Characterization of a Binding Site for Anionic Phospholipids on KCNQ1

The KCNQ family of potassium channels underlie a repolarizing K+ current in the heart and the M-current in neurones. The assembly of KCNQ1 with KCNE1 generates the delayed rectifier current IKs in the heart. Characteristically these channels are regulated via Gq/11-coupled receptors and the inhibiti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2011-01, Vol.286 (3), p.2088-2100
Hauptverfasser: Thomas, Alison M., Harmer, Stephen C., Khambra, Tapsi, Tinker, Andrew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2100
container_issue 3
container_start_page 2088
container_title The Journal of biological chemistry
container_volume 286
creator Thomas, Alison M.
Harmer, Stephen C.
Khambra, Tapsi
Tinker, Andrew
description The KCNQ family of potassium channels underlie a repolarizing K+ current in the heart and the M-current in neurones. The assembly of KCNQ1 with KCNE1 generates the delayed rectifier current IKs in the heart. Characteristically these channels are regulated via Gq/11-coupled receptors and the inhibition seen after phospholipase C activation is now thought to occur from membrane phosphatidylinositol (4,5)-bisphosphate (PIP2) depletion. It is not clear how KCNQ1 recognizes PIP2 and specifically which residues in the channel complex are important. Using biochemical techniques we identify a cluster of basic residues namely, Lys-354, Lys-358, Arg-360, and Lys-362, in the proximal C terminus as being involved in binding anionic phospholipids. The mutation of specific residues in combination, to alanine leads to the loss of binding to phosphoinositides. Functionally, the introduction of these mutations into KCNQ1 leads to shifts in the voltage dependence of channel activation toward depolarized potentials and reductions in current density. Additionally, the biophysical effects of the charge neutralizing mutations, which disrupt phosphoinositide binding, mirror the effects we see on channel function when we deplete cellular PIP2 levels through activation of a Gq/11-coupled receptor. Conversely, the addition of diC8-PIP2 to the wild-type channel, but not a PIP2 binding-deficient mutant, acts to shift the voltage dependence of channel activation toward hyperpolarized potentials and increase current density. In conclusion, we use a combined biochemical and functional approach to identify a cluster of basic residues important for the binding and action of anionic phospholipids on the KCNQ1/KCNE1 complex.
doi_str_mv 10.1074/jbc.M110.153551
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3023506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820562443</els_id><sourcerecordid>21084310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-3a357e2ae1afa7263cab526fc8f4f3d2b72804ad3fe498bfc1936d934d5bbcfb3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMotlbX7nReYNpcpzMbQYd6wXqjFtyFTC5tSjspyVjQpzdltOjCswmH853_hA-AUwT7CA7pYFHJ_gPadowwhvZAF8GcpISht33QhRCjtMAs74CjEBYwFi3QIejgSFGCYBeMyrnwQjba20_RWFcnziQiubK1svUsmdhGJ8b55LKOMyuT57kL67lb2rVVIYn4ffn4go7BgRHLoE--3x6YXo9ey9t0_HRzV16OU0mzrEmJIGyosdBIGDHEGZGiYjgzMjfUEIWrIc4hFYoYTYu8MhIVJFMFoYpVlTQV6YGLNnf9Xq20krpuvFjytbcr4T-4E5b_ndR2zmduwwnEhMEsBgzaAOldCF6b3S6CfGuUR6N8a5S3RuPG2e-TO_5HYQTOW8AIx8XM28CnEwwRgfH3FOIiEkVL6KhmY7XnQVpdS62s17Lhytl_z38B2vuPkw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Characterization of a Binding Site for Anionic Phospholipids on KCNQ1</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Thomas, Alison M. ; Harmer, Stephen C. ; Khambra, Tapsi ; Tinker, Andrew</creator><creatorcontrib>Thomas, Alison M. ; Harmer, Stephen C. ; Khambra, Tapsi ; Tinker, Andrew</creatorcontrib><description>The KCNQ family of potassium channels underlie a repolarizing K+ current in the heart and the M-current in neurones. The assembly of KCNQ1 with KCNE1 generates the delayed rectifier current IKs in the heart. Characteristically these channels are regulated via Gq/11-coupled receptors and the inhibition seen after phospholipase C activation is now thought to occur from membrane phosphatidylinositol (4,5)-bisphosphate (PIP2) depletion. It is not clear how KCNQ1 recognizes PIP2 and specifically which residues in the channel complex are important. Using biochemical techniques we identify a cluster of