Fixed and Random Effects Selection in Mixed Effects Models

We consider selecting both fixed and random effects in a general class of mixed effects models using maximum penalized likelihood (MPL) estimation along with the smoothly clipped absolute deviation (SCAD) and adaptive least absolute shrinkage and selection operator (ALASSO) penalty functions. The MP...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 2011-06, Vol.67 (2), p.495-503
Hauptverfasser: Ibrahim, Joseph G., Zhu, Hongtu, Garcia, Ramon I., Guo, Ruixin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 503
container_issue 2
container_start_page 495
container_title Biometrics
container_volume 67
creator Ibrahim, Joseph G.
Zhu, Hongtu
Garcia, Ramon I.
Guo, Ruixin
description We consider selecting both fixed and random effects in a general class of mixed effects models using maximum penalized likelihood (MPL) estimation along with the smoothly clipped absolute deviation (SCAD) and adaptive least absolute shrinkage and selection operator (ALASSO) penalty functions. The MPL estimates are shown to possess consistency and sparsity properties and asymptotic normality. A model selection criterion, called the IC Q statistic, is proposed for selecting the penalty parameters (Ibrahim, Zhu, and Tang, 2008, Journal of the American Statistical Association 103, 1648-1658). The variable selection procedure based on IC Q is shown to consistently select important fixed and random effects. The methodology is very general and can be applied to numerous situations involving random effects, including generalized linear mixed models. Simulation studies and a real data set from a Yale infant growth study are used to illustrate the proposed methodology.
doi_str_mv 10.1111/j.1541-0420.2010.01463.x
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3041932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41242487</jstor_id><sourcerecordid>41242487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5613-585400d67e46b54194916a2814e863e7a9599f8daac0c51b02017b4be43ba99c3</originalsourceid><addsrcrecordid>eNqNUU1v1DAQtRCo3X78BKqIC6cs_oqTcECCbbtU6lLR8tHbyEmc4jQbFzsL23_PpNuGlhM-eGy_N29m_AiJGJ0yXG-aKUski6nkdMopvlImlZiun5HJCDwnE0qpioVkl9tkJ4QGr3lC-RbZ5lQpngk2IW-P7dpUke6q6Bw3t4yO6tqUfYguTIvRui6yXbS4Yz1AC1eZNuyRF7Vug9m_j7vk6_HRl9nH-PRsfjJ7fxqXiWIiTrJEUlqp1EhVYHO5zJnSPGPSZEqYVOdJntdZpXVJy4QVFAdKC1kYKQqd56XYJe82ujerYmmq0nS91y3ceLvU_hactvAU6ewPuHK_QFCsJjgKvL4X8O7nyoQeljaUpm11Z9wqQJYKwSTWRearf5iNW_kOp0MSfhhlPEVStiGV3oXgTT22wigM9kADgwswuACDPXBnD6wx9eDxKGPigx9_Z_1tW3P738Lw4eRsMRxR4OVGoAm986OAZFxymQ3Nxxvcht6sR1z7a1CpSBP4_mkO3z6fX8zZ7BCk-AO-sLTY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>872830127</pqid></control><display><type>article</type><title>Fixed and Random Effects Selection in Mixed Effects Models</title><source>MEDLINE</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Wiley Online Library All Journals</source><creator>Ibrahim, Joseph G. ; Zhu, Hongtu ; Garcia, Ramon I. ; Guo, Ruixin</creator><creatorcontrib>Ibrahim, Joseph G. ; Zhu, Hongtu ; Garcia, Ramon I. ; Guo, Ruixin</creatorcontrib><description>We consider selecting both fixed and random effects in a general class of mixed effects models using maximum penalized likelihood (MPL) estimation along with the smoothly clipped absolute deviation (SCAD) and adaptive least absolute shrinkage and selection operator (ALASSO) penalty functions. The MPL estimates are shown to possess consistency and sparsity properties and asymptotic normality. A model selection criterion, called the IC Q statistic, is proposed for selecting the penalty parameters (Ibrahim, Zhu, and Tang, 2008, Journal of the American Statistical Association 103, 1648-1658). The variable selection procedure based on IC Q is shown to consistently select important fixed and random effects. The methodology is very general and can be applied to numerous situations involving random effects, including generalized linear mixed models. Simulation studies and a real data set from a Yale infant growth study are used to illustrate the proposed methodology.