Microcalorimetric Method to Assess Phagocytosis: Macrophage-Nanoparticle Interactions

This study evaluated the use of isothermal microcalorimetry (ITMC) to detect macrophage–nanoparticle interactions. Four different nanoparticle (NP) formulations were prepared: uncoated poly(isobutyl cyanoacrylate) (PIBCA), polysorbate-80-coated PIBCA, gelatin, and mannosylated gelatin NPs. Changes i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The AAPS journal 2011-03, Vol.13 (1), p.20-29
Hauptverfasser: Al-Hallak, M. H. D. Kamal, Sarfraz, Muhammad Khan, Azarmi, Shirzad, Kohan, M. H. Gilzad, Roa, Wilson H., Löbenberg, Raimar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29
container_issue 1
container_start_page 20
container_title The AAPS journal
container_volume 13
creator Al-Hallak, M. H. D. Kamal
Sarfraz, Muhammad Khan
Azarmi, Shirzad
Kohan, M. H. Gilzad
Roa, Wilson H.
Löbenberg, Raimar
description This study evaluated the use of isothermal microcalorimetry (ITMC) to detect macrophage–nanoparticle interactions. Four different nanoparticle (NP) formulations were prepared: uncoated poly(isobutyl cyanoacrylate) (PIBCA), polysorbate-80-coated PIBCA, gelatin, and mannosylated gelatin NPs. Changes in NP formulations were aimed to either enhance or decrease macrophage–NP interactions via phagocytosis. Alveolar macrophages were cultured on glass slabs and inserted in the ITMC instrument. Thermal activities of the macrophages alone and after titration of 100 μL of NP suspensions were compared. The relative interactive coefficients of macrophage–NP interactions were calculated using the heat exchange observed after NP titration. Control experiments were performed using cytochalasin B (Cyto B), a known phagocytosis inhibitor. The results of NP titration showed that the total thermal activity produced by macrophages changed according to the NP formulation. Mannosylated gelatin NPs were associated with the highest heat exchange, 75.4 ± 7.5 J, and thus the highest relative interactive coefficient, 9,269 ± 630 M-1. Polysorbate-80-coated NPs were associated with the lowest heat exchange, 15.2 ± 3.4 J, and the lowest interactive coefficient, 890 ± 120 M-1. Cyto B inhibited macrophage response to NPs, indicating a connection between the thermal activity recorded and NP phagocytosis. These results are in agreement with flow cytometry results. ITMC is a valuable tool to monitor the biological responses to nano-sized dosage forms such as NPs. Since the thermal activity of macrophage–NP interactions differed according to the type of NPs used, ITMC may provide a method to better understand phagocytosis and further the development of colloidal dosage forms.
doi_str_mv 10.1208/s12248-010-9240-y
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3032094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21057907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-d9cb7edd1e7e54e646b862978bf3349b7ebfb493df570ec6a57bedcddd76d8f23</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EoqVwADYoFzDYjhMnLJCqip9KFFjQteXYTusqjSPbRcrtcRWoyobVjObNe6P5ALjG6BYTVNx5TAgtIMIIloQi2J-AMc4yBBnF-elRPwIX3m8QSkmK8TkYEYwyViI2BsuFkc5K0Vhntjo4I5OFDmurkmCTqffa--RjLVZW9sF64--ThYiGLo40fBOt7YQLRjY6mbdBOyGDsa2_BGe1aLy--qkTsHx6_Jy9wNf35_ls-golpThAVcqKaaWwZjqjOqd5VeSkZEVVpykto1bVFS1TVWcMaZmLjFVaSaUUy1VRk3QCHobcbldto6Lb4ETDu_iLcD23wvC_SmvWfGW_eBpRoJLGADwExJ-8d7o-eDHie8Z8YMwjY75nzPvouTk-enD8Qo0LZFjwUWpX2vGN3bk2gvgn9Ru7g4w5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Microcalorimetric Method to Assess Phagocytosis: Macrophage-Nanoparticle Interactions</title><source>MEDLINE</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Al-Hallak, M. H. D. Kamal ; Sarfraz, Muhammad Khan ; Azarmi, Shirzad ; Kohan, M. H. Gilzad ; Roa, Wilson H. ; Löbenberg, Raimar</creator><creatorcontrib>Al-Hallak, M. H. D. Kamal ; Sarfraz, Muhammad Khan ; Azarmi, Shirzad ; Kohan, M. H. Gilzad ; Roa, Wilson H. ; Löbenberg, Raimar</creatorcontrib><description>This study evaluated the use of isothermal microcalorimetry (ITMC) to detect macrophage–nanoparticle interactions. Four different nanoparticle (NP) formulations were