrcrecordid>eNqFkU1Lw0AQhhdRbK2evEtuHiR1ZjfZZC-ClPoBBUH0vGy3kzaSZOtuWui_N9JY9ORpmJmHlxkexi4RxoiAt0uzGHOAJEc8YkNMExWnSZYdsyHkCmIlpBqwsxA-AECClKdswFHwFEU6ZNNXWm4q05auiVwRmaol33TtlqKwrkpbNstovovaFUXW-X5ILrjaVFFt7KpsyO_O2UlhqkAXfR2x94fp2-Qpnr08Pk_uZ7FNsryNpbQKTHcVJ5TKcGULoSQWcwNSESkraJ5DbjIyKk0WxhaECQopeJGLQnIxYnf73PVmXtPCUtN6U-m1L2vjd9qZUv_dNOVKL91WC0g4SugCrvsA7z43FFpdl8FSVZmG3CZoBRmmnCfyXzJPuQLMQXXkzZ603oXgqTjcg6C_DenOkO4NdfTV7xcO7I8S8QWYF40d</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>852901809</pqid></control><display><type>article</type><title>Regulation of alternative splicing by the core spliceosomal machinery</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Saltzman, Arneet L ; Pan, Qun ; Blencowe, Benjamin J</creator><creatorcontrib>Saltzman, Arneet L ; Pan, Qun ; Blencowe, Benjamin J</creatorcontrib><description>Alternative splicing (AS) plays a major role in the generation of proteomic diversity and in gene regulation. However, the role of the basal splicing machinery in regulating AS remains poorly understood. Here we show that the core snRNP (small nuclear ribonucleoprotein) protein SmB/B' self-regulates its expression by promoting the inclusion of a highly conserved alternative exon in its own pre-mRNA that targets the spliced transcript for nonsense-mediated mRNA decay (NMD). Depletion of SmB/B' in human cells results in reduced levels of snRNPs and a striking reduction in the inclusion levels of hundreds of additional alternative exons, with comparatively few effects on constitutive exon splicing levels. The affected alternative exons are enriched in genes encoding RNA processing and other RNA-binding factors, and a subset of these exons also regulate gene expression by activating NMD. Our results thus demonstrate a role for the core spliceosomal machinery in controlling an exon network that appears to modulate the levels of many RNA processing factors.</description><identifier>ISSN: 0890-9369</identifier><identifier>EISSN: 1549-5477</identifier><identifier>DOI: 10.1101/gad.2004811</identifier><identifier>PMID: 21325135</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Alternative Splicing - genetics ; Alternative Splicing - physiology ; Base Sequence ; Conserved Sequence ; Gene Expression Regulation ; Gene Knockdown Techniques ; HeLa Cells ; Humans ; Models, Biological ; Molecular Sequence Data ; Mutation - physiology ; Regulatory Elements, Transcriptional - physiology ; Research Paper ; Ribonucleoproteins, Small Nuclear - genetics ; Ribonucleoproteins, Small Nuclear - metabolism ; Ribonucleoproteins, Small Nuclear - physiology ; RNA Precursors - metabolism ; RNA Processing, Post-Transcriptional - genetics ; RNA Processing, Post-Transcriptional - physiology ; snRNP Core Proteins - genetics ; snRNP Core Proteins - metabolism ; Spliceosomes - metabolism ; Spliceosomes - physiology ; Transfection</subject><ispartof>Genes & development, 2011-02, Vol.25 (4), p.373-384</ispartof><rights>Copyright © 2011 by Cold Spring Harbor Laboratory Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-66c90a0892e169a29cf3961fba069ee9c3eb808a7ea954dacfe1413632f83f623</citedby><cites>FETCH-LOGICAL-c478t-66c90a0892e169a29cf3961fba069ee9c3eb808a7ea954dacfe1413632f83f623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3042160/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3042160/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21325135$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saltzman, Arneet L</creatorcontrib><creatorcontrib>Pan, Qun</creatorcontrib><creatorcontrib>Blencowe, Benjamin J</creatorcontrib><title>Regulation of alternative splicing by the core spliceosomal machinery</title><title>Genes & development</title><addtitle>Genes Dev</addtitle><description>Alternative splicing (AS) plays a major role in the generation of proteomic