Characterization of a Binding Site for Anionic Phospholipids on KCNQ1
The KCNQ family of potassium channels underlie a repolarizing K+ current in the heart and the M-current in neurones. The assembly of KCNQ1 with KCNE1 generates the delayed rectifier current IKs in the heart. Characteristically these channels are regulated via Gq/11-coupled receptors and the inhibiti...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2011-01, Vol.286 (3), p.2088-2100 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2100 |
---|---|
container_issue | 3 |
container_start_page | 2088 |
container_title | The Journal of biological chemistry |
container_volume | 286 |
creator | Thomas, Alison M. Harmer, Stephen C. Khambra, Tapsi Tinker, Andrew |
description | The KCNQ family of potassium channels underlie a repolarizing K+ current in the heart and the M-current in neurones. The assembly of KCNQ1 with KCNE1 generates the delayed rectifier current IKs in the heart. Characteristically these channels are regulated via Gq/11-coupled receptors and the inhibition seen after phospholipase C activation is now thought to occur from membrane phosphatidylinositol (4,5)-bisphosphate (PIP2) depletion. It is not clear how KCNQ1 recognizes PIP2 and specifically which residues in the channel complex are important. Using biochemical techniques we identify a cluster of basic residues namely, Lys-354, Lys-358, Arg-360, and Lys-362, in the proximal C terminus as being involved in binding anionic phospholipids. The mutation of specific residues in combination, to alanine leads to the loss of binding to phosphoinositides. Functionally, the introduction of these mutations into KCNQ1 leads to shifts in the voltage dependence of channel activation toward depolarized potentials and reductions in current density. Additionally, the biophysical effects of the charge neutralizing mutations, which disrupt phosphoinositide binding, mirror the effects we see on channel function when we deplete cellular PIP2 levels through activation of a Gq/11-coupled receptor. Conversely, the addition of diC8-PIP2 to the wild-type channel, but not a PIP2 binding-deficient mutant, acts to shift the voltage dependence of channel activation toward hyperpolarized potentials and increase current density. In conclusion, we use a combined biochemical and functional approach to identify a cluster of basic residues important for the binding and action of anionic phospholipids on the KCNQ1/KCNE1 complex. |
doi_str_mv | 10.1074/jbc.M110.153551 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3023506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820562443</els_id><sourcerecordid>21084310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-3a357e2ae1afa7263cab526fc8f4f3d2b72804ad3fe498bfc1936d934d5bbcfb3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMotlbX7nReYNpcpzMbQYd6wXqjFtyFTC5tSjspyVjQpzdltOjCswmH853_hA-AUwT7CA7pYFHJ_gPadowwhvZAF8GcpISht33QhRCjtMAs74CjEBYwFi3QIejgSFGCYBeMyrnwQjba20_RWFcnziQiubK1svUsmdhGJ8b55LKOMyuT57kL67lb2rVVIYn4ffn4go7BgRHLoE--3x6YXo9ey9t0_HRzV16OU0mzrEmJIGyosdBIGDHEGZGiYjgzMjfUEIWrIc4hFYoYTYu8MhIVJFMFoYpVlTQV6YGLNnf9Xq20krpuvFjytbcr4T-4E5b_ndR2zmduwwnEhMEsBgzaAOldCF6b3S6CfGuUR6N8a5S3RuPG2e-TO_5HYQTOW8AIx8XM28CnEwwRgfH3FOIiEkVL6KhmY7XnQVpdS62s17Lhytl_z38B2vuPkw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Characterization of a Binding Site for Anionic Phospholipids on KCNQ1</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Thomas, Alison M. ; Harmer, Stephen C. ; Khambra, Tapsi ; Tinker, Andrew</creator><creatorcontrib>Thomas, Alison M. ; Harmer, Stephen C. ; Khambra, Tapsi ; Tinker, Andrew</creatorcontrib><description>The KCNQ family of potassium channels underlie a repolarizing K+ current in the heart and the M-current in neurones. The assembly of KCNQ1 with KCNE1 generates the delayed rectifier current IKs in the heart. Characteristically these channels are regulated via Gq/11-coupled receptors and the