prepared: uncoated poly(isobutyl cyanoacrylate) (PIBCA), polysorbate-80-coated PIBCA, gelatin, and mannosylated gelatin NPs. Changes in NP formulations were aimed to either enhance or decrease macrophage–NP interactions via phagocytosis. Alveolar macrophages were cultured on glass slabs and inserted in the ITMC instrument. Thermal activities of the macrophages alone and after titration of 100 μL of NP suspensions were compared. The relative interactive coefficients of macrophage–NP interactions were calculated using the heat exchange observed after NP titration. Control experiments were performed using cytochalasin B (Cyto B), a known phagocytosis inhibitor. The results of NP titration showed that the total thermal activity produced by macrophages changed according to the NP formulation. Mannosylated gelatin NPs were associated with the highest heat exchange, 75.4 ± 7.5 J, and thus the highest relative interactive coefficient, 9,269 ± 630 M-1. Polysorbate-80-coated NPs were associated with the lowest heat exchange, 15.2 ± 3.4 J, and the lowest interactive coefficient, 890 ± 120 M-1. Cyto B inhibited macrophage response to NPs, indicating a connection between the thermal activity recorded and NP phagocytosis. These results are in agreement with flow cytometry results. ITMC is a valuable tool to monitor the biological responses to nano-sized dosage forms such as NPs. Since the thermal activity of macrophage–NP interactions differed according to the type of NPs used, ITMC may provide a method to better understand phagocytosis and further the development of colloidal dosage forms.</description><identifier>ISSN: 1550-7416</identifier><identifier>EISSN: 1550-7416</identifier><identifier>DOI: 10.1208/s12248-010-9240-y</identifier><identifier>PMID: 21057907</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Animals ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Biotechnology ; Calorimetry - methods ; Cell Line ; Chemistry, Pharmaceutical ; Colloids ; Cyanoacrylates ; Cytochalasin B - pharmacology ; Flow Cytometry ; Fluorescein-5-isothiocyanate ; Fluorescent Dyes ; Gelatin ; Macrophages - drug effects ; Macrophages - physiology ; Macrophages, Alveolar ; Mice ; Nanoparticles ; Phagocytosis - drug effects ; Phagocytosis - physiology ; Pharmacology/Toxicology ; Pharmacy ; Polysorbates ; Research Article ; Thermodynamics</subject><ispartof>The AAPS journal, 2011-03, Vol.13 (1), p.20-29</ispartof><rights>American Association of Pharmaceutical Scientists 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-d9cb7edd1e7e54e646b862978bf3349b7ebfb493df570ec6a57bedcddd76d8f23</citedby><cites>FETCH-LOGICAL-c441t-d9cb7edd1e7e54e646b862978bf3349b7ebfb493df570ec6a57bedcddd76d8f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3032094/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3032094/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,41487,42556,51318,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21057907$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Al-Hallak, M. H. D. Kamal</creatorcontrib><creatorcontrib>Sarfraz, Muhammad Khan</creatorcontrib><creatorcontrib>Azarmi, Shirzad</creatorcontrib><creatorcontrib>Kohan, M. H. Gilzad</creatorcontrib><creatorcontrib>Roa, Wilson H.</creatorcontrib><creatorcontrib>Löbenberg, Raimar</creatorcontrib><title>Microcalorimetric Method to Assess Phagocytosis: Macrophage-Nanoparticle Interactions</title><title>The AAPS journal</title><addtitle>AAPS J</addtitle><addtitle>AAPS J</addtitle><description>This study evaluated the use of isothermal microcalorimetry (ITMC) to detect macrophage–nanoparticle interactions. Four different nanoparticle (NP) formulations were prepared: uncoated poly(isobutyl cyanoacrylate) (PIBCA), polysorbate-80-coated PIBCA, gelatin, and mannosylated gelatin NPs. Changes in NP formulations were aimed to either enhance or decrease macrophage–NP interactions via phagocytosis. Alveolar macrophages were cultured on glass slabs and inserted in the ITMC instrument. Thermal activities of the macrophages alone and after titration of 100 μL of NP suspensions were compared. The relative interactive