Identification of Nuclear Phosphatidylinositol 4,5-Bisphosphate-Interacting Proteins by Neomycin Extraction

Considerable insight into phosphoinositide-regulated cytoplasmic functions has been gained by identifying phosphoinositide-effector proteins. Phosphoinositide-regulated nuclear functions however are fewer and less clear. To address this, we established a proteomic method based on neomycin extraction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular & cellular proteomics 2011-02, Vol.10 (2), p.S1-S15
Hauptverfasser: Lewis, Aurélia E., Sommer, Lilly, Arntzen, Magnus Ø., Strahm, Yvan, Morrice, Nicholas A., Divecha, Nullin, D'Santos, Clive S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page S15
container_issue 2
container_start_page S1
container_title Molecular & cellular proteomics
container_volume 10
creator Lewis, Aurélia E.
Sommer, Lilly
Arntzen, Magnus Ø.
Strahm, Yvan
Morrice, Nicholas A.
Divecha, Nullin
D'Santos, Clive S.
description Considerable insight into phosphoinositide-regulated cytoplasmic functions has been gained by identifying phosphoinositide-effector proteins. Phosphoinositide-regulated nuclear functions however are fewer and less clear. To address this, we established a proteomic method based on neomycin extraction of intact nuclei to enrich for nuclear phosphoinositide-effector proteins. We identified 168 proteins harboring phosphoinositide-binding domains. Although the vast majority of these contained lysine/arginine-rich patches with the following motif, K/R-(Xn= 3–7)-K-X-K/R-K/R, we also identified a smaller subset of known phosphoinositide-binding proteins containing pleckstrin homology or plant homeodomain modules. Proteins with no prior history of phosphoinositide interaction were identified, some of which have functional roles in RNA splicing and processing and chromatin assembly. The remaining proteins represent potentially other novel nuclear phosphoinositide-effector proteins and as such strengthen our appreciation of phosphoinositide-regulated nuclear functions. DNA topology was exemplar among these: Biochemical assays validated our proteomic data supporting a direct interaction between phosphatidylinositol 4,5-bisphosphate and DNA Topoisomerase IIα. In addition, a subset of neomycin extracted proteins were further validated as phosphatidyl 4,5-bisphosphate-interacting proteins by quantitative lipid pull downs. In summary, data sets such as this serve as a resource for a global view of phosphoinositide-regulated nuclear functions.
doi_str_mv 10.1074/mcp.M110.003376
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3033679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1535947620327869</els_id><sourcerecordid>849433338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-935078e6f1d6b1f101f8f0a4a7687655052eaa9429300aecab1a9263508ff23a3</originalsourceid><addsrcrecordid>eNp1UU1v1DAQtSpQv-DcW5UbF9LasZ3EFyRalXalUnqAs-V1xt2BxF5sb8X-e9ymrOCAL_bMe_NmPI-QE0bPGO3E-WTXZ59ZiSjlvGv3yCGTXNZK9OLV7t21B-Qope-UNpR1cp8cNIyKnil5SH4sBvAZHVqTMfgquOpuY0cwsbpfhbRelfSwHdGHhDmMlXgv6wss-RmDeuEzRGMz-ofqPoYM6FO13FZ3EKatRV9d_crPePBvyGtnxgRvX-5j8u3T1dfLm_r2y_Xi8uNtbYVocq24pF0PrWNDu2SOUeZ6R40wXdt3rZRUNmCMEo3ilBqwZsmMatpS1TvXcMOPyYdZd71ZTjDY8sFoRr2OOJm41cGg_hfxuNIP4VHzssS2U0Xg3YtADD83kLKeMFkYR-MhbJLuhRK8nL4wz2emjSGlCG7XhVH95JAuDuknh_TsUKk4_Xu4Hf-PJYWgZgKUFT0iRJ0sgrcwYASb9RDwv-K_AcWWooU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849433338</pqid></control><display><type>article</type><title>Identification of Nuclear Phosphatidylinositol 4,5-Bisphosphate-Interacting Proteins by Neomycin Extraction</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lewis, Aurélia E. ; Sommer, Lilly ; Arntzen, Magnus Ø. ; Strahm, Yvan ; Morrice, Nicholas A. ; Divecha, Nullin ; D'Santos, Clive S.</creator><creatorcontrib>Lewis, Aurélia E. ; Sommer, Lilly ; Arntzen, Magnus Ø. ; Strahm, Yvan ; Morrice, Nicholas A. ; Divecha, Nullin ; D'Santos, Clive S.