diversity and in gene regulation. However, the role of the basal splicing machinery in regulating AS remains poorly understood. Here we show that the core snRNP (small nuclear ribonucleoprotein) protein SmB/B' self-regulates its expression by promoting the inclusion of a highly conserved alternative exon in its own pre-mRNA that targets the spliced transcript for nonsense-mediated mRNA decay (NMD). Depletion of SmB/B' in human cells results in reduced levels of snRNPs and a striking reduction in the inclusion levels of hundreds of additional alternative exons, with comparatively few effects on constitutive exon splicing levels. The affected alternative exons are enriched in genes encoding RNA processing and other RNA-binding factors, and a subset of these exons also regulate gene expression by activating NMD. Our results thus demonstrate a role for the core spliceosomal machinery in controlling an exon network that appears to modulate the levels of many RNA processing factors.</description><subject>Alternative Splicing - genetics</subject><subject>Alternative Splicing - physiology</subject><subject>Base Sequence</subject><subject>Conserved Sequence</subject><subject>Gene Expression Regulation</subject><subject>Gene Knockdown Techniques</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Models, Biological</subject><subject>Molecular Sequence Data</subject><subject>Mutation - physiology</subject><subject>Regulatory Elements, Transcriptional - physiology</subject><subject>Research Paper</subject><subject>Ribonucleoproteins, Small Nuclear - genetics</subject><subject>Ribonucleoproteins, Small Nuclear - metabolism</subject><subject>Ribonucleoproteins, Small Nuclear - physiology</subject><subject>RNA Precursors - metabolism</subject><subject>RNA Processing, Post-Transcriptional - genetics</subject><subject>RNA Processing, Post-Transcriptional - physiology</subject><subject>snRNP Core Proteins - genetics</subject><subject>snRNP Core Proteins - metabolism</subject><subject>Spliceosomes - metabolism</subject><subject>Spliceosomes - physiology</subject><subject>Transfection</subject><issn>0890-9369</issn><issn>1549-5477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1Lw0AQhhdRbK2evEtuHiR1ZjfZZC-ClPoBBUH0vGy3kzaSZOtuWui_N9JY9ORpmJmHlxkexi4RxoiAt0uzGHOAJEc8YkNMExWnSZYdsyHkCmIlpBqwsxA-AECClKdswFHwFEU6ZNNXWm4q05auiVwRmaol33TtlqKwrkpbNstovovaFUXW-X5ILrjaVFFt7KpsyO_O2UlhqkAXfR2x94fp2-Qpnr08Pk_uZ7FNsryNpbQKTHcVJ5TKcGULoSQWcwNSESkraJ5DbjIyKk0WxhaECQopeJGLQnIxYnf73PVmXtPCUtN6U-m1L2vjd9qZUv_dNOVKL91WC0g4SugCrvsA7z43FFpdl8FSVZmG3CZoBRmmnCfyXzJPuQLMQXXkzZ603oXgqTjcg6C_DenOkO4NdfTV7xcO7I8S8QWYF40d</recordid><startdate>20110215</startdate><enddate>20110215</enddate><creator>Saltzman, Arneet L</creator><creator>Pan, Qun</creator><creator>Blencowe, Benjamin J</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20110215</creationdate><title>Regulation of alternative splicing by the core spliceosomal machinery</title><author>Saltzman, Arneet L ; Pan, Qun ; Blencowe, Benjamin J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-66c90a0892e169a29cf3961fba069ee9c3eb808a7ea954dacfe1413632f83f623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alternative Splicing - genetics</topic><topic>Alternative Splicing - physiology</topic><topic>Base Sequence</topic><topic>Conserved Sequence</topic><topic>Gene Expression Regulation</topic><topic>Gene Knockdown Techniques</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Models, Biological</topic><topic>Molecular Sequence Data</topic><topic>Mutation - physiology</topic><topic>Regulatory Elements, Transcriptional - physiology</topic><topic>Research Paper</topic><topic>Ribonucleoproteins, Small Nuclear - genetics</topic><topic>Ribonucleoproteins, Small Nuclear - metabolism</topic><topic>Ribonucleoproteins, Small Nuclear - physiology</topic><topic>RNA