Enzymatic formation of apo-carotenoids from the xanthophyll carotenoids lutein, zeaxanthin and β-cryptoxanthin by ferret carotene-9′,10′-monooxygenase

[Display omitted] ▸ Vertebrate CMO2 enzymatically cleaves xanthophylls at the 9,10 and 9′,10′ double bond. ▸ Lutein and zeaxanthin are preferentially cleaved over β-cryptoxanthin. ▸ 3-OH-β-apo-10′-carotenal is oxidized to 3-OH-β-apo-10′-carotenoic acid. Xanthophyll carotenoids, such as lutein, zeaxa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of biochemistry and biophysics 2011-02, Vol.506 (1), p.109-121
Hauptverfasser: Mein, Jonathan R., Dolnikowski, Gregory G., Ernst, Hansgeorg, Russell, Robert M., Wang, Xiang-Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 121
container_issue 1
container_start_page 109
container_title Archives of biochemistry and biophysics
container_volume 506
creator Mein, Jonathan R.
Dolnikowski, Gregory G.
Ernst, Hansgeorg
Russell, Robert M.
Wang, Xiang-Dong
description [Display omitted] ▸ Vertebrate CMO2 enzymatically cleaves xanthophylls at the 9,10 and 9′,10′ double bond. ▸ Lutein and zeaxanthin are preferentially cleaved over β-cryptoxanthin. ▸ 3-OH-β-apo-10′-carotenal is oxidized to 3-OH-β-apo-10′-carotenoic acid. Xanthophyll carotenoids, such as lutein, zeaxanthin and β-cryptoxanthin, may provide potential health benefits against chronic and degenerative diseases. Investigating pathways of xanthophyll metabolism are important to understanding their biological functions. Carotene-15,15′-monooxygenase (CMO1) has been shown to be involved in vitamin A formation, while recent studies suggest that carotene-9′,10′-monooxygenase (CMO2) may have a broader substrate specificity than previously recognized. In this in vitro study, we investigated baculovirus-generated recombinant ferret CMO2 cleavage activity towards the carotenoid substrates zeaxanthin, lutein and β-cryptoxanthin. Utilizing HPLC, LC–MS and GC–MS, we identified both volatile and non-volatile apo-carotenoid products including 3-OH-β-ionone, 3-OH-α-ionone, β-ionone, 3-OH-α-apo-10′-carotenal, 3-OH-β-apo-10′-carotenal, and β-apo-10′-carotenal, indicating cleavage at both the 9,10 and 9′,10′ carbon–carbon double bond. Enzyme kinetic analysis indicated the xanthophylls zeaxanthin and lutein are preferentially cleaved over β-cryptoxanthin, indicating a key role of CMO2 in non-provitamin A carotenoid metabolism. Furthermore, incubation of 3-OH-β-apo-10′-carotenal with CMO2 lysate resulted in the formation of 3-OH-β-ionone. In the presence of NAD+, in vitro incubation of 3-OH-β-apo-10′-carotenal with ferret hepatic homogenates formed 3-OH-β-apo-10′-carotenoic acid. Since apo-carotenoids serve as important signaling molecules in a variety of biological processes, enzymatic cleavage of xanthophylls by mammalian CMO2 represents a new avenue of research regarding vertebrate carotenoid metabolism and biological function.