</creatorcontrib><description>Considerable insight into phosphoinositide-regulated cytoplasmic functions has been gained by identifying phosphoinositide-effector proteins. Phosphoinositide-regulated nuclear functions however are fewer and less clear. To address this, we established a proteomic method based on neomycin extraction of intact nuclei to enrich for nuclear phosphoinositide-effector proteins. We identified 168 proteins harboring phosphoinositide-binding domains. Although the vast majority of these contained lysine/arginine-rich patches with the following motif, K/R-(Xn= 3–7)-K-X-K/R-K/R, we also identified a smaller subset of known phosphoinositide-binding proteins containing pleckstrin homology or plant homeodomain modules. Proteins with no prior history of phosphoinositide interaction were identified, some of which have functional roles in RNA splicing and processing and chromatin assembly. The remaining proteins represent potentially other novel nuclear phosphoinositide-effector proteins and as such strengthen our appreciation of phosphoinositide-regulated nuclear functions. DNA topology was exemplar among these: Biochemical assays validated our proteomic data supporting a direct interaction between phosphatidylinositol 4,5-bisphosphate and DNA Topoisomerase IIα. In addition, a subset of neomycin extracted proteins were further validated as phosphatidyl 4,5-bisphosphate-interacting proteins by quantitative lipid pull downs. In summary, data sets such as this serve as a resource for a global view of phosphoinositide-regulated nuclear functions.</description><identifier>ISSN: 1535-9476</identifier><identifier>EISSN: 1535-9484</identifier><identifier>DOI: 10.1074/mcp.M110.003376</identifier><identifier>PMID: 21048195</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Motifs ; Animals ; Cell Nucleus - metabolism ; Chlorocebus aethiops ; COS Cells ; Cytoplasm - metabolism ; DNA Topoisomerases, Type I - metabolism ; Glutathione Transferase - metabolism ; Humans ; Jurkat Cells ; Neomycin - pharmacology ; Phosphatidylinositol 4,5-Diphosphate - chemistry ; Phosphatidylinositols - chemistry ; Protein Binding ; Protein Structure, Tertiary ; Proteomics - methods ; Regular Issue</subject><ispartof>Molecular &amp; cellular proteomics, 2011-02, Vol.10 (2), p.S1-S15</ispartof><rights>2011 © 2011 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2011 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-935078e6f1d6b1f101f8f0a4a7687655052eaa9429300aecab1a9263508ff23a3</citedby><cites>FETCH-LOGICAL-c442t-935078e6f1d6b1f101f8f0a4a7687655052eaa9429300aecab1a9263508ff23a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3033679/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3033679/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21048195$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lewis, Aurélia E.</creatorcontrib><creatorcontrib>Sommer, Lilly</creatorcontrib><creatorcontrib>Arntzen, Magnus Ø.</creatorcontrib><creatorcontrib>Strahm, Yvan</creatorcontrib><creatorcontrib>Morrice, Nicholas A.</creatorcontrib><creatorcontrib>Divecha, Nullin</creatorcontrib><creatorcontrib>D'Santos, Clive S.</creatorcontrib><title>Identification of Nuclear Phosphatidylinositol 4,5-Bisphosphate-Interacting Proteins by Neomycin Extraction</title><title>Molecular &amp; cellular proteomics</title><addtitle>Mol Cell Proteomics</addtitle><description>Considerable insight into phosphoinositide-regulated cytoplasmic functions has been gained by identifying phosphoinositide-effector proteins. Phosphoinositide-regulated nuclear functions however are fewer and less clear. To address this, we established a proteomic method based on neomycin extraction of intact nuclei to enrich for nuclear phosphoinositide-effector proteins. We identified 168 proteins harboring phosphoinositide-binding domains. Although the vast majority of these contained lysine/arginine-rich patches with the following motif, K/R-(Xn= 