coefficients of macrophage–NP interactions were calculated using the heat exchange observed after NP titration. Control experiments were performed using cytochalasin B (Cyto B), a known phagocytosis inhibitor. The results of NP titration showed that the total thermal activity produced by macrophages changed according to the NP formulation. Mannosylated gelatin NPs were associated with the highest heat exchange, 75.4 ± 7.5 J, and thus the highest relative interactive coefficient, 9,269 ± 630 M-1. Polysorbate-80-coated NPs were associated with the lowest heat exchange, 15.2 ± 3.4 J, and the lowest interactive coefficient, 890 ± 120 M-1. Cyto B inhibited macrophage response to NPs, indicating a connection between the thermal activity recorded and NP phagocytosis. These results are in agreement with flow cytometry results. ITMC is a valuable tool to monitor the biological responses to nano-sized dosage forms such as NPs. Since the thermal activity of macrophage–NP interactions differed according to the type of NPs used, ITMC may provide a method to better understand phagocytosis and further the development of colloidal dosage forms.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Calorimetry - methods</subject><subject>Cell Line</subject><subject>Chemistry, Pharmaceutical</subject><subject>Colloids</subject><subject>Cyanoacrylates</subject><subject>Cytochalasin B - pharmacology</subject><subject>Flow Cytometry</subject><subject>Fluorescein-5-isothiocyanate</subject><subject>Fluorescent Dyes</subject><subject>Gelatin</subject><subject>Macrophages - drug effects</subject><subject>Macrophages - physiology</subject><subject>Macrophages, Alveolar</subject><subject>Mice</subject><subject>Nanoparticles</subject><subject>Phagocytosis - drug effects</subject><subject>Phagocytosis - physiology</subject><subject>Pharmacology/Toxicology</subject><subject>Pharmacy</subject><subject>Polysorbates</subject><subject>Research Article</subject><subject>Thermodynamics</subject><issn>1550-7416</issn><issn>1550-7416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1OwzAQhS0EoqVwADYoFzDYjhMnLJCqip9KFFjQteXYTusqjSPbRcrtcRWoyobVjObNe6P5ALjG6BYTVNx5TAgtIMIIloQi2J-AMc4yBBnF-elRPwIX3m8QSkmK8TkYEYwyViI2BsuFkc5K0Vhntjo4I5OFDmurkmCTqffa--RjLVZW9sF64--ThYiGLo40fBOt7YQLRjY6mbdBOyGDsa2_BGe1aLy--qkTsHx6_Jy9wNf35_ls-golpThAVcqKaaWwZjqjOqd5VeSkZEVVpykto1bVFS1TVWcMaZmLjFVaSaUUy1VRk3QCHobcbldto6Lb4ETDu_iLcD23wvC_SmvWfGW_eBpRoJLGADwExJ-8d7o-eDHie8Z8YMwjY75nzPvouTk-enD8Qo0LZFjwUWpX2vGN3bk2gvgn9Ru7g4w5</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Al-Hallak, M. H. D. Kamal</creator><creator>Sarfraz, Muhammad Khan</creator><creator>Azarmi, Shirzad</creator><creator>Kohan, M. H. Gilzad</creator><creator>Roa, Wilson H.</creator><creator>Löbenberg, Raimar</creator><general>Springer US</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20110301</creationdate><title>Microcalorimetric Method to Assess Phagocytosis: Macrophage-Nanoparticle Interactions</title><author>Al-Hallak, M. H. D. Kamal ; Sarfraz, Muhammad Khan ; Azarmi, Shirzad ; Kohan, M. H. Gilzad ; Roa, Wilson H. ; Löbenberg, Raimar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-d9cb7edd1e7e54e646b862978bf3349b7ebfb493df570ec6a57bedcddd76d8f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Calorimetry - methods</topic><topic>Cell Line</topic><topic>Chemistry, Pharmaceutical</topic><topic>Colloids</topic><topic>Cyanoacrylates</topic><topic>Cytochalasin B - pharmacology</topic><topic>Flow Cytometry</topic><topic>Fluorescein-5-isothiocyanate</topic><topic>Fluorescent Dyes</topic><topic>Gelatin</topic><topic>Macrophages - drug effects</topic><topic>Macrophages - physiology</topic><topic>Macrophages, Alveolar</topic><topic>Mice</topic><topic>Nanoparticles</topic><topic>Phagocytosis - drug effects</topic><topic>Phagocytosis - physiology</topic><topic>Pharmacology/Toxicology</topic><topic>Pharmacy</topic><topic>Polysorbates</topic><topic>Research Article</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Hallak, M. H. D. Kamal</creatorcontrib><creatorcontrib>Sarfraz, Muhammad Khan</creatorcontrib><creatorcontrib>Azarmi, Shirzad</creatorcontrib><creatorcontrib>Kohan, M. H. Gilzad</creatorcontrib><creatorcontrib>Roa, Wilson H.