doi_str_mv 10.1016/j.abb.2010.11.005
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3026080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003986110004650</els_id><sourcerecordid>847279018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-dc3458083d4f9304f0fe7bf611114427882cdfc8354bc9f8722ceab2caee6bef3</originalsourceid><addsrcrecordid>eNp9kU9u1DAUxiMEokPhAGzAOzbN8Ox4EkdIlVBV_kiVWEDXluM8z3iU2MH2VE1X3INb9CAcgpOQMJ2qbPDCfrZ_3-cnf1n2ksKSAi3fbpeqaZYM5j1dAqweZQsKdZlDIfjjbAEARV6Lkh5lz2LcAlDKS_Y0O2IUBKVQLrKf5-5m7FWymhgf5sI74g1Rg8-1Cj6h87aNxATfk7RBcq1c2vhhM3YdeQh0u4TWnZAbVH8R64hyLfl1m-swDskfDpuRGAwB00GNef37x-0JhWnOe--8vx7X6FTE59kTo7qIL-7W4-zyw_m3s0_5xZePn8_eX-SaVzzlrS74SoAoWm7qArgBg1VjSjoNzlklBNOt0aJY8UbXRlSMaVQN0wqxbNAUx9np3nfYNT22Gl0KqpNDsL0Ko_TKyn9vnN3Itb-SBbASBEwGb-4Mgv--w5hkb6PGrlMO_S5KwStW1UDFRNI9qYOPMaC5f4WCnDOVWzllKudMJaVyynTSvHrY3r3iEOIEvN4DRnmp1sFGefl1clgBMMppMRPv9gRO33hlMcioLTqNrQ2ok2y9_U8DfwDkesM7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>847279018</pqid></control><display><type>article</type><title>Enzymatic formation of apo-carotenoids from the xanthophyll carotenoids lutein, zeaxanthin and β-cryptoxanthin by ferret carotene-9′,10′-monooxygenase</title><source>ScienceDirect</source><source>MEDLINE</source><creator>Mein, Jonathan R. ; Dolnikowski, Gregory G. ; Ernst, Hansgeorg ; Russell, Robert M. ; Wang, Xiang-Dong</creator><creatorcontrib>Mein, Jonathan R. ; Dolnikowski, Gregory G. ; Ernst, Hansgeorg ; Russell, Robert M. ; Wang, Xiang-Dong</creatorcontrib><description>[Display omitted] ▸ Vertebrate CMO2 enzymatically cleaves xanthophylls at the 9,10 and 9′,10′ double bond. ▸ Lutein and zeaxanthin are preferentially cleaved over β-cryptoxanthin. ▸ 3-OH-β-apo-10′-carotenal is oxidized to 3-OH-β-apo-10′-carotenoic acid. Xanthophyll carotenoids, such as lutein, zeaxanthin and β-cryptoxanthin, may provide potential health benefits against chronic and degenerative diseases. Investigating pathways of xanthophyll metabolism are important to understanding their biological functions. Carotene-15,15′-monooxygenase (CMO1) has been shown to be involved in vitamin A formation, while recent studies suggest that carotene-9′,10′-monooxygenase (CMO2) may have a broader substrate specificity than previously recognized. In this in vitro study, we investigated baculovirus-generated recombinant ferret CMO2 cleavage activity towards the carotenoid substrates zeaxanthin, lutein and β-cryptoxanthin. Utilizing HPLC, LC–MS and GC–MS, we identified both volatile and non-volatile apo-carotenoid products including 3-OH-β-ionone, 3-OH-α-ionone, β-ionone, 3-OH-α-apo-10′-carotenal, 3-OH-β-apo-10′-carotenal, and β-apo-10′-carotenal, indicating cleavage at both the 9,10 and 9′,10′ carbon–carbon double bond. Enzyme kinetic analysis indicated the xanthophylls zeaxanthin and lutein are preferentially cleaved over β-cryptoxanthin, indicating a key role of CMO2 in non-provitamin A carotenoid metabolism. Furthermore, incubation of 3-OH-β-apo-10′-carotenal with CMO2 lysate resulted in the formation of 3-OH-β-ionone. In the presence of NAD+, in vitro incubation of 3-OH-β-apo-10′-carotenal with ferret hepatic homogenates formed 3-OH-β-apo-10′-carotenoic acid. Since apo-carotenoids serve as important signaling molecules in a variety of biological processes, enzymatic cleavage of xanthophylls by mammalian CMO2 represents a new avenue of research regarding vertebrate carotenoid metabolism and biological function.</description><identifier>ISSN: 0003-9861</identifier><identifier>EISSN: 1096-0384</identifier><identifier>DOI: 10.1016/j.abb.2010.11.005</identifier><identifier>PMID: 21081106</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Apo-carotenoid ; beta-cryptoxanthin ; beta-ionone ; Carotenoids - biosynthesis ; Carotenoids - chemistry ; Cell Line ; Chromatography, High Pressure Liquid ; CMO1 ; CMO2 ; Cryptoxanthins ; enzyme kinetics ; Fatty Acid Desaturases - genetics ; Fatty Acid Desaturases - metabolism ; ferrets ; Ferrets - genetics ; Ferrets - metabolism ; Gas Chromatography-Mass Spectrometry ; high performance liquid chromatography ; in vitro studies ; In Vitro Techniques ; Kinetics ; Liver - metabolism ; lutein ; Lutein - metabolism ; Metabolism ; Oxidation-Reduction ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Spodoptera ; Substrate Specificity ; vitamin A ; Xanthophyll ; Xanthophylls - metabolism ; zeaxanthin ; Zeaxanthins</subject><ispartof>Archives of biochemistry and biophysics, 2011-02, Vol.506 (1), p.109-121</ispartof><rights>2010 Elsevier Inc.