Enhanced Rat Islet Function and Survival In Vitro Using a Biomimetic Self-Assembled Nanomatrix Gel
Peptide amphiphile (PA) is a peptide-based biomaterial that can self-assemble into a nanostructured gel-like scaffold, mimicking the chemical and biological complexity of natural extracellular matrix. To evaluate the capacity of the PA scaffold to improve islet function and survival in vitro , rat i...
Gespeichert in:
Veröffentlicht in: | Tissue engineering. Part A 2011-02, Vol.17 (3-4), p.399-406 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 406 |
---|---|
container_issue | 3-4 |
container_start_page | 399 |
container_title | Tissue engineering. Part A |
container_volume | 17 |
creator | Lim, Dong-Jin Antipenko, Sergey V. Anderson, Joel M. Jaimes, Kimberly F. Viera, Liliana Stephen, Bradley R. Bryant, Stacie M.J. Yancey, Brett D. Hughes, Katherine J. Cui, Wanxing Thompson, John A. Corbett, John A. Jun, Ho-Wook |
description | Peptide amphiphile (PA) is a peptide-based biomaterial that can self-assemble into a nanostructured gel-like scaffold, mimicking the chemical and biological complexity of natural extracellular matrix. To evaluate the capacity of the PA scaffold to improve islet function and survival
in vitro
, rat islets were cultured in three different groups—(1) bare group: isolated rat islets cultured in a 12-well nontissue culture-treated plate; (2) insert group: isolated rat islets cultured in modified insert chambers; (3) nanomatrix group: isolated rat islets encapsulated within the PA nanomatrix gel and cultured in modified insert chambers. Over 14 days, both the bare and insert groups showed a marked decrease in insulin secretion, whereas the nanomatrix group maintained glucose-stimulated insulin secretion. Moreover, entire islets in the nanomatrix gel stained positive for dithizone up to 14 days, indicating better maintained glucose-stimulated insulin production. Fluorescein diacetate/propidium iodide staining results also verified necrosis in the bare and insert groups after 7 days, whereas the PA nanomatrix gel maintained islet viability after 14 days. Thus, these results demonstrate the potential of PAs as an intermediary scaffold for increasing the efficacy of pancreatic islet transplantation. |
doi_str_mv | 10.1089/ten.tea.2010.0151 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3028993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A248405492</galeid><sourcerecordid>A248405492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-e861de1d84f5bd0a0c9306ec14c92509b601e4f8d7f189923958cb03ce5a582c3</originalsourceid><addsrcrecordid>eNqNkl9rFDEUxQdRbF39AL5I0Aefdr2ZzJ_kRVhLWxeKgrXiW8hk7mxTMkmbZBb99mbYuljxQULI5eZ3TrjhFMVLCisKXLxL6FYJ1aqE3AFa00fFMRWsXTJWf398qCt6VDyL8QaggaZtnxZHJXBogVbHRXfqrpXT2JMvKpFNtJjI2eR0Mt4R5XpyOYWd2SlLNo58Myl4chWN2xJFPhg_mhGT0eQS7bBcx4hjZ7PVJ-X8qFIwP8g52ufFk0HZiC_uz0VxdXb69eTj8uLz-eZkfbHUdSnSEnlDe6Q9r4a660GBFgwa1LTSoqxBdA1QrAbetwPlQpRM1Fx3wDTWqualZovi_d73dupG7DW6FJSVt8GMKvyUXhn58MaZa7n1O8mgzIYsG7y9Nwj-bsKY5GiiRmuVQz9FyRtggjLWZPL1X-SNn4LL00le8aoC1s7Qmz20VRalcYPPr-rZUq7LTEFd5SkWxeofVF49jkZ7h4PJ_QcCuhfo4GMMOBwmpCDnWMgci7yVnGMh51hkzas_v-ag-J2DDLR7YG4r56zBDkP6D-tf02rGTw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>848440376</pqid></control><display><type>article</type><title>Enhanced Rat Islet Function and Survival In Vitro Using a Biomimetic Self-Assembled Nanomatrix Gel</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Lim, Dong-Jin ; Antipenko, Sergey V. ; Anderson, Joel M. ; Jaimes, Kimberly F. ; Viera, Liliana ; Stephen, Bradley R. ; Bryant, Stacie M.J. ; Yancey, Brett D. ; Hughes, Katherine J. ; Cui, Wanxing ; Thompson, John A. ; Corbett, John A. ; Jun, Ho-Wook</creator><creatorcontrib>Lim, Dong-Jin ; Antipenko, Sergey V. ; Anderson, Joel M. ; Jaimes, Kimberly F. ; Viera, Liliana ; Stephen, Bradley R. ; Bryant, Stacie M.J. ; Yancey, Brett D. ; Hughes, Katherine J. ; Cui, Wanxing ; Thompson, John A. ; Corbett, John A. ; Jun, Ho-Wook</creatorcontrib><description>Peptide amphiphile (PA) is a peptide-based biomaterial that can self-assemble into a nanostructured gel-like scaffold, mimicking the chemical and biological complexity of natural extracellular matrix. To evaluate the capacity of the PA scaffold to improve islet function and survival
