Quantitative modeling of forces in electromagnetic tweezers

This paper discusses numerical simulations of the magnetic field produced by an electromagnet for generation of forces on superparamagnetic microspheres used in manipulation of single molecules or cells. Single molecule force spectroscopy based on magnetic tweezers can be used in applications that r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2010-11, Vol.108 (10), p.104701-104701-9
Hauptverfasser: Bijamov, Alex, Shubitidze, Fridon, Oliver, Piercen M., Vezenov, Dmitri V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104701-9
container_issue 10
container_start_page 104701
container_title Journal of applied physics
container_volume 108
creator Bijamov, Alex
Shubitidze, Fridon
Oliver, Piercen M.
Vezenov, Dmitri V.
description This paper discusses numerical simulations of the magnetic field produced by an electromagnet for generation of forces on superparamagnetic microspheres used in manipulation of single molecules or cells. Single molecule force spectroscopy based on magnetic tweezers can be used in applications that require parallel readout of biopolymer stretching or biomolecular binding. The magnetic tweezers exert forces on the surface-immobilized macromolecule by pulling a magnetic bead attached to the free end of the molecule in the direction of the field gradient. In a typical force spectroscopy experiment, the pulling forces can range between subpiconewton to tens of piconewtons. In order to effectively provide such forces, an understanding of the source of the magnetic field is required as the first step in the design of force spectroscopy systems. In this study, we use a numerical technique, the method of auxiliary sources, to investigate the influence of electromagnet geometry and material parameters of the magnetic core on the magnetic forces pulling the target beads in the area of interest. The close proximity of the area of interest to the magnet body results in deviations from intuitive relations between magnet size and pulling force, as well as in the force decay with distance. We discuss the benefits and drawbacks of various geometric modifications affecting the magnitude and spatial distribution of forces achievable with an electromagnet.
doi_str_mv 10.1063/1.3510481
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3024908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826165939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-85971852279453c15fbed97e37c0a72af2e5f51c2e0b205984447bc64adea85f3</originalsourceid><addsrcrecordid>eNp1kctKBDEQRYMoOj4W_oD0UhetVUlnOkEQRHyBIIKuQyZTPUa6O5pkRvTrHXV8LVzVog6ninsZ20bYRxiKA9wXEqFSuMQGCEqXtZSwzAYAHEula73G1lN6AEBUQq-yNY5cKqlgwA5vprbPPtvsZ1R0YUyt7ydFaIomREep8H1BLbkcQ2cnPWXvivxM9EoxbbKVxraJthZzg92dnd6eXJRX1-eXJ8dXpasE5FJJXaOSnNe6ksKhbEY01jWJ2oGtuW04yUai4wQjDlKrqqrqkRtWdkxWyUZssKNP7-N01NHYUZ-jbc1j9J2NLyZYb_5uen9vJmFmBPBKg5oLdheCGJ6mlLLpfHLUtranME0GFR_iUGqh5-jeJ-piSClS830GwbyHbdAswp6zO7__-ia_0v15PLmPhEP_v-13D2bRg3gD226PxQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826165939</pqid></control><display><type>article</type><title>Quantitative modeling of forces in electromagnetic tweezers</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Bijamov, Alex ; Shubitidze, Fridon ; Oliver, Piercen M. ; Vezenov, Dmitri V.</creator><creatorcontrib>Bijamov, Alex ; Shubitidze, Fridon ; Oliver, Piercen M. ; Vezenov, Dmitri V.</creatorcontrib><description>This paper discusses numerical simulations of the magnetic field produced by an electromagnet for generation of forces on superparamagnetic microspheres used in manipulation of single molecules or cells. Single molecule force spectroscopy based on magnetic tweezers can be used in applications that require parallel readout of biopolymer stretching or biomolecular binding. The magnetic tweezers exert forces on the surface-immobilized macromolecule by pulling a magnetic bead attached to the free end of the molecule in the direction of the field gradient. In a typical force spectroscopy experiment, the pulling forces can range between subpiconewton to tens of piconewtons. In order to effectively provide such forces, an understanding of the source of the magnetic field is required as the first step in the design of force spectroscopy systems. In this study, we use a numerical technique, the method of auxiliary sources, to investigate the influence of electromagnet geometry and material parameters of the magnetic core on the magnetic forces pulling the target beads in the area of interest. The close proximity of the area of interest to the magnet body results in deviations from intuitive relations between magnet size and pulling force, as well as in the force decay with distance. We discuss the benefits and drawbacks of various geometric modifications affecting the magnitude and spatial distribution of forces achievable with an electromagnet.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>EISSN: 0021-8979</identifier><identifier>DOI: 10.1063/1.3510481</identifier><identifier>PMID: 21258580</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Applied Biophysics</subject><ispartof>Journal of applied physics, 2010-11, Vol.108 (10), p.104701-104701-9</ispartof><rights>2010 American Institute of Physics</rights><rights>Copyright © 2010 American Institute of Physics 2010 American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-85971852279453c15fbed97e37c0a72af2e5f51c2e0b205984447bc64adea85f3</citedby><cites>FETCH-LOGICAL-c430t-85971852279453c15fbed97e37c0a72af2e5f51c2e0b205984447bc64adea85f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.3510481$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,1559,4512,27924,27925,76384,76390</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21258580$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bijamov, Alex</creatorcontrib><creatorcontrib>Shubitidze, Fridon</creatorcontrib><creatorcontrib>Oliver, Piercen M.</creatorcontrib><creatorcontrib>Vezenov, Dmitri V.