Quantitative modeling of forces in electromagnetic tweezers
This paper discusses numerical simulations of the magnetic field produced by an electromagnet for generation of forces on superparamagnetic microspheres used in manipulation of single molecules or cells. Single molecule force spectroscopy based on magnetic tweezers can be used in applications that r...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2010-11, Vol.108 (10), p.104701-104701-9 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 104701-9 |
---|---|
container_issue | 10 |
container_start_page | 104701 |
container_title | Journal of applied physics |
container_volume | 108 |
creator | Bijamov, Alex Shubitidze, Fridon Oliver, Piercen M. Vezenov, Dmitri V. |
description | This paper discusses numerical simulations of the magnetic field produced by an electromagnet for generation of forces on superparamagnetic microspheres used in manipulation of single molecules or cells. Single molecule force spectroscopy based on magnetic tweezers can be used in applications that require parallel readout of biopolymer stretching or biomolecular binding. The magnetic tweezers exert forces on the surface-immobilized macromolecule by pulling a magnetic bead attached to the free end of the molecule in the direction of the field gradient. In a typical force spectroscopy experiment, the pulling forces can range between subpiconewton to tens of piconewtons. In order to effectively provide such forces, an understanding of the source of the magnetic field is required as the first step in the design of force spectroscopy systems. In this study, we use a numerical technique, the method of auxiliary sources, to investigate the influence of electromagnet geometry and material parameters of the magnetic core on the magnetic forces pulling the target beads in the area of interest. The close proximity of the area of interest to the magnet body results in deviations from intuitive relations between magnet size and pulling force, as well as in the force decay with distance. We discuss the benefits and drawbacks of various geometric modifications affecting the magnitude and spatial distribution of forces achievable with an electromagnet. |
doi_str_mv | 10.1063/1.3510481 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3024908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826165939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-85971852279453c15fbed97e37c0a72af2e5f51c2e0b205984447bc64adea85f3</originalsourceid><addsrcrecordid>eNp1kctKBDEQRYMoOj4W_oD0UhetVUlnOkEQRHyBIIKuQyZTPUa6O5pkRvTrHXV8LVzVog6ninsZ20bYRxiKA9wXEqFSuMQGCEqXtZSwzAYAHEula73G1lN6AEBUQq-yNY5cKqlgwA5vprbPPtvsZ1R0YUyt7ydFaIomREep8H1BLbkcQ2cnPWXvivxM9EoxbbKVxraJthZzg92dnd6eXJRX1-eXJ8dXpasE5FJJXaOSnNe6ksKhbEY01jWJ2oGtuW04yUai4wQjDlKrqqrqkRtWdkxWyUZssKNP7-N01NHYUZ-jbc1j9J2NLyZYb_5uen9vJmFmBPBKg5oLdheCGJ6mlLLpfHLUtranME0GFR_iUGqh5-jeJ-piSClS830GwbyHbdAswp6zO7__-ia_0v15PLmPhEP_v-13D2bRg3gD226PxQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826165939</pqid></control><display><type>article</type><title>Quantitative modeling of forces in electromagnetic tweezers</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Bijamov, Alex ; Shubitidze, Fridon ; Oliver, Piercen M. ; Vezenov, Dmitri V.</creator><creatorcontrib>Bijamov, Alex ; Shubitidze, Fridon ; Oliver, Piercen M. ; Vezenov, Dmitri V.</creatorcontrib><description>This paper discusses numerical simulations of the magnetic field produced by an electromagnet for generation of forces on superparamagnetic microspheres used in manipulation of single molecules or cells. Single molecule force spectroscopy based on magnetic tweezers can be used in applications that require parallel readout of biopolymer stretching or biomolecular binding. The magnetic tweezers exert forces on the surface-immobilized macromolecule by pulling a magnetic bead attached to the free end of the molecule in the direction of the field gradient. In a typical force spectroscopy experiment, the pulling forces can range between subpiconewton to tens of piconewtons. In order to effectively provide such forces, an understanding of the source of the magnetic field is required as the first step in the design of force spectroscopy systems. In this study, we use a numerical technique, the method of auxiliary sources, to investigate the influence of electromagnet geometry and material parameters of the magnetic core on the magnetic forces pulling the target beads in the area of interest. The close proximity of the area of interest to the magnet body results in deviations from intuitive relations between magnet size and pulling force, as well as in the force decay with distance. We discuss the benefits and drawbacks of various geometric modifications affecting the magnitude and spatial distribution of forces achievable with an electromagnet.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>EISSN: 0021-8979</identifier><identifier>DOI: 10.1063/1.3510481</identifier><identifier>PMID: 21258580</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Applied Biophysics</subject><ispartof>Journal of applied physics, 2010-11, Vol.108 (10), p.104701-104701-9</ispartof><rights>2010 American Institute of Physics</rights><rights>Copyright © 2010 American Institute of Physics 2010 American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-85971852279453c15fbed97e37c0a72af2e5f51c2e0b205984447bc64adea85f3</citedby><cites>FETCH-LOGICAL-c430t-85971852279453c15fbed97e37c0a72af2e5f51c2e0b205984447bc64adea85f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.3510481$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,1559,4512,27924,27925,76384,76390</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21258580$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bijamov, Alex</creatorcontrib><creatorcontrib>Shubitidze, Fridon</creatorcontrib><creatorcontrib>Oliver, Piercen M.</creatorcontrib><creatorcontrib>Vezenov, Dmitri V.