inhibition seen after phospholipase C activation is now thought to occur from membrane phosphatidylinositol (4,5)-bisphosphate (PIP2) depletion. It is not clear how KCNQ1 recognizes PIP2 and specifically which residues in the channel complex are important. Using biochemical techniques we identify a cluster of basic residues namely, Lys-354, Lys-358, Arg-360, and Lys-362, in the proximal C terminus as being involved in binding anionic phospholipids. The mutation of specific residues in combination, to alanine leads to the loss of binding to phosphoinositides. Functionally, the introduction of these mutations into KCNQ1 leads to shifts in the voltage dependence of channel activation toward depolarized potentials and reductions in current density. Additionally, the biophysical effects of the charge neutralizing mutations, which disrupt phosphoinositide binding, mirror the effects we see on channel function when we deplete cellular PIP2 levels through activation of a Gq/11-coupled receptor. Conversely, the addition of diC8-PIP2 to the wild-type channel, but not a PIP2 binding-deficient mutant, acts to shift the voltage dependence of channel activation toward hyperpolarized potentials and increase current density. In conclusion, we use a combined biochemical and functional approach to identify a cluster of basic residues important for the binding and action of anionic phospholipids on the KCNQ1/KCNE1 complex.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M110.153551</identifier><identifier>PMID: 21084310</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Substitution ; Amino Acids ; Animals ; Binding Sites ; CHO Cells ; Cricetinae ; Cricetulus ; Heart ; Humans ; Ion Channels ; KCNQ1 Potassium Channel - genetics ; KCNQ1 Potassium Channel - metabolism ; Membrane Biology ; Membrane Potentials - physiology ; Multiprotein Complexes - genetics ; Multiprotein Complexes - metabolism ; Mutation, Missense ; Myocardium - metabolism ; Peptide Mapping - methods ; Phosphatidylinositol Signaling ; Phosphatidylinositols - metabolism ; Plasma Membrane ; Potassium - metabolism ; Potassium Channels ; Potassium Channels, Voltage-Gated - genetics ; Potassium Channels, Voltage-Gated - metabolism</subject><ispartof>The Journal of biological chemistry, 2011-01, Vol.286 (3), p.2088-2100</ispartof><rights>2011 © 2011 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2011 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-3a357e2ae1afa7263cab526fc8f4f3d2b72804ad3fe498bfc1936d934d5bbcfb3</citedby><cites>FETCH-LOGICAL-c466t-3a357e2ae1afa7263cab526fc8f4f3d2b72804ad3fe498bfc1936d934d5bbcfb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3023506/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3023506/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21084310$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thomas, Alison M.</creatorcontrib><creatorcontrib>Harmer, Stephen C.</creatorcontrib><creatorcontrib>Khambra, Tapsi</creatorcontrib><creatorcontrib>Tinker, Andrew</creatorcontrib><title>Characterization of a Binding Site for Anionic Phospholipids on KCNQ1</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The KCNQ family of potassium channels underlie a repolarizing K+ current in the heart and the M-current in neurones. The assembly of KCNQ1 with KCNE1 generates the delayed rectifier current IKs in the heart. Characteristically these channels are regulated via Gq/11-coupled receptors and the inhibition seen after phospholipase C activation is now thought to occur from membrane phosphatidylinositol (4,5)-bisphosphate (PIP2) depletion. It is not clear how KCNQ1 recognizes PIP2 and specifically which residues in the channel complex are important. Using biochemical techniques we identify a cluster of basic residues namely, Lys-354, Lys-358, Arg-360, and Lys-362, in the proximal C terminus as being involved in binding anionic phospholipids. The mutation of specific residues in