</creatorcontrib><title>Quantitative modeling of forces in electromagnetic tweezers</title><title>Journal of applied physics</title><addtitle>J Appl Phys</addtitle><description>This paper discusses numerical simulations of the magnetic field produced by an electromagnet for generation of forces on superparamagnetic microspheres used in manipulation of single molecules or cells. Single molecule force spectroscopy based on magnetic tweezers can be used in applications that require parallel readout of biopolymer stretching or biomolecular binding. The magnetic tweezers exert forces on the surface-immobilized macromolecule by pulling a magnetic bead attached to the free end of the molecule in the direction of the field gradient. In a typical force spectroscopy experiment, the pulling forces can range between subpiconewton to tens of piconewtons. In order to effectively provide such forces, an understanding of the source of the magnetic field is required as the first step in the design of force spectroscopy systems. In this study, we use a numerical technique, the method of auxiliary sources, to investigate the influence of electromagnet geometry and material parameters of the magnetic core on the magnetic forces pulling the target beads in the area of interest. The close proximity of the area of interest to the magnet body results in deviations from intuitive relations between magnet size and pulling force, as well as in the force decay with distance. We discuss the benefits and drawbacks of various geometric modifications affecting the magnitude and spatial distribution of forces achievable with an electromagnet.</description><subject>Applied Biophysics</subject><issn>0021-8979</issn><issn>1089-7550</issn><issn>0021-8979</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kctKBDEQRYMoOj4W_oD0UhetVUlnOkEQRHyBIIKuQyZTPUa6O5pkRvTrHXV8LVzVog6ninsZ20bYRxiKA9wXEqFSuMQGCEqXtZSwzAYAHEula73G1lN6AEBUQq-yNY5cKqlgwA5vprbPPtvsZ1R0YUyt7ydFaIomREep8H1BLbkcQ2cnPWXvivxM9EoxbbKVxraJthZzg92dnd6eXJRX1-eXJ8dXpasE5FJJXaOSnNe6ksKhbEY01jWJ2oGtuW04yUai4wQjDlKrqqrqkRtWdkxWyUZssKNP7-N01NHYUZ-jbc1j9J2NLyZYb_5uen9vJmFmBPBKg5oLdheCGJ6mlLLpfHLUtranME0GFR_iUGqh5-jeJ-piSClS830GwbyHbdAswp6zO7__-ia_0v15PLmPhEP_v-13D2bRg3gD226PxQ</recordid><startdate>20101115</startdate><enddate>20101115</enddate><creator>Bijamov, Alex</creator><creator>Shubitidze, Fridon</creator><creator>Oliver, Piercen M.</creator><creator>Vezenov, Dmitri V.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20101115</creationdate><title>Quantitative modeling of forces in electromagnetic tweezers</title><author>Bijamov, Alex ; Shubitidze, Fridon ; Oliver, Piercen M. ; Vezenov, Dmitri V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-85971852279453c15fbed97e37c0a72af2e5f51c2e0b205984447bc64adea85f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied Biophysics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bijamov, Alex</creatorcontrib><creatorcontrib>Shubitidze, Fridon</creatorcontrib><creatorcontrib>Oliver, Piercen M.</creatorcontrib><creatorcontrib>Vezenov, Dmitri V.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bijamov, Alex</au><au>Shubitidze, Fridon</au><au>Oliver, Piercen M.</au><au>Vezenov, Dmitri V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative modeling of forces in electromagnetic tweezers</atitle><jtitle>Journal of applied physics</jtitle><addtitle>J Appl Phys</addtitle><date>2010-11-15</date><risdate>2010</risdate><volume>108</volume><issue>10</issue><spage>104701</spage><epage>104701-9</epage><pages>104701-104701-9</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><eissn>0021-8979</eissn><coden>JAPIAU</coden><abstract>This paper discusses numerical simulations of the magnetic field produced by an electromagnet for generation of forces on superparamagnetic microspheres used in manipulation of single molecules or cells. Single molecule force spectroscopy based on magnetic tweezers can be used in applications that require parallel readout of biopolymer stretching or biomolecular binding. The magnetic tweezers exert forces on the surface-immobilized macromolecule by pulling a magnetic bead attached to the free end of the molecule in the direction of the field gradient. In a typical force spectroscopy experiment, the pulling forces can range between subpiconewton to tens of piconewtons. In order to effectively provide such forces, an understanding of the source of the magnetic field is required as the first step in the design of force spectroscopy systems. In this study, we use a numerical technique, the method of auxiliary sources, to investigate the influence of electromagnet geometry and material parameters of the magnetic core on the magnetic forces pulling the target beads in the area of interest. The close proximity of the area of interest to the magnet body results in deviations from intuitive relations between magnet size and pulling force, as well as in the force decay with distance. We discuss the benefits and drawbacks of various geometric modifications affecting the magnitude and spatial distribution of forces achievable with an electromagnet.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>21258580</pmid><doi>10.1063/1.3510481</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2010-11, Vol.108 (10), p.104701-104701-9
issn 0021-8979
1089-7550
0021-8979
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3024908
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects Applied Biophysics
title Quantitative modeling of forces in electromagnetic tweezers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A02%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20modeling%20of%20forces%20in%20electromagnetic%20tweezers&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Bijamov,%20Alex&rft.date=2010-11-15&rft.volume=108&rft.issue=10&rft.spage=104701&rft.epage=104701-9&rft.pages=104701-104701-9&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.3510481&rft_dat=%3Cproquest_pubme%3E1826165939%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826165939&rft_id=info:pmid/21258580&rfr_iscdi=true