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.1541-0420.2010.01463.x</identifier><identifier>PMID: 20662831</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>ALASSO ; Bioinformatics ; BIOMETRIC METHODOLOGY ; Biometrics ; Biometry - methods ; Cholesky decomposition ; Computer Simulation ; Covariance matrices ; Datasets ; EM algorithm ; Estimation methods ; Estimators ; Gestational age ; Growth ; Humans ; ICQ criterion ; Infant ; Infant growth ; Infants ; Likelihood Functions ; Mathematical models ; Maximum likelihood estimation ; Medical research ; Mixed effects selection ; Models, Statistical ; Penalized likelihood ; Penalty function ; SCAD ; Statistical methods</subject><ispartof>Biometrics, 2011-06, Vol.67 (2), p.495-503</ispartof><rights>2011 International Biometric Society</rights><rights>2010, The International Biometric Society</rights><rights>2010, The International Biometric Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5613-585400d67e46b54194916a2814e863e7a9599f8daac0c51b02017b4be43ba99c3</citedby><cites>FETCH-LOGICAL-c5613-585400d67e46b54194916a2814e863e7a9599f8daac0c51b02017b4be43ba99c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41242487$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41242487$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,1417,27923,27924,45573,45574,58016,58020,58249,58253</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20662831$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ibrahim, Joseph G.</creatorcontrib><creatorcontrib>Zhu, Hongtu</creatorcontrib><creatorcontrib>Garcia, Ramon I.</creatorcontrib><creatorcontrib>Guo, Ruixin</creatorcontrib><title>Fixed and Random Effects Selection in Mixed Effects Models</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>We consider selecting both fixed and random effects in a general class of mixed effects models using maximum penalized likelihood (MPL) estimation along with the smoothly clipped absolute deviation (SCAD) and adaptive least absolute shrinkage and selection operator (ALASSO) penalty functions. The MPL estimates are shown to possess consistency and sparsity properties and asymptotic normality. A model selection criterion, called the IC Q statistic, is proposed for selecting the penalty parameters (Ibrahim, Zhu, and Tang, 2008, Journal of the American Statistical Association 103, 1648-1658). The variable selection procedure based on IC Q is shown to consistently select important fixed and random effects. The methodology is very general and can be applied to numerous situations involving random effects, including generalized linear mixed models. Simulation studies and a real data set from a Yale infant growth study are used to illustrate the proposed methodology.</description><subject>ALASSO</subject><subject>Bioinformatics</subject><subject>BIOMETRIC METHODOLOGY</subject><subject>Biometrics</subject><subject>Biometry - methods</subject><subject>Cholesky decomposition</subject><subject>Computer Simulation</subject><subject>Covariance matrices</subject><subject>Datasets</subject><subject>EM algorithm</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>Gestational age</subject><subject>Growth</subject><subject>Humans</subject><subject>ICQ criterion</subject><subject>Infant</subject><subject>Infant growth</subject><subject>Infants</subject><subject>Likelihood Functions</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimation</subject><subject>Medical research</subject><subject>Mixed effects selection</subject><subject>Models, Statistical</subject><subject>Penalized likelihood</subject><subject>Penalty function</subject><subject>SCAD</subject><subject>Statistical methods</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUU1v1DAQtRCo3X78BKqIC6cs_oqTcECCbbtU6lLR8tHbyEmc4jQbFzsL23_PpNuGlhM-eGy_N29m_AiJGJ0yXG-aKUski6nkdMopvlImlZiun5HJCDwnE0qpioVkl9tkJ4QGr3lC-RbZ5lQpngk2IW-P7dpUke6q6Bw3t4yO6tqUfYguTIvRui6yXbS4Yz1AC1eZNuyRF7Vug9m_j7vk6_HRl9nH-PRsfjJ7fxqXiWIiTrJEUlqp1EhVYHO5zJnSPGPSZEqYVOdJntdZpXVJy4QVFAdKC1kYKQqd56XYJe82ujerYmmq0nS91y3ceLvU_hactvAU6ewPuHK_QFCsJjgKvL4X8O7nyoQeljaUpm11Z9wqQJYKwSTWRearf5iNW_kOp0MSfhhlPEVStiGV3oXgTT22wigM9kADgwswuACDPXBnD6wx9eDxKGPigx9_Z_1tW3P738Lw4eRsMRxR4OVGoAm986OAZFxymQ3Nxxvcht6sR1z7a1CpSBP4_mkO3z6fX8zZ7BCk-AO-sLTY</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Ibrahim, Joseph G.</creator><creator>Zhu, Hongtu</creator><creator>Garcia, Ramon I.