in vitro
, rat islets were cultured in three different groups—(1) bare group: isolated rat islets cultured in a 12-well nontissue culture-treated plate; (2) insert group: isolated rat islets cultured in modified insert chambers; (3) nanomatrix group: isolated rat islets encapsulated within the PA nanomatrix gel and cultured in modified insert chambers. Over 14 days, both the bare and insert groups showed a marked decrease in insulin secretion, whereas the nanomatrix group maintained glucose-stimulated insulin secretion. Moreover, entire islets in the nanomatrix gel stained positive for dithizone up to 14 days, indicating better maintained glucose-stimulated insulin production. Fluorescein diacetate/propidium iodide staining results also verified necrosis in the bare and insert groups after 7 days, whereas the PA nanomatrix gel maintained islet viability after 14 days. Thus, these results demonstrate the potential of PAs as an intermediary scaffold for increasing the efficacy of pancreatic islet transplantation.</description><identifier>ISSN: 1937-3341</identifier><identifier>EISSN: 1937-335X</identifier><identifier>DOI: 10.1089/ten.tea.2010.0151</identifier><identifier>PMID: 20807014</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Animals ; Biomedical materials ; Biomimetic Materials - chemical synthesis ; Biomimetics ; Cell Proliferation ; Cell Survival ; Cellular biology ; Chemical properties ; Collagen ; Extracellular Matrix - chemistry ; Gels - chemistry ; Health aspects ; Insulin ; Islands of Langerhans ; Islet cell transplantation ; Islets of Langerhans Transplantation - physiology ; Male ; Methods ; Nanostructures - chemistry ; Organ Culture Techniques ; Original ; Original Articles ; Pancreas ; Pancreas, Artificial ; Physiological aspects ; Rats ; Rats, Sprague-Dawley ; rodents ; Tissue engineering</subject><ispartof>Tissue engineering. Part A, 2011-02, Vol.17 (3-4), p.399-406</ispartof><rights>2011, Mary Ann Liebert, Inc.</rights><rights>COPYRIGHT 2011 Mary Ann Liebert, Inc.</rights><rights>(©) Copyright 2011, Mary Ann Liebert, Inc.</rights><rights>Copyright 2011, Mary Ann Liebert, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-e861de1d84f5bd0a0c9306ec14c92509b601e4f8d7f189923958cb03ce5a582c3</citedby><cites>FETCH-LOGICAL-c529t-e861de1d84f5bd0a0c9306ec14c92509b601e4f8d7f189923958cb03ce5a582c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20807014$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lim, Dong-Jin</creatorcontrib><creatorcontrib>Antipenko, Sergey V.</creatorcontrib><creatorcontrib>Anderson, Joel M.</creatorcontrib><creatorcontrib>Jaimes, Kimberly F.</creatorcontrib><creatorcontrib>Viera, Liliana</creatorcontrib><creatorcontrib>Stephen, Bradley R.</creatorcontrib><creatorcontrib>Bryant, Stacie M.J.</creatorcontrib><creatorcontrib>Yancey, Brett D.</creatorcontrib><creatorcontrib>Hughes, Katherine J.</creatorcontrib><creatorcontrib>Cui, Wanxing</creatorcontrib><creatorcontrib>Thompson, John A.</creatorcontrib><creatorcontrib>Corbett, John A.</creatorcontrib><creatorcontrib>Jun, Ho-Wook</creatorcontrib><title>Enhanced Rat Islet Function and Survival In Vitro Using a Biomimetic Self-Assembled Nanomatrix Gel</title><title>Tissue engineering. Part A</title><addtitle>Tissue Eng Part A</addtitle><description>Peptide amphiphile (PA) is a peptide-based biomaterial that can self-assemble into a nanostructured gel-like scaffold, mimicking the chemical and biological complexity of natural extracellular matrix. To evaluate the capacity of the PA scaffold to improve islet function and survival
in vitro
, rat islets were cultured in three different groups—(1) bare group: isolated rat islets cultured in a 12-well nontissue culture-treated plate; (2) insert group: isolated rat islets cultured in modified insert chambers; (3) nanomatrix group: isolated rat islets encapsulated within the PA nanomatrix gel and cultured in modified insert chambers. Over 14 days, both the bare and insert groups showed a marked decrease in insulin secretion, whereas the nanomatrix group maintained glucose-stimulated insulin secretion. Moreover, entire islets in the nanomatrix gel stained positive for dithizone up to 14 days, indicating better maintained glucose-stimulated insulin production. Fluorescein diacetate/propidium iodide staining results also verified necrosis in the bare and insert groups after 7 days, whereas the PA nanomatrix gel maintained islet viability after 14 days. Thus, these results demonstrate the potential of PAs as an intermediary scaffold for increasing the efficacy of pancreatic islet transplantation.