combination, to alanine leads to the loss of binding to phosphoinositides. Functionally, the introduction of these mutations into KCNQ1 leads to shifts in the voltage dependence of channel activation toward depolarized potentials and reductions in current density. Additionally, the biophysical effects of the charge neutralizing mutations, which disrupt phosphoinositide binding, mirror the effects we see on channel function when we deplete cellular PIP2 levels through activation of a Gq/11-coupled receptor. Conversely, the addition of diC8-PIP2 to the wild-type channel, but not a PIP2 binding-deficient mutant, acts to shift the voltage dependence of channel activation toward hyperpolarized potentials and increase current density. In conclusion, we use a combined biochemical and functional approach to identify a cluster of basic residues important for the binding and action of anionic phospholipids on the KCNQ1/KCNE1 complex.</description><subject>Amino Acid Substitution</subject><subject>Amino Acids</subject><subject>Animals</subject><subject>Binding Sites</subject><subject>CHO Cells</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>Heart</subject><subject>Humans</subject><subject>Ion Channels</subject><subject>KCNQ1 Potassium Channel - genetics</subject><subject>KCNQ1 Potassium Channel - metabolism</subject><subject>Membrane Biology</subject><subject>Membrane Potentials - physiology</subject><subject>Multiprotein Complexes - genetics</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Mutation, Missense</subject><subject>Myocardium - metabolism</subject><subject>Peptide Mapping - methods</subject><subject>Phosphatidylinositol Signaling</subject><subject>Phosphatidylinositols - metabolism</subject><subject>Plasma Membrane</subject><subject>Potassium - metabolism</subject><subject>Potassium Channels</subject><subject>Potassium Channels, Voltage-Gated - genetics</subject><subject>Potassium Channels, Voltage-Gated - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMtKAzEUhoMotlbX7nReYNpcpzMbQYd6wXqjFtyFTC5tSjspyVjQpzdltOjCswmH853_hA-AUwT7CA7pYFHJ_gPadowwhvZAF8GcpISht33QhRCjtMAs74CjEBYwFi3QIejgSFGCYBeMyrnwQjba20_RWFcnziQiubK1svUsmdhGJ8b55LKOMyuT57kL67lb2rVVIYn4ffn4go7BgRHLoE--3x6YXo9ey9t0_HRzV16OU0mzrEmJIGyosdBIGDHEGZGiYjgzMjfUEIWrIc4hFYoYTYu8MhIVJFMFoYpVlTQV6YGLNnf9Xq20krpuvFjytbcr4T-4E5b_ndR2zmduwwnEhMEsBgzaAOldCF6b3S6CfGuUR6N8a5S3RuPG2e-TO_5HYQTOW8AIx8XM28CnEwwRgfH3FOIiEkVL6KhmY7XnQVpdS62s17Lhytl_z38B2vuPkw</recordid><startdate>20110121</startdate><enddate>20110121</enddate><creator>Thomas, Alison M.</creator><creator>Harmer, Stephen C.</creator><creator>Khambra, Tapsi</creator><creator>Tinker, Andrew</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20110121</creationdate><title>Characterization of a Binding Site for Anionic Phospholipids on KCNQ1</title><author>Thomas, Alison M. ; Harmer, Stephen C. ; Khambra, Tapsi ; Tinker, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-3a357e2ae1afa7263cab526fc8f4f3d2b72804ad3fe498bfc1936d934d5bbcfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amino Acid Substitution</topic><topic>Amino Acids</topic><topic>Animals</topic><topic>Binding Sites</topic><topic>CHO Cells</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>Heart</topic><topic>Humans</topic><topic>Ion Channels</topic><topic>KCNQ1 Potassium Channel - genetics</topic><topic>KCNQ1 Potassium Channel - metabolism</topic><topic>Membrane Biology</topic><topic>Membrane Potentials - physiology</topic><topic>Multiprotein Complexes - genetics</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Mutation, Missense</topic><topic>Myocardium - metabolism</topic><topic>Peptide Mapping - methods</topic><topic>Phosphatidylinositol Signaling</topic><topic>Phosphatidylinositols - metabolism</topic><topic>Plasma Membrane</topic><topic>Potassium - metabolism</topic><topic>Potassium Channels</topic><topic>Potassium Channels, Voltage-Gated - genetics</topic><topic>Potassium Channels, Voltage-Gated - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomas, Alison M.