</creator><creator>Guo, Ruixin</creator><general>Blackwell Publishing Inc</general><general>Wiley-Blackwell</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201106</creationdate><title>Fixed and Random Effects Selection in Mixed Effects Models</title><author>Ibrahim, Joseph G. ; Zhu, Hongtu ; Garcia, Ramon I. ; Guo, Ruixin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5613-585400d67e46b54194916a2814e863e7a9599f8daac0c51b02017b4be43ba99c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ALASSO</topic><topic>Bioinformatics</topic><topic>BIOMETRIC METHODOLOGY</topic><topic>Biometrics</topic><topic>Biometry - methods</topic><topic>Cholesky decomposition</topic><topic>Computer Simulation</topic><topic>Covariance matrices</topic><topic>Datasets</topic><topic>EM algorithm</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>Gestational age</topic><topic>Growth</topic><topic>Humans</topic><topic>ICQ criterion</topic><topic>Infant</topic><topic>Infant growth</topic><topic>Infants</topic><topic>Likelihood Functions</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimation</topic><topic>Medical research</topic><topic>Mixed effects selection</topic><topic>Models, Statistical</topic><topic>Penalized likelihood</topic><topic>Penalty function</topic><topic>SCAD</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ibrahim, Joseph G.</creatorcontrib><creatorcontrib>Zhu, Hongtu</creatorcontrib><creatorcontrib>Garcia, Ramon I.</creatorcontrib><creatorcontrib>Guo, Ruixin</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ibrahim, Joseph G.</au><au>Zhu, Hongtu</au><au>Garcia, Ramon I.</au><au>Guo, Ruixin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fixed and Random Effects Selection in Mixed Effects Models</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2011-06</date><risdate>2011</risdate><volume>67</volume><issue>2</issue><spage>495</spage><epage>503</epage><pages>495-503</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>We consider selecting both fixed and random effects in a general class of mixed effects models using maximum penalized likelihood (MPL) estimation along with the smoothly clipped absolute deviation (SCAD) and adaptive least absolute shrinkage and selection operator (ALASSO) penalty functions. The MPL estimates are shown to possess consistency and sparsity properties and asymptotic normality. A model selection criterion, called the IC Q statistic, is proposed for selecting the penalty parameters (Ibrahim, Zhu, and Tang, 2008, Journal of the American Statistical Association 103, 1648-1658). The variable selection procedure based on IC Q is shown to consistently select important fixed and random effects. The methodology is very general and can be applied to numerous situations involving random effects, including generalized linear mixed models. Simulation studies and a real data set from a Yale infant growth study are used to illustrate the proposed methodology.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>20662831</pmid><doi>10.1111/j.1541-0420.2010.01463.x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2011-06, Vol.67 (2), p.495-503
issn 0006-341X
1541-0420
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3041932
source MEDLINE; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); Wiley Online Library All Journals
subjects ALASSO
Bioinformatics
BIOMETRIC METHODOLOGY
Biometrics
Biometry - methods
Cholesky decomposition
Computer Simulation
Covariance matrices
Datasets
EM algorithm
Estimation methods
Estimators
Gestational age
Growth
Humans
ICQ criterion
Infant
Infant growth
Infants
Likelihood Functions
Mathematical models
Maximum likelihood estimation
Medical research
Mixed effects selection
Models, Statistical
Penalized likelihood
Penalty function
SCAD
Statistical methods
title Fixed and Random Effects Selection in Mixed Effects Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A11%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fixed%20and%20Random%20Effects%20Selection%20in%20Mixed%20Effects%20Models&rft.jtitle=Biometrics&rft.au=Ibrahim,%20Joseph%20G.&rft.date=2011-06&rft.volume=67&rft.issue=2&rft.spage=495&rft.epage=503&rft.pages=495-503&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.1541-0420.2010.01463.x&rft_dat=%3Cjstor_pubme%3E41242487%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=872830127&rft_id=info:pmid/20662831&rft_jstor_id=41242487&rfr_iscdi=true