Microcalorimetric Method to Assess Phagocytosis: Macrophage-Nanoparticle Interactions
This study evaluated the use of isothermal microcalorimetry (ITMC) to detect macrophage–nanoparticle interactions. Four different nanoparticle (NP) formulations were prepared: uncoated poly(isobutyl cyanoacrylate) (PIBCA), polysorbate-80-coated PIBCA, gelatin, and mannosylated gelatin NPs. Changes i...
Gespeichert in:
Veröffentlicht in: | The AAPS journal 2011-03, Vol.13 (1), p.20-29 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 29 |
---|---|
container_issue | 1 |
container_start_page | 20 |
container_title | The AAPS journal |
container_volume | 13 |
creator | Al-Hallak, M. H. D. Kamal Sarfraz, Muhammad Khan Azarmi, Shirzad Kohan, M. H. Gilzad Roa, Wilson H. Löbenberg, Raimar |
description | This study evaluated the use of isothermal microcalorimetry (ITMC) to detect macrophage–nanoparticle interactions. Four different nanoparticle (NP) formulations were prepared: uncoated poly(isobutyl cyanoacrylate) (PIBCA), polysorbate-80-coated PIBCA, gelatin, and mannosylated gelatin NPs. Changes in NP formulations were aimed to either enhance or decrease macrophage–NP interactions via phagocytosis. Alveolar macrophages were cultured on glass slabs and inserted in the ITMC instrument. Thermal activities of the macrophages alone and after titration of 100 μL of NP suspensions were compared. The relative interactive coefficients of macrophage–NP interactions were calculated using the heat exchange observed after NP titration. Control experiments were performed using cytochalasin B (Cyto B), a known phagocytosis inhibitor. The results of NP titration showed that the total thermal activity produced by macrophages changed according to the NP formulation. Mannosylated gelatin NPs were associated with the highest heat exchange, 75.4 ± 7.5 J, and thus the highest relative interactive coefficient, 9,269 ± 630 M-1. Polysorbate-80-coated NPs were associated with the lowest heat exchange, 15.2 ± 3.4 J, and the lowest interactive coefficient, 890 ± 120 M-1. Cyto B inhibited macrophage response to NPs, indicating a connection between the thermal activity recorded and NP phagocytosis. These results are in agreement with flow cytometry results. ITMC is a valuable tool to monitor the biological responses to nano-sized dosage forms such as NPs. Since the thermal activity of macrophage–NP interactions differed according to the type of NPs used, ITMC may provide a method to better understand phagocytosis and further the development of colloidal dosage forms. |
doi_str_mv | 10.1208/s12248-010-9240-y |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3032094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21057907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-d9cb7edd1e7e54e646b862978bf3349b7ebfb493df570ec6a57bedcddd76d8f23</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EoqVwADYoFzDYjhMnLJCqip9KFFjQteXYTusqjSPbRcrtcRWoyobVjObNe6P5ALjG6BYTVNx5TAgtIMIIloQi2J-AMc4yBBnF-elRPwIX3m8QSkmK8TkYEYwyViI2BsuFkc5K0Vhntjo4I5OFDmurkmCTqffa--RjLVZW9sF64--ThYiGLo40fBOt7YQLRjY6mbdBOyGDsa2_BGe1aLy--qkTsHx6_Jy9wNf35_ls-golpThAVcqKaaWwZjqjOqd5VeSkZEVVpykto1bVFS1TVWcMaZmLjFVaSaUUy1VRk3QCHobcbldto6Lb4ETDu_iLcD23wvC_SmvWfGW_eBpRoJLGADwExJ-8d7o-eDHie8Z8YMwjY75nzPvouTk-enD8Qo0LZFjwUWpX2vGN3bk2gvgn9Ru7g4w5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Microcalorimetric Method to Assess Phagocytosis: Macrophage-Nanoparticle Interactions</title><source>MEDLINE</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Al-Hallak, M. H. D. Kamal ; Sarfraz, Muhammad Khan ; Azarmi, Shirzad ; Kohan, M. H. Gilzad ; Roa, Wilson H. ; Löbenberg, Raimar</creator><creatorcontrib>Al-Hallak, M. H. D. Kamal ; Sarfraz, Muhammad Khan ; Azarmi, Shirzad ; Kohan, M. H. Gilzad ; Roa, Wilson H. ; Löbenberg, Raimar</creatorcontrib><description>This study evaluated the use of isothermal microcalorimetry (ITMC) to detect macrophage–nanoparticle interactions. Four different nanoparticle (NP) formulations were prepared: uncoated poly(isobutyl cyanoacrylate) (PIBCA), polysorbate-80-coated PIBCA, gelatin, and