</description><subject>Animals</subject><subject>Biomedical materials</subject><subject>Biomimetic Materials - chemical synthesis</subject><subject>Biomimetics</subject><subject>Cell Proliferation</subject><subject>Cell Survival</subject><subject>Cellular biology</subject><subject>Chemical properties</subject><subject>Collagen</subject><subject>Extracellular Matrix - chemistry</subject><subject>Gels - chemistry</subject><subject>Health aspects</subject><subject>Insulin</subject><subject>Islands of Langerhans</subject><subject>Islet cell transplantation</subject><subject>Islets of Langerhans Transplantation - physiology</subject><subject>Male</subject><subject>Methods</subject><subject>Nanostructures - chemistry</subject><subject>Organ Culture Techniques</subject><subject>Original</subject><subject>Original Articles</subject><subject>Pancreas</subject><subject>Pancreas, Artificial</subject><subject>Physiological aspects</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>rodents</subject><subject>Tissue engineering</subject><issn>1937-3341</issn><issn>1937-335X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkl9rFDEUxQdRbF39AL5I0Aefdr2ZzJ_kRVhLWxeKgrXiW8hk7mxTMkmbZBb99mbYuljxQULI5eZ3TrjhFMVLCisKXLxL6FYJ1aqE3AFa00fFMRWsXTJWf398qCt6VDyL8QaggaZtnxZHJXBogVbHRXfqrpXT2JMvKpFNtJjI2eR0Mt4R5XpyOYWd2SlLNo58Myl4chWN2xJFPhg_mhGT0eQS7bBcx4hjZ7PVJ-X8qFIwP8g52ufFk0HZiC_uz0VxdXb69eTj8uLz-eZkfbHUdSnSEnlDe6Q9r4a660GBFgwa1LTSoqxBdA1QrAbetwPlQpRM1Fx3wDTWqualZovi_d73dupG7DW6FJSVt8GMKvyUXhn58MaZa7n1O8mgzIYsG7y9Nwj-bsKY5GiiRmuVQz9FyRtggjLWZPL1X-SNn4LL00le8aoC1s7Qmz20VRalcYPPr-rZUq7LTEFd5SkWxeofVF49jkZ7h4PJ_QcCuhfo4GMMOBwmpCDnWMgci7yVnGMh51hkzas_v-ag-J2DDLR7YG4r56zBDkP6D-tf02rGTw</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Lim, Dong-Jin</creator><creator>Antipenko, Sergey V.</creator><creator>Anderson, Joel M.</creator><creator>Jaimes, Kimberly F.</creator><creator>Viera, Liliana</creator><creator>Stephen, Bradley R.</creator><creator>Bryant, Stacie M.J.</creator><creator>Yancey, Brett D.</creator><creator>Hughes, Katherine J.</creator><creator>Cui, Wanxing</creator><creator>Thompson, John A.</creator><creator>Corbett, John A.</creator><creator>Jun, Ho-Wook</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20110201</creationdate><title>Enhanced Rat Islet Function and Survival In Vitro Using a Biomimetic Self-Assembled Nanomatrix Gel</title><author>Lim, Dong-Jin ; Antipenko, Sergey V. ; Anderson, Joel M. ; Jaimes, Kimberly F. ; Viera, Liliana ; Stephen, Bradley R. ; Bryant, Stacie M.J. ; Yancey, Brett D. ; Hughes, Katherine J. ; Cui, Wanxing ; Thompson, John A. ; Corbett, John A. ; Jun, Ho-Wook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-e861de1d84f5bd0a0c9306ec14c92509b601e4f8d7f189923958cb03ce5a582c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Biomedical materials</topic><topic>Biomimetic Materials - chemical synthesis</topic><topic>Biomimetics</topic><topic>Cell Proliferation</topic><topic>Cell Survival</topic><topic>Cellular biology</topic><topic>Chemical properties</topic><topic>Collagen</topic><topic>Extracellular Matrix - chemistry</topic><topic>Gels - chemistry</topic><topic>Health aspects</topic><topic>Insulin</topic><topic>Islands of Langerhans</topic><topic>Islet cell transplantation</topic><topic>Islets of Langerhans Transplantation - physiology</topic><topic>Male</topic><topic>Methods</topic><topic>Nanostructures - chemistry</topic><topic>Organ Culture Techniques</topic><topic>Original</topic><topic>Original Articles</topic><topic>Pancreas</topic><topic>Pancreas, Artificial</topic><topic>Physiological aspects</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>rodents</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Dong-Jin</creatorcontrib><creatorcontrib>Antipenko, Sergey V.</creatorcontrib><creatorcontrib>Anderson, Joel M.</creatorcontrib><creatorcontrib>Jaimes, Kimberly F.