3–7)-K-X-K/R-K/R, we also identified a smaller subset of known phosphoinositide-binding proteins containing pleckstrin homology or plant homeodomain modules. Proteins with no prior history of phosphoinositide interaction were identified, some of which have functional roles in RNA splicing and processing and chromatin assembly. The remaining proteins represent potentially other novel nuclear phosphoinositide-effector proteins and as such strengthen our appreciation of phosphoinositide-regulated nuclear functions. DNA topology was exemplar among these: Biochemical assays validated our proteomic data supporting a direct interaction between phosphatidylinositol 4,5-bisphosphate and DNA Topoisomerase IIα. In addition, a subset of neomycin extracted proteins were further validated as phosphatidyl 4,5-bisphosphate-interacting proteins by quantitative lipid pull downs. In summary, data sets such as this serve as a resource for a global view of phosphoinositide-regulated nuclear functions.</description><subject>Amino Acid Motifs</subject><subject>Animals</subject><subject>Cell Nucleus - metabolism</subject><subject>Chlorocebus aethiops</subject><subject>COS Cells</subject><subject>Cytoplasm - metabolism</subject><subject>DNA Topoisomerases, Type I - metabolism</subject><subject>Glutathione Transferase - metabolism</subject><subject>Humans</subject><subject>Jurkat Cells</subject><subject>Neomycin - pharmacology</subject><subject>Phosphatidylinositol 4,5-Diphosphate - chemistry</subject><subject>Phosphatidylinositols - chemistry</subject><subject>Protein Binding</subject><subject>Protein Structure, Tertiary</subject><subject>Proteomics - methods</subject><subject>Regular Issue</subject><issn>1535-9476</issn><issn>1535-9484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1UU1v1DAQtSpQv-DcW5UbF9LasZ3EFyRalXalUnqAs-V1xt2BxF5sb8X-e9ymrOCAL_bMe_NmPI-QE0bPGO3E-WTXZ59ZiSjlvGv3yCGTXNZK9OLV7t21B-Qope-UNpR1cp8cNIyKnil5SH4sBvAZHVqTMfgquOpuY0cwsbpfhbRelfSwHdGHhDmMlXgv6wss-RmDeuEzRGMz-ofqPoYM6FO13FZ3EKatRV9d_crPePBvyGtnxgRvX-5j8u3T1dfLm_r2y_Xi8uNtbYVocq24pF0PrWNDu2SOUeZ6R40wXdt3rZRUNmCMEo3ilBqwZsmMatpS1TvXcMOPyYdZd71ZTjDY8sFoRr2OOJm41cGg_hfxuNIP4VHzssS2U0Xg3YtADD83kLKeMFkYR-MhbJLuhRK8nL4wz2emjSGlCG7XhVH95JAuDuknh_TsUKk4_Xu4Hf-PJYWgZgKUFT0iRJ0sgrcwYASb9RDwv-K_AcWWooU</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Lewis, Aurélia E.</creator><creator>Sommer, Lilly</creator><creator>Arntzen, Magnus Ø.</creator><creator>Strahm, Yvan</creator><creator>Morrice, Nicholas A.</creator><creator>Divecha, Nullin</creator><creator>D'Santos, Clive S.</creator><general>Elsevier Inc</general><general>The American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110201</creationdate><title>Identification of Nuclear Phosphatidylinositol 4,5-Bisphosphate-Interacting Proteins by Neomycin Extraction</title><author>Lewis, Aurélia E. ; Sommer, Lilly ; Arntzen, Magnus Ø. ; Strahm, Yvan ; Morrice, Nicholas A. ; Divecha, Nullin ; D'Santos, Clive S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-935078e6f1d6b1f101f8f0a4a7687655052eaa9429300aecab1a9263508ff23a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amino Acid Motifs</topic><topic>Animals</topic><topic>Cell Nucleus - metabolism</topic><topic>Chlorocebus aethiops</topic><topic>COS Cells</topic><topic>Cytoplasm - metabolism</topic><topic>DNA Topoisomerases, Type I - metabolism</topic><topic>Glutathione Transferase - metabolism</topic><topic>Humans</topic><topic>Jurkat Cells</topic><topic>Neomycin - pharmacology</topic><topic>Phosphatidylinositol 4,5-Diphosphate - chemistry</topic><topic>Phosphatidylinositols - chemistry</topic><topic>Protein Binding</topic><topic>Protein Structure, Tertiary</topic><topic>Proteomics - methods</topic><topic>Regular Issue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lewis, Aurélia E.</creatorcontrib><creatorcontrib>Sommer, Lilly</creatorcontrib><creatorcontrib>Arntzen, Magnus Ø.