mannosylated gelatin NPs. Changes in NP formulations were aimed to either enhance or decrease macrophage–NP interactions via phagocytosis. Alveolar macrophages were cultured on glass slabs and inserted in the ITMC instrument. Thermal activities of the macrophages alone and after titration of 100 μL of NP suspensions were compared. The relative interactive coefficients of macrophage–NP interactions were calculated using the heat exchange observed after NP titration. Control experiments were performed using cytochalasin B (Cyto B), a known phagocytosis inhibitor. The results of NP titration showed that the total thermal activity produced by macrophages changed according to the NP formulation. Mannosylated gelatin NPs were associated with the highest heat exchange, 75.4 ± 7.5 J, and thus the highest relative interactive coefficient, 9,269 ± 630 M-1. Polysorbate-80-coated NPs were associated with the lowest heat exchange, 15.2 ± 3.4 J, and the lowest interactive coefficient, 890 ± 120 M-1. Cyto B inhibited macrophage response to NPs, indicating a connection between the thermal activity recorded and NP phagocytosis. These results are in agreement with flow cytometry results. ITMC is a valuable tool to monitor the biological responses to nano-sized dosage forms such as NPs. Since the thermal activity of macrophage–NP interactions differed according to the type of NPs used, ITMC may provide a method to better understand phagocytosis and further the development of colloidal dosage forms.</description><identifier>ISSN: 1550-7416</identifier><identifier>EISSN: 1550-7416</identifier><identifier>DOI: 10.1208/s12248-010-9240-y</identifier><identifier>PMID: 21057907</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Animals ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Biotechnology ; Calorimetry - methods ; Cell Line ; Chemistry, Pharmaceutical ; Colloids ; Cyanoacrylates ; Cytochalasin B - pharmacology ; Flow Cytometry ; Fluorescein-5-isothiocyanate ; Fluorescent Dyes ; Gelatin ; Macrophages - drug effects ; Macrophages - physiology ; Macrophages, Alveolar ; Mice ; Nanoparticles ; Phagocytosis - drug effects ; Phagocytosis - physiology ; Pharmacology/Toxicology ; Pharmacy ; Polysorbates ; Research Article ; Thermodynamics</subject><ispartof>The AAPS journal, 2011-03, Vol.13 (1), p.20-29</ispartof><rights>American Association of Pharmaceutical Scientists 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-d9cb7edd1e7e54e646b862978bf3349b7ebfb493df570ec6a57bedcddd76d8f23</citedby><cites>FETCH-LOGICAL-c441t-d9cb7edd1e7e54e646b862978bf3349b7ebfb493df570ec6a57bedcddd76d8f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3032094/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3032094/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,41487,42556,51318,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21057907$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Al-Hallak, M. H. D. Kamal</creatorcontrib><creatorcontrib>Sarfraz, Muhammad Khan</creatorcontrib><creatorcontrib>Azarmi, Shirzad</creatorcontrib><creatorcontrib>Kohan, M. H. Gilzad</creatorcontrib><creatorcontrib>Roa, Wilson H.</creatorcontrib><creatorcontrib>Löbenberg, Raimar</creatorcontrib><title>Microcalorimetric Method to Assess Phagocytosis: Macrophage-Nanoparticle Interactions</title><title>The AAPS journal</title><addtitle>AAPS J</addtitle><addtitle>AAPS J</addtitle><description>This study evaluated the use of isothermal microcalorimetry (ITMC) to detect macrophage–nanoparticle interactions. Four different nanoparticle (NP) formulations were prepared: uncoated poly(isobutyl cyanoacrylate) (PIBCA), polysorbate-80-coated PIBCA, gelatin, and mannosylated gelatin NPs. Changes in NP formulations were aimed to either enhance or decrease macrophage–NP interactions via phagocytosis. Alveolar macrophages were cultured on glass slabs and inserted in the ITMC instrument. Thermal activities of the macrophages alone and after titration of 100 μL of NP suspensions were compared. The relative interactive coefficients of macrophage–NP interactions were calculated using