</creatorcontrib><creatorcontrib>Harmer, Stephen C.</creatorcontrib><creatorcontrib>Khambra, Tapsi</creatorcontrib><creatorcontrib>Tinker, Andrew</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomas, Alison M.</au><au>Harmer, Stephen C.</au><au>Khambra, Tapsi</au><au>Tinker, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of a Binding Site for Anionic Phospholipids on KCNQ1</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2011-01-21</date><risdate>2011</risdate><volume>286</volume><issue>3</issue><spage>2088</spage><epage>2100</epage><pages>2088-2100</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The KCNQ family of potassium channels underlie a repolarizing K+ current in the heart and the M-current in neurones. The assembly of KCNQ1 with KCNE1 generates the delayed rectifier current IKs in the heart. Characteristically these channels are regulated via Gq/11-coupled receptors and the inhibition seen after phospholipase C activation is now thought to occur from membrane phosphatidylinositol (4,5)-bisphosphate (PIP2) depletion. It is not clear how KCNQ1 recognizes PIP2 and specifically which residues in the channel complex are important. Using biochemical techniques we identify a cluster of basic residues namely, Lys-354, Lys-358, Arg-360, and Lys-362, in the proximal C terminus as being involved in binding anionic phospholipids. The mutation of specific residues in combination, to alanine leads to the loss of binding to phosphoinositides. Functionally, the introduction of these mutations into KCNQ1 leads to shifts in the voltage dependence of channel activation toward depolarized potentials and reductions in current density. Additionally, the biophysical effects of the charge neutralizing mutations, which disrupt phosphoinositide binding, mirror the effects we see on channel function when we deplete cellular PIP2 levels through activation of a Gq/11-coupled receptor. Conversely, the addition of diC8-PIP2 to the wild-type channel, but not a PIP2 binding-deficient mutant, acts to shift the voltage dependence of channel activation toward hyperpolarized potentials and increase current density. In conclusion, we use a combined biochemical and functional approach to identify a cluster of basic residues important for the binding and action of anionic phospholipids on the KCNQ1/KCNE1 complex.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21084310</pmid><doi>10.1074/jbc.M110.153551</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2011-01, Vol.286 (3), p.2088-2100 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3023506 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Amino Acid Substitution Amino Acids Animals Binding Sites CHO Cells Cricetinae Cricetulus Heart Humans Ion Channels KCNQ1 Potassium Channel - genetics KCNQ1 Potassium Channel - metabolism Membrane Biology Membrane Potentials - physiology Multiprotein Complexes - genetics Multiprotein Complexes - metabolism Mutation, Missense Myocardium - metabolism Peptide Mapping - methods Phosphatidylinositol Signaling Phosphatidylinositols - metabolism Plasma Membrane Potassium - metabolism Potassium Channels Potassium Channels, Voltage-Gated - genetics Potassium Channels, Voltage-Gated - metabolism |
title | Characterization of a Binding Site for Anionic Phospholipids on KCNQ1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A39%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20a%20Binding%20Site%20for%20Anionic%20Phospholipids%20on%20KCNQ1&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Thomas,%20Alison%20M.&rft.date=2011-01-21&rft.volume=286&rft.issue=3&rft.spage=2088&rft.epage=2100&rft.pages=2088-2100&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M110.153551&rft_dat=%3Cpubmed_cross%3E21084310%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21084310&rft_els_id=S0021925820562443&rfr_iscdi=true |