</creatorcontrib><creatorcontrib>Strahm, Yvan</creatorcontrib><creatorcontrib>Morrice, Nicholas A.</creatorcontrib><creatorcontrib>Divecha, Nullin</creatorcontrib><creatorcontrib>D'Santos, Clive S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular &amp; cellular proteomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lewis, Aurélia E.</au><au>Sommer, Lilly</au><au>Arntzen, Magnus Ø.</au><au>Strahm, Yvan</au><au>Morrice, Nicholas A.</au><au>Divecha, Nullin</au><au>D'Santos, Clive S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Nuclear Phosphatidylinositol 4,5-Bisphosphate-Interacting Proteins by Neomycin Extraction</atitle><jtitle>Molecular &amp; cellular proteomics</jtitle><addtitle>Mol Cell Proteomics</addtitle><date>2011-02-01</date><risdate>2011</risdate><volume>10</volume><issue>2</issue><spage>S1</spage><epage>S15</epage><pages>S1-S15</pages><issn>1535-9476</issn><eissn>1535-9484</eissn><abstract>Considerable insight into phosphoinositide-regulated cytoplasmic functions has been gained by identifying phosphoinositide-effector proteins. Phosphoinositide-regulated nuclear functions however are fewer and less clear. To address this, we established a proteomic method based on neomycin extraction of intact nuclei to enrich for nuclear phosphoinositide-effector proteins. We identified 168 proteins harboring phosphoinositide-binding domains. Although the vast majority of these contained lysine/arginine-rich patches with the following motif, K/R-(Xn= 3–7)-K-X-K/R-K/R, we also identified a smaller subset of known phosphoinositide-binding proteins containing pleckstrin homology or plant homeodomain modules. Proteins with no prior history of phosphoinositide interaction were identified, some of which have functional roles in RNA splicing and processing and chromatin assembly. The remaining proteins represent potentially other novel nuclear phosphoinositide-effector proteins and as such strengthen our appreciation of phosphoinositide-regulated nuclear functions. DNA topology was exemplar among these: Biochemical assays validated our proteomic data supporting a direct interaction between phosphatidylinositol 4,5-bisphosphate and DNA Topoisomerase IIα. In addition, a subset of neomycin extracted proteins were further validated as phosphatidyl 4,5-bisphosphate-interacting proteins by quantitative lipid pull downs. In summary, data sets such as this serve as a resource for a global view of phosphoinositide-regulated nuclear functions.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21048195</pmid><doi>10.1074/mcp.M110.003376</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1535-9476
ispartof Molecular & cellular proteomics, 2011-02, Vol.10 (2), p.S1-S15
issn 1535-9476
1535-9484
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3033679
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino Acid Motifs
Animals
Cell Nucleus - metabolism
Chlorocebus aethiops
COS Cells
Cytoplasm - metabolism
DNA Topoisomerases, Type I - metabolism
Glutathione Transferase - metabolism
Humans
Jurkat Cells
Neomycin - pharmacology
Phosphatidylinositol 4,5-Diphosphate - chemistry
Phosphatidylinositols - chemistry
Protein Binding
Protein Structure, Tertiary
Proteomics - methods
Regular Issue
title Identification of Nuclear Phosphatidylinositol 4,5-Bisphosphate-Interacting Proteins by Neomycin Extraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A56%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Nuclear%20Phosphatidylinositol%204,5-Bisphosphate-Interacting%20Proteins%20by%20Neomycin%20Extraction&rft.jtitle=Molecular%20&%20cellular%20proteomics&rft.au=Lewis,%20Aur%C3%A9lia%20E.&rft.date=2011-02-01&rft.volume=10&rft.issue=2&rft.spage=S1&rft.epage=S15&rft.pages=S1-S15&rft.issn=1535-9476&rft.eissn=1535-9484&rft_id=info:doi/10.1074/mcp.M110.003376&rft_dat=%3Cproquest_pubme%3E849433338%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849433338&rft_id=info:pmid/21048195&rft_els_id=S1535947620327869&rfr_iscdi=true