the heat exchange observed after NP titration. Control experiments were performed using cytochalasin B (Cyto B), a known phagocytosis inhibitor. The results of NP titration showed that the total thermal activity produced by macrophages changed according to the NP formulation. Mannosylated gelatin NPs were associated with the highest heat exchange, 75.4 ± 7.5 J, and thus the highest relative interactive coefficient, 9,269 ± 630 M-1. Polysorbate-80-coated NPs were associated with the lowest heat exchange, 15.2 ± 3.4 J, and the lowest interactive coefficient, 890 ± 120 M-1. Cyto B inhibited macrophage response to NPs, indicating a connection between the thermal activity recorded and NP phagocytosis. These results are in agreement with flow cytometry results. ITMC is a valuable tool to monitor the biological responses to nano-sized dosage forms such as NPs. Since the thermal activity of macrophage–NP interactions differed according to the type of NPs used, ITMC may provide a method to better understand phagocytosis and further the development of colloidal dosage forms.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Calorimetry - methods</subject><subject>Cell Line</subject><subject>Chemistry, Pharmaceutical</subject><subject>Colloids</subject><subject>Cyanoacrylates</subject><subject>Cytochalasin B - pharmacology</subject><subject>Flow Cytometry</subject><subject>Fluorescein-5-isothiocyanate</subject><subject>Fluorescent Dyes</subject><subject>Gelatin</subject><subject>Macrophages - drug effects</subject><subject>Macrophages - physiology</subject><subject>Macrophages, Alveolar</subject><subject>Mice</subject><subject>Nanoparticles</subject><subject>Phagocytosis - drug effects</subject><subject>Phagocytosis - physiology</subject><subject>Pharmacology/Toxicology</subject><subject>Pharmacy</subject><subject>Polysorbates</subject><subject>Research Article</subject><subject>Thermodynamics</subject><issn>1550-7416</issn><issn>1550-7416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1OwzAQhS0EoqVwADYoFzDYjhMnLJCqip9KFFjQteXYTusqjSPbRcrtcRWoyobVjObNe6P5ALjG6BYTVNx5TAgtIMIIloQi2J-AMc4yBBnF-elRPwIX3m8QSkmK8TkYEYwyViI2BsuFkc5K0Vhntjo4I5OFDmurkmCTqffa--RjLVZW9sF64--ThYiGLo40fBOt7YQLRjY6mbdBOyGDsa2_BGe1aLy--qkTsHx6_Jy9wNf35_ls-golpThAVcqKaaWwZjqjOqd5VeSkZEVVpykto1bVFS1TVWcMaZmLjFVaSaUUy1VRk3QCHobcbldto6Lb4ETDu_iLcD23wvC_SmvWfGW_eBpRoJLGADwExJ-8d7o-eDHie8Z8YMwjY75nzPvouTk-enD8Qo0LZFjwUWpX2vGN3bk2gvgn9Ru7g4w5</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Al-Hallak, M. H. D. Kamal</creator><creator>Sarfraz, Muhammad Khan</creator><creator>Azarmi, Shirzad</creator><creator>Kohan, M. H. Gilzad</creator><creator>Roa, Wilson H.</creator><creator>Löbenberg, Raimar</creator><general>Springer US</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20110301</creationdate><title>Microcalorimetric Method to Assess Phagocytosis: Macrophage-Nanoparticle Interactions</title><author>Al-Hallak, M. H. D. Kamal ; Sarfraz, Muhammad Khan ; Azarmi, Shirzad ; Kohan, M. H. Gilzad ; Roa, Wilson H. ; Löbenberg, Raimar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-d9cb7edd1e7e54e646b862978bf3349b7ebfb493df570ec6a57bedcddd76d8f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Calorimetry - methods</topic><topic>Cell Line</topic><topic>Chemistry, Pharmaceutical</topic><topic>Colloids</topic><topic>Cyanoacrylates</topic><topic>Cytochalasin B - pharmacology</topic><topic>Flow Cytometry</topic><topic>Fluorescein-5-isothiocyanate</topic><topic>Fluorescent Dyes</topic><topic>Gelatin</topic><topic>Macrophages - drug effects</topic><topic>Macrophages - physiology</topic><topic>Macrophages, Alveolar</topic><topic>Mice</topic><topic>Nanoparticles</topic><topic>Phagocytosis - drug effects</topic><topic>Phagocytosis - physiology</topic><topic>Pharmacology/Toxicology</topic><topic>Pharmacy</topic><topic>Polysorbates</topic><topic>Research Article</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Hallak, M. H. D. Kamal</creatorcontrib><creatorcontrib>Sarfraz, Muhammad Khan</creatorcontrib><creatorcontrib>Azarmi, Shirzad</creatorcontrib><creatorcontrib>Kohan, M. H. Gilzad</creatorcontrib><creatorcontrib>Roa, Wilson H.