</rights><rights>2010 Elsevier Inc. All rights reserved.</rights><rights>2010 Elsevier Inc. All rights reserved. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-dc3458083d4f9304f0fe7bf611114427882cdfc8354bc9f8722ceab2caee6bef3</citedby><cites>FETCH-LOGICAL-c474t-dc3458083d4f9304f0fe7bf611114427882cdfc8354bc9f8722ceab2caee6bef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.abb.2010.11.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21081106$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mein, Jonathan R.</creatorcontrib><creatorcontrib>Dolnikowski, Gregory G.</creatorcontrib><creatorcontrib>Ernst, Hansgeorg</creatorcontrib><creatorcontrib>Russell, Robert M.</creatorcontrib><creatorcontrib>Wang, Xiang-Dong</creatorcontrib><title>Enzymatic formation of apo-carotenoids from the xanthophyll carotenoids lutein, zeaxanthin and β-cryptoxanthin by ferret carotene-9′,10′-monooxygenase</title><title>Archives of biochemistry and biophysics</title><addtitle>Arch Biochem Biophys</addtitle><description>[Display omitted] ▸ Vertebrate CMO2 enzymatically cleaves xanthophylls at the 9,10 and 9′,10′ double bond. ▸ Lutein and zeaxanthin are preferentially cleaved over β-cryptoxanthin. ▸ 3-OH-β-apo-10′-carotenal is oxidized to 3-OH-β-apo-10′-carotenoic acid. Xanthophyll carotenoids, such as lutein, zeaxanthin and β-cryptoxanthin, may provide potential health benefits against chronic and degenerative diseases. Investigating pathways of xanthophyll metabolism are important to understanding their biological functions. Carotene-15,15′-monooxygenase (CMO1) has been shown to be involved in vitamin A formation, while recent studies suggest that carotene-9′,10′-monooxygenase (CMO2) may have a broader substrate specificity than previously recognized. In this in vitro study, we investigated baculovirus-generated recombinant ferret CMO2 cleavage activity towards the carotenoid substrates zeaxanthin, lutein and β-cryptoxanthin. Utilizing HPLC, LC–MS and GC–MS, we identified both volatile and non-volatile apo-carotenoid products including 3-OH-β-ionone, 3-OH-α-ionone, β-ionone, 3-OH-α-apo-10′-carotenal, 3-OH-β-apo-10′-carotenal, and β-apo-10′-carotenal, indicating cleavage at both the 9,10 and 9′,10′ carbon–carbon double bond. Enzyme kinetic analysis indicated the xanthophylls zeaxanthin and lutein are preferentially cleaved over β-cryptoxanthin, indicating a key role of CMO2 in non-provitamin A carotenoid metabolism. Furthermore, incubation of 3-OH-β-apo-10′-carotenal with CMO2 lysate resulted in the formation of 3-OH-β-ionone. In the presence of NAD+, in vitro incubation of 3-OH-β-apo-10′-carotenal with ferret hepatic homogenates formed 3-OH-β-apo-10′-carotenoic acid. Since apo-carotenoids serve as important signaling molecules in a variety of biological processes, enzymatic cleavage of xanthophylls by mammalian CMO2 represents a new avenue of research regarding vertebrate carotenoid metabolism and biological function.