</creatorcontrib><creatorcontrib>Viera, Liliana</creatorcontrib><creatorcontrib>Stephen, Bradley R.</creatorcontrib><creatorcontrib>Bryant, Stacie M.J.</creatorcontrib><creatorcontrib>Yancey, Brett D.</creatorcontrib><creatorcontrib>Hughes, Katherine J.</creatorcontrib><creatorcontrib>Cui, Wanxing</creatorcontrib><creatorcontrib>Thompson, John A.</creatorcontrib><creatorcontrib>Corbett, John A.</creatorcontrib><creatorcontrib>Jun, Ho-Wook</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Tissue engineering. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Dong-Jin</au><au>Antipenko, Sergey V.</au><au>Anderson, Joel M.</au><au>Jaimes, Kimberly F.</au><au>Viera, Liliana</au><au>Stephen, Bradley R.</au><au>Bryant, Stacie M.J.</au><au>Yancey, Brett D.</au><au>Hughes, Katherine J.</au><au>Cui, Wanxing</au><au>Thompson, John A.</au><au>Corbett, John A.</au><au>Jun, Ho-Wook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Rat Islet Function and Survival In Vitro Using a Biomimetic Self-Assembled Nanomatrix Gel</atitle><jtitle>Tissue engineering. Part A</jtitle><addtitle>Tissue Eng Part A</addtitle><date>2011-02-01</date><risdate>2011</risdate><volume>17</volume><issue>3-4</issue><spage>399</spage><epage>406</epage><pages>399-406</pages><issn>1937-3341</issn><eissn>1937-335X</eissn><abstract>Peptide amphiphile (PA) is a peptide-based biomaterial that can self-assemble into a nanostructured gel-like scaffold, mimicking the chemical and biological complexity of natural extracellular matrix. To evaluate the capacity of the PA scaffold to improve islet function and survival
in vitro
, rat islets were cultured in three different groups—(1) bare group: isolated rat islets cultured in a 12-well nontissue culture-treated plate; (2) insert group: isolated rat islets cultured in modified insert chambers; (3) nanomatrix group: isolated rat islets encapsulated within the PA nanomatrix gel and cultured in modified insert chambers. Over 14 days, both the bare and insert groups showed a marked decrease in insulin secretion, whereas the nanomatrix group maintained glucose-stimulated insulin secretion. Moreover, entire islets in the nanomatrix gel stained positive for dithizone up to 14 days, indicating better maintained glucose-stimulated insulin production. Fluorescein diacetate/propidium iodide staining results also verified necrosis in the bare and insert groups after 7 days, whereas the PA nanomatrix gel maintained islet viability after 14 days. Thus, these results demonstrate the potential of PAs as an intermediary scaffold for increasing the efficacy of pancreatic islet transplantation.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>20807014</pmid><doi>10.1089/ten.tea.2010.0151</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1937-3341 |
ispartof | Tissue engineering. Part A, 2011-02, Vol.17 (3-4), p.399-406 |
issn | 1937-3341 1937-335X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3028993 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | Animals Biomedical materials Biomimetic Materials - chemical synthesis Biomimetics Cell Proliferation Cell Survival Cellular biology Chemical properties Collagen Extracellular Matrix - chemistry Gels - chemistry Health aspects Insulin Islands of Langerhans Islet cell transplantation Islets of Langerhans Transplantation - physiology Male Methods Nanostructures - chemistry Organ Culture Techniques Original Original Articles Pancreas Pancreas, Artificial Physiological aspects Rats Rats, Sprague-Dawley rodents Tissue engineering |
title | Enhanced Rat Islet Function and Survival In Vitro Using a Biomimetic Self-Assembled Nanomatrix Gel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A18%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Rat%20Islet%20Function%20and%20Survival%20In%20Vitro%20Using%20a%20Biomimetic%20Self-Assembled%20Nanomatrix%20Gel&rft.jtitle=Tissue%20engineering.%20Part%20A&rft.au=Lim,%20Dong-Jin&rft.date=2011-02-01&rft.volume=17&rft.issue=3-4&rft.spage=399&rft.epage=406&rft.pages=399-406&rft.issn=1937-3341&rft.eissn=1937-335X&rft_id=info:doi/10.1089/ten.tea.2010.0151&rft_dat=%3Cgale_pubme%3EA248405492%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=848440376&rft_id=info:pmid/20807014&rft_galeid=A248405492&rfr_iscdi=true |