Precursors - metabolism</topic><topic>RNA Processing, Post-Transcriptional - genetics</topic><topic>RNA Processing, Post-Transcriptional - physiology</topic><topic>snRNP Core Proteins - genetics</topic><topic>snRNP Core Proteins - metabolism</topic><topic>Spliceosomes - metabolism</topic><topic>Spliceosomes - physiology</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saltzman, Arneet L</creatorcontrib><creatorcontrib>Pan, Qun</creatorcontrib><creatorcontrib>Blencowe, Benjamin J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes & development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saltzman, Arneet L</au><au>Pan, Qun</au><au>Blencowe, Benjamin J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of alternative splicing by the core spliceosomal machinery</atitle><jtitle>Genes & development</jtitle><addtitle>Genes Dev</addtitle><date>2011-02-15</date><risdate>2011</risdate><volume>25</volume><issue>4</issue><spage>373</spage><epage>384</epage><pages>373-384</pages><issn>0890-9369</issn><eissn>1549-5477</eissn><abstract>Alternative splicing (AS) plays a major role in the generation of proteomic diversity and in gene regulation. However, the role of the basal splicing machinery in regulating AS remains poorly understood. Here we show that the core snRNP (small nuclear ribonucleoprotein) protein SmB/B' self-regulates its expression by promoting the inclusion of a highly conserved alternative exon in its own pre-mRNA that targets the spliced transcript for nonsense-mediated mRNA decay (NMD). Depletion of SmB/B' in human cells results in reduced levels of snRNPs and a striking reduction in the inclusion levels of hundreds of additional alternative exons, with comparatively few effects on constitutive exon splicing levels. The affected alternative exons are enriched in genes encoding RNA processing and other RNA-binding factors, and a subset of these exons also regulate gene expression by activating NMD. Our results thus demonstrate a role for the core spliceosomal machinery in controlling an exon network that appears to modulate the levels of many RNA processing factors.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>21325135</pmid><doi>10.1101/gad.2004811</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0890-9369 |
ispartof | Genes & development, 2011-02, Vol.25 (4), p.373-384 |
issn | 0890-9369 1549-5477 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3042160 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Alternative Splicing - genetics Alternative Splicing - physiology Base Sequence Conserved Sequence Gene Expression Regulation Gene Knockdown Techniques HeLa Cells Humans Models, Biological Molecular Sequence Data Mutation - physiology Regulatory Elements, Transcriptional - physiology Research Paper Ribonucleoproteins, Small Nuclear - genetics Ribonucleoproteins, Small Nuclear - metabolism Ribonucleoproteins, Small Nuclear - physiology RNA Precursors - metabolism RNA Processing, Post-Transcriptional - genetics RNA Processing, Post-Transcriptional - physiology snRNP Core Proteins - genetics snRNP Core Proteins - metabolism Spliceosomes - metabolism Spliceosomes - physiology Transfection |
title | Regulation of alternative splicing by the core spliceosomal machinery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T03%3A15%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20alternative%20splicing%20by%20the%20core%20spliceosomal%20machinery&rft.jtitle=Genes%20&%20development&rft.au=Saltzman,%20Arneet%20L&rft.date=2011-02-15&rft.volume=25&rft.issue=4&rft.spage=373&rft.epage=384&rft.pages=373-384&rft.issn=0890-9369&rft.eissn=1549-5477&rft_id=info:doi/10.1101/gad.2004811&rft_dat=%3Cproquest_pubme%3E852901809%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=852901809&rft_id=info:pmid/21325135&rfr_iscdi=true |