</description><subject>Animals</subject><subject>Apo-carotenoid</subject><subject>beta-cryptoxanthin</subject><subject>beta-ionone</subject><subject>Carotenoids - biosynthesis</subject><subject>Carotenoids - chemistry</subject><subject>Cell Line</subject><subject>Chromatography, High Pressure Liquid</subject><subject>CMO1</subject><subject>CMO2</subject><subject>Cryptoxanthins</subject><subject>enzyme kinetics</subject><subject>Fatty Acid Desaturases - genetics</subject><subject>Fatty Acid Desaturases - metabolism</subject><subject>ferrets</subject><subject>Ferrets - genetics</subject><subject>Ferrets - metabolism</subject><subject>Gas Chromatography-Mass Spectrometry</subject><subject>high performance liquid chromatography</subject><subject>in vitro studies</subject><subject>In Vitro Techniques</subject><subject>Kinetics</subject><subject>Liver - metabolism</subject><subject>lutein</subject><subject>Lutein - metabolism</subject><subject>Metabolism</subject><subject>Oxidation-Reduction</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Spodoptera</subject><subject>Substrate Specificity</subject><subject>vitamin A</subject><subject>Xanthophyll</subject><subject>Xanthophylls - metabolism</subject><subject>zeaxanthin</subject><subject>Zeaxanthins</subject><issn>0003-9861</issn><issn>1096-0384</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9u1DAUxiMEokPhAGzAOzbN8Ox4EkdIlVBV_kiVWEDXluM8z3iU2MH2VE1X3INb9CAcgpOQMJ2qbPDCfrZ_3-cnf1n2ksKSAi3fbpeqaZYM5j1dAqweZQsKdZlDIfjjbAEARV6Lkh5lz2LcAlDKS_Y0O2IUBKVQLrKf5-5m7FWymhgf5sI74g1Rg8-1Cj6h87aNxATfk7RBcq1c2vhhM3YdeQh0u4TWnZAbVH8R64hyLfl1m-swDskfDpuRGAwB00GNef37x-0JhWnOe--8vx7X6FTE59kTo7qIL-7W4-zyw_m3s0_5xZePn8_eX-SaVzzlrS74SoAoWm7qArgBg1VjSjoNzlklBNOt0aJY8UbXRlSMaVQN0wqxbNAUx9np3nfYNT22Gl0KqpNDsL0Ko_TKyn9vnN3Itb-SBbASBEwGb-4Mgv--w5hkb6PGrlMO_S5KwStW1UDFRNI9qYOPMaC5f4WCnDOVWzllKudMJaVyynTSvHrY3r3iEOIEvN4DRnmp1sFGefl1clgBMMppMRPv9gRO33hlMcioLTqNrQ2ok2y9_U8DfwDkesM7</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Mein, Jonathan R.</creator><creator>Dolnikowski, Gregory G.</creator><creator>Ernst, Hansgeorg</creator><creator>Russell, Robert M.</creator><creator>Wang, Xiang-Dong</creator><general>Elsevier Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110201</creationdate><title>Enzymatic formation of apo-carotenoids from the xanthophyll carotenoids lutein, zeaxanthin and β-cryptoxanthin by ferret carotene-9′,10′-monooxygenase</title><author>Mein, Jonathan R. ; Dolnikowski, Gregory G. ; Ernst, Hansgeorg ; Russell, Robert M. ; Wang, Xiang-Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-dc3458083d4f9304f0fe7bf611114427882cdfc8354bc9f8722ceab2caee6bef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Apo-carotenoid</topic><topic>beta-cryptoxanthin</topic><topic>beta-ionone</topic><topic>Carotenoids - biosynthesis</topic><topic>Carotenoids - chemistry</topic><topic>Cell Line</topic><topic>Chromatography, High Pressure Liquid</topic><topic>CMO1</topic><topic>CMO2</topic><topic>Cryptoxanthins</topic><topic>enzyme kinetics</topic><topic>Fatty Acid Desaturases - genetics</topic><topic>Fatty Acid Desaturases - metabolism</topic><topic>ferrets</topic><topic>Ferrets - genetics</topic><topic>Ferrets - metabolism</topic><topic>Gas Chromatography-Mass Spectrometry</topic><topic>high performance liquid chromatography</topic><topic>in vitro studies</topic><topic>In Vitro Techniques</topic><topic>Kinetics</topic><topic>Liver - metabolism</topic><topic>lutein</topic><topic>Lutein - metabolism</topic><topic>Metabolism</topic><topic>Oxidation-Reduction</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Spodoptera</topic><topic>Substrate Specificity</topic><topic>vitamin A</topic><topic>Xanthophyll</topic><topic>Xanthophylls - metabolism</topic><topic>zeaxanthin</topic><topic>Zeaxanthins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mein, Jonathan R.</creatorcontrib><creatorcontrib>Dolnikowski, Gregory G.</creatorcontrib><creatorcontrib>Ernst, Hansgeorg</creatorcontrib><creatorcontrib>Russell, Robert M.</creatorcontrib><creatorcontrib>Wang, Xiang-Dong</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Archives of biochemistry and biophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mein, Jonathan R.</au><au>Dolnikowski, Gregory G.</au><au>Ernst, Hansgeorg</au><au>Russell, Robert M.