</creatorcontrib><title>Quantitative modeling of forces in electromagnetic tweezers</title><title>Journal of applied physics</title><addtitle>J Appl Phys</addtitle><description>This paper discusses numerical simulations of the magnetic field produced by an electromagnet for generation of forces on superparamagnetic microspheres used in manipulation of single molecules or cells. Single molecule force spectroscopy based on magnetic tweezers can be used in applications that require parallel readout of biopolymer stretching or biomolecular binding. The magnetic tweezers exert forces on the surface-immobilized macromolecule by pulling a magnetic bead attached to the free end of the molecule in the direction of the field gradient. In a typical force spectroscopy experiment, the pulling forces can range between subpiconewton to tens of piconewtons. In order to effectively provide such forces, an understanding of the source of the magnetic field is required as the first step in the design of force spectroscopy systems. In this study, we use a numerical technique, the method of auxiliary sources, to investigate the influence of electromagnet geometry and material parameters of the magnetic core on the magnetic forces pulling the target beads in the area of interest. The close proximity of the area of interest to the magnet body results in deviations from intuitive relations between magnet size and pulling force, as well as in the force decay with distance. We discuss the benefits and drawbacks of various geometric modifications affecting the magnitude and spatial distribution of forces achievable with an electromagnet.</description><subject>Applied Biophysics</subject><issn>0021-8979</issn><issn>1089-7550</issn><issn>0021-8979</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kctKBDEQRYMoOj4W_oD0UhetVUlnOkEQRHyBIIKuQyZTPUa6O5pkRvTrHXV8LVzVog6ninsZ20bYRxiKA9wXEqFSuMQGCEqXtZSwzAYAHEula73G1lN6AEBUQq-yNY5cKqlgwA5vprbPPtvsZ1R0YUyt7ydFaIomREep8H1BLbkcQ2cnPWXvivxM9EoxbbKVxraJthZzg92dnd6eXJRX1-eXJ8dXpasE5FJJXaOSnNe6ksKhbEY01jWJ2oGtuW04yUai4wQjDlKrqqrqkRtWdkxWyUZssKNP7-N01NHYUZ-jbc1j9J2NLyZYb_5uen9vJmFmBPBKg5oLdheCGJ6mlLLpfHLUtranME0GFR_iUGqh5-jeJ-piSClS830GwbyHbdAswp6zO7__-ia_0v15PLmPhEP_v-13D2bRg3gD226PxQ</recordid><startdate>20101115</startdate><enddate>20101115</enddate><creator>Bijamov, Alex</creator><creator>Shubitidze, Fridon</creator><creator>Oliver, Piercen M.</creator><creator>Vezenov, Dmitri V.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20101115</creationdate><title>Quantitative modeling of forces in electromagnetic tweezers</title><author>Bijamov, Alex ; Shubitidze, Fridon ; Oliver, Piercen M. ; Vezenov, Dmitri V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-85971852279453c15fbed97e37c0a72af2e5f51c2e0b205984447bc64adea85f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied Biophysics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bijamov, Alex</creatorcontrib><creatorcontrib>Shubitidze, Fridon</creatorcontrib><creatorcontrib>Oliver, Piercen M.</creatorcontrib><creatorcontrib>Vezenov, Dmitri V.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bijamov, Alex</au><au>Shubitidze, Fridon</au><au>Oliver, Piercen M.</au><au>Vezenov, Dmitri V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative modeling of forces in electromagnetic tweezers</atitle><jtitle>Journal of applied physics</jtitle><addtitle>J Appl Phys</addtitle><date>2010-11-15</date><risdate>2010</risdate><volume>108</volume><issue>10</issue><spage>104701</spage><epage>104701-9</epage><pages>104701-104701-9</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><eissn>0021-8979</eissn><coden>JAPIAU</coden><abstract>This paper discusses numerical simulations of the magnetic field produced by an electromagnet for generation of forces on superparamagnetic microspheres used in manipulation of single molecules or cells. Single molecule force spectroscopy based on magnetic tweezers can be used in applications that require parallel readout of biopolymer stretching or biomolecular binding. The magnetic tweezers exert forces on the surface-immobilized macromolecule by pulling a magnetic bead attached to the free end of the molecule in the direction of the field gradient. In a typical force spectroscopy experiment, the pulling forces can range between subpiconewton to tens of piconewtons. In order to effectively provide such forces, an understanding of the source of the magnetic field is required as the first step in the design of force spectroscopy systems. In this study, we use a numerical technique, the method of auxiliary sources, to investigate the influence of electromagnet geometry and material parameters of the magnetic core on the magnetic forces pulling the target beads in the area of interest. The close proximity of the area of interest to the magnet body results in deviations from intuitive relations between magnet size and pulling force, as well as in the force decay with distance. We discuss the benefits and drawbacks of various geometric modifications affecting the magnitude and spatial distribution of forces achievable with an electromagnet.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>21258580</pmid><doi>10.1063/1.3510481</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2010-11, Vol.108 (10), p.104701-104701-9 |
issn | 0021-8979 1089-7550 0021-8979 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3024908 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | Applied Biophysics |
title | Quantitative modeling of forces in electromagnetic tweezers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A02%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20modeling%20of%20forces%20in%20electromagnetic%20tweezers&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Bijamov,%20Alex&rft.date=2010-11-15&rft.volume=108&rft.issue=10&rft.spage=104701&rft.epage=104701-9&rft.pages=104701-104701-9&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.3510481&rft_dat=%3Cproquest_pubme%3E1826165939%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826165939&rft_id=info:pmid/21258580&rfr_iscdi=true |