</creatorcontrib><creatorcontrib>Löbenberg, Raimar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The AAPS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Hallak, M. H. D. Kamal</au><au>Sarfraz, Muhammad Khan</au><au>Azarmi, Shirzad</au><au>Kohan, M. H. Gilzad</au><au>Roa, Wilson H.</au><au>Löbenberg, Raimar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microcalorimetric Method to Assess Phagocytosis: Macrophage-Nanoparticle Interactions</atitle><jtitle>The AAPS journal</jtitle><stitle>AAPS J</stitle><addtitle>AAPS J</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>13</volume><issue>1</issue><spage>20</spage><epage>29</epage><pages>20-29</pages><issn>1550-7416</issn><eissn>1550-7416</eissn><abstract>This study evaluated the use of isothermal microcalorimetry (ITMC) to detect macrophage–nanoparticle interactions. Four different nanoparticle (NP) formulations were prepared: uncoated poly(isobutyl cyanoacrylate) (PIBCA), polysorbate-80-coated PIBCA, gelatin, and mannosylated gelatin NPs. Changes in NP formulations were aimed to either enhance or decrease macrophage–NP interactions via phagocytosis. Alveolar macrophages were cultured on glass slabs and inserted in the ITMC instrument. Thermal activities of the macrophages alone and after titration of 100 μL of NP suspensions were compared. The relative interactive coefficients of macrophage–NP interactions were calculated using the heat exchange observed after NP titration. Control experiments were performed using cytochalasin B (Cyto B), a known phagocytosis inhibitor. The results of NP titration showed that the total thermal activity produced by macrophages changed according to the NP formulation. Mannosylated gelatin NPs were associated with the highest heat exchange, 75.4 ± 7.5 J, and thus the highest relative interactive coefficient, 9,269 ± 630 M-1. Polysorbate-80-coated NPs were associated with the lowest heat exchange, 15.2 ± 3.4 J, and the lowest interactive coefficient, 890 ± 120 M-1. Cyto B inhibited macrophage response to NPs, indicating a connection between the thermal activity recorded and NP phagocytosis. These results are in agreement with flow cytometry results. ITMC is a valuable tool to monitor the biological responses to nano-sized dosage forms such as NPs. Since the thermal activity of macrophage–NP interactions differed according to the type of NPs used, ITMC may provide a method to better understand phagocytosis and further the development of colloidal dosage forms.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>21057907</pmid><doi>10.1208/s12248-010-9240-y</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1550-7416 |
ispartof | The AAPS journal, 2011-03, Vol.13 (1), p.20-29 |
issn | 1550-7416 1550-7416 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3032094 |
source | MEDLINE; PubMed Central; SpringerLink Journals - AutoHoldings |
subjects | Algorithms Animals Biochemistry Biomedical and Life Sciences Biomedicine Biotechnology Calorimetry - methods Cell Line Chemistry, Pharmaceutical Colloids Cyanoacrylates Cytochalasin B - pharmacology Flow Cytometry Fluorescein-5-isothiocyanate Fluorescent Dyes Gelatin Macrophages - drug effects Macrophages - physiology Macrophages, Alveolar Mice Nanoparticles Phagocytosis - drug effects Phagocytosis - physiology Pharmacology/Toxicology Pharmacy Polysorbates Research Article Thermodynamics |
title | Microcalorimetric Method to Assess Phagocytosis: Macrophage-Nanoparticle Interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A54%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microcalorimetric%20Method%20to%20Assess%20Phagocytosis:%20Macrophage-Nanoparticle%20Interactions&rft.jtitle=The%20AAPS%20journal&rft.au=Al-Hallak,%20M.%20H.%20D.%20Kamal&rft.date=2011-03-01&rft.volume=13&rft.issue=1&rft.spage=20&rft.epage=29&rft.pages=20-29&rft.issn=1550-7416&rft.eissn=1550-7416&rft_id=info:doi/10.1208/s12248-010-9240-y&rft_dat=%3Cpubmed_cross%3E21057907%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21057907&rfr_iscdi=true |