</creatorcontrib><creatorcontrib>Löbenberg, Raimar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The AAPS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Hallak, M. H. D. Kamal</au><au>Sarfraz, Muhammad Khan</au><au>Azarmi, Shirzad</au><au>Kohan, M. H. Gilzad</au><au>Roa, Wilson H.</au><au>Löbenberg, Raimar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microcalorimetric Method to Assess Phagocytosis: Macrophage-Nanoparticle Interactions</atitle><jtitle>The AAPS journal</jtitle><stitle>AAPS J</stitle><addtitle>AAPS J</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>13</volume><issue>1</issue><spage>20</spage><epage>29</epage><pages>20-29</pages><issn>1550-7416</issn><eissn>1550-7416</eissn><abstract>This study evaluated the use of isothermal microcalorimetry (ITMC) to detect macrophage–nanoparticle interactions. Four different nanoparticle (NP) formulations were prepared: uncoated poly(isobutyl cyanoacrylate) (PIBCA), polysorbate-80-coated PIBCA, gelatin, and mannosylated gelatin NPs. Changes in NP formulations were aimed to either enhance or decrease macrophage–NP interactions via phagocytosis. Alveolar macrophages were cultured on glass slabs and inserted in the ITMC instrument. Thermal activities of the macrophages alone and after titration of 100 μL of NP suspensions were compared. The relative interactive coefficients of macrophage–NP interactions were calculated using the heat exchange observed after NP titration. Control experiments were performed using cytochalasin B (Cyto B), a known phagocytosis inhibitor. The results of NP titration showed that the total thermal activity produced by macrophages changed according to the NP formulation. Mannosylated gelatin NPs were associated with the highest heat exchange, 75.4 ± 7.5 J, and thus the highest relative interactive coefficient, 9,269 ± 630 M-1. Polysorbate-80-coated NPs were associated with the lowest heat exchange, 15.2 ± 3.4 J, and the lowest interactive coefficient, 890 ± 120 M-1. Cyto B inhibited macrophage response to NPs, indicating a connection between the thermal activity recorded and NP phagocytosis. These results are in agreement with flow cytometry results. ITMC is a valuable tool to monitor the biological responses to nano-sized dosage forms such as NPs. Since the thermal activity of macrophage–NP interactions differed according to the type of NPs used, ITMC may provide a method to better understand phagocytosis and further the development of colloidal dosage forms.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>21057907</pmid><doi>10.1208/s12248-010-9240-y</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1550-7416
ispartof The AAPS journal, 2011-03, Vol.13 (1), p.20-29
issn 1550-7416
1550-7416
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3032094
source MEDLINE; PubMed Central; SpringerLink Journals - AutoHoldings
subjects Algorithms
Animals
Biochemistry
Biomedical and Life Sciences
Biomedicine
Biotechnology
Calorimetry - methods
Cell Line
Chemistry, Pharmaceutical
Colloids
Cyanoacrylates
Cytochalasin B - pharmacology
Flow Cytometry
Fluorescein-5-isothiocyanate
Fluorescent Dyes
Gelatin
Macrophages - drug effects
Macrophages - physiology
Macrophages, Alveolar
Mice
Nanoparticles
Phagocytosis - drug effects
Phagocytosis - physiology
Pharmacology/Toxicology
Pharmacy
Polysorbates
Research Article
Thermodynamics
title Microcalorimetric Method to Assess Phagocytosis: Macrophage-Nanoparticle Interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A54%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microcalorimetric%20Method%20to%20Assess%20Phagocytosis:%20Macrophage-Nanoparticle%20Interactions&rft.jtitle=The%20AAPS%20journal&rft.au=Al-Hallak,%20M.%20H.%20D.%20Kamal&rft.date=2011-03-01&rft.volume=13&rft.issue=1&rft.spage=20&rft.epage=29&rft.pages=20-29&rft.issn=1550-7416&rft.eissn=1550-7416&rft_id=info:doi/10.1208/s12248-010-9240-y&rft_dat=%3Cpubmed_cross%3E21057907%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21057907&rfr_iscdi=true