</au><au>Wang, Xiang-Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enzymatic formation of apo-carotenoids from the xanthophyll carotenoids lutein, zeaxanthin and β-cryptoxanthin by ferret carotene-9′,10′-monooxygenase</atitle><jtitle>Archives of biochemistry and biophysics</jtitle><addtitle>Arch Biochem Biophys</addtitle><date>2011-02-01</date><risdate>2011</risdate><volume>506</volume><issue>1</issue><spage>109</spage><epage>121</epage><pages>109-121</pages><issn>0003-9861</issn><eissn>1096-0384</eissn><abstract>[Display omitted] ▸ Vertebrate CMO2 enzymatically cleaves xanthophylls at the 9,10 and 9′,10′ double bond. ▸ Lutein and zeaxanthin are preferentially cleaved over β-cryptoxanthin. ▸ 3-OH-β-apo-10′-carotenal is oxidized to 3-OH-β-apo-10′-carotenoic acid. Xanthophyll carotenoids, such as lutein, zeaxanthin and β-cryptoxanthin, may provide potential health benefits against chronic and degenerative diseases. Investigating pathways of xanthophyll metabolism are important to understanding their biological functions. Carotene-15,15′-monooxygenase (CMO1) has been shown to be involved in vitamin A formation, while recent studies suggest that carotene-9′,10′-monooxygenase (CMO2) may have a broader substrate specificity than previously recognized. In this in vitro study, we investigated baculovirus-generated recombinant ferret CMO2 cleavage activity towards the carotenoid substrates zeaxanthin, lutein and β-cryptoxanthin. Utilizing HPLC, LC–MS and GC–MS, we identified both volatile and non-volatile apo-carotenoid products including 3-OH-β-ionone, 3-OH-α-ionone, β-ionone, 3-OH-α-apo-10′-carotenal, 3-OH-β-apo-10′-carotenal, and β-apo-10′-carotenal, indicating cleavage at both the 9,10 and 9′,10′ carbon–carbon double bond. Enzyme kinetic analysis indicated the xanthophylls zeaxanthin and lutein are preferentially cleaved over β-cryptoxanthin, indicating a key role of CMO2 in non-provitamin A carotenoid metabolism. Furthermore, incubation of 3-OH-β-apo-10′-carotenal with CMO2 lysate resulted in the formation of 3-OH-β-ionone. In the presence of NAD+, in vitro incubation of 3-OH-β-apo-10′-carotenal with ferret hepatic homogenates formed 3-OH-β-apo-10′-carotenoic acid. Since apo-carotenoids serve as important signaling molecules in a variety of biological processes, enzymatic cleavage of xanthophylls by mammalian CMO2 represents a new avenue of research regarding vertebrate carotenoid metabolism and biological function.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21081106</pmid><doi>10.1016/j.abb.2010.11.005</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-9861
ispartof Archives of biochemistry and biophysics, 2011-02, Vol.506 (1), p.109-121
issn 0003-9861
1096-0384
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3026080
source ScienceDirect; MEDLINE
subjects Animals
Apo-carotenoid
beta-cryptoxanthin
beta-ionone
Carotenoids - biosynthesis
Carotenoids - chemistry
Cell Line
Chromatography, High Pressure Liquid
CMO1
CMO2
Cryptoxanthins
enzyme kinetics
Fatty Acid Desaturases - genetics
Fatty Acid Desaturases - metabolism
ferrets
Ferrets - genetics
Ferrets - metabolism
Gas Chromatography-Mass Spectrometry
high performance liquid chromatography
in vitro studies
In Vitro Techniques
Kinetics
Liver - metabolism
lutein
Lutein - metabolism
Metabolism
Oxidation-Reduction
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Spodoptera
Substrate Specificity
vitamin A
Xanthophyll
Xanthophylls - metabolism
zeaxanthin
Zeaxanthins
title Enzymatic formation of apo-carotenoids from the xanthophyll carotenoids lutein, zeaxanthin and β-cryptoxanthin by ferret carotene-9′,10′-monooxygenase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A59%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enzymatic%20formation%20of%20apo-carotenoids%20from%20the%20xanthophyll%20carotenoids%20lutein,%20zeaxanthin%20and%20%CE%B2-cryptoxanthin%20by%20ferret%20carotene-9%E2%80%B2,10%E2%80%B2-monooxygenase&rft.jtitle=Archives%20of%20biochemistry%20and%20biophysics&rft.au=Mein,%20Jonathan%20R.&rft.date=2011-02-01&rft.volume=506&rft.issue=1&rft.spage=109&rft.epage=121&rft.pages=109-121&rft.issn=0003-9861&rft.eissn=1096-0384&rft_id=info:doi/10.1016/j.abb.2010.11.005&rft_dat=%3Cproquest_pubme%3E847279018%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=847279018&rft_id=info:pmid/21081106&rft_els_id=S0003986110004650&rfr_iscdi=true