basic residues namely, Lys-354, Lys-358, Arg-360, and Lys-362, in the proximal C terminus as being involved in binding anionic phospholipids. The mutation of specific residues in combination, to alanine leads to the loss of binding to phosphoinositides. Functionally, the introduction of these mutations into KCNQ1 leads to shifts in the voltage dependence of channel activation toward depolarized potentials and reductions in current density. Additionally, the biophysical effects of the charge neutralizing mutations, which disrupt phosphoinositide binding, mirror the effects we see on channel function when we deplete cellular PIP2 levels through activation of a Gq/11-coupled receptor. Conversely, the addition of diC8-PIP2 to the wild-type channel, but not a PIP2 binding-deficient mutant, acts to shift the voltage dependence of channel activation toward hyperpolarized potentials and increase current density. In conclusion, we use a combined biochemical and functional approach to identify a cluster of basic residues important for the binding and action of anionic phospholipids on the KCNQ1/KCNE1 complex.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M110.153551</identifier><identifier>PMID: 21084310</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Substitution ; Amino Acids ; Animals ; Binding Sites ; CHO Cells ; Cricetinae ; Cricetulus ; Heart ; Humans ; Ion Channels ; KCNQ1 Potassium Channel - genetics ; KCNQ1 Potassium Channel - metabolism ; Membrane Biology ; Membrane Potentials - physiology ; Multiprotein Complexes - genetics ; Multiprotein Complexes - metabolism ; Mutation, Missense ; Myocardium - metabolism ; Peptide Mapping - methods ; Phosphatidylinositol Signaling ; Phosphatidylinositols - metabolism ; Plasma Membrane ; Potassium - metabolism ; Potassium Channels ; Potassium Channels, Voltage-Gated - genetics ; Potassium Channels, Voltage-Gated - metabolism</subject><ispartof>The Journal of biological chemistry, 2011-01, Vol.286 (3), p.2088-2100</ispartof><rights>2011 © 2011 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2011 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-3a357e2ae1afa7263cab526fc8f4f3d2b72804ad3fe498bfc1936d934d5bbcfb3</citedby><cites>FETCH-LOGICAL-c466t-3a357e2ae1afa7263cab526fc8f4f3d2b72804ad3fe498bfc1936d934d5bbcfb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3023506/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3023506/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21084310$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thomas, Alison M.</creatorcontrib><creatorcontrib>Harmer, Stephen C.</creatorcontrib><creatorcontrib>Khambra, Tapsi</creatorcontrib><creatorcontrib>Tinker, Andrew</creatorcontrib><title>Characterization of a Binding Site for Anionic Phospholipids on KCNQ1</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The KCNQ family of potassium channels underlie a repolarizing K+ current in the heart and the M-current in neurones. The assembly of KCNQ1 with KCNE1 generates the delayed rectifier current IKs in the heart. Characteristically these channels are regulated via Gq/11-coupled receptors and the inhibition seen after phospholipase C activation is now thought to occur from membrane phosphatidylinositol (4,5)-bisphosphate (PIP2) depletion. It is not clear how KCNQ1 recognizes PIP2 and specifically which residues in the channel complex are important. Using biochemical techniques we identify a cluster of basic residues namely, Lys-354, Lys-358, Arg-360, and Lys-362, in the proximal C terminus as being involved in binding anionic phospholipids. The mutation of specific residues in combination, to alanine leads to the loss of binding to phosphoinositides. Functionally, the introduction of these mutations into KCNQ1 leads to shifts in the voltage dependence of channel activation toward depolarized potentials and reductions in current density. Additionally, the biophysical effects of the charge neutralizing mutations, which disrupt phosphoinositide binding, mirror the effects we see on channel function when we deplete cellular PIP2 levels through activation of a Gq/11-coupled receptor. Conversely, the addition of diC8-PIP2 to the wild-type channel, but not a PIP2 binding-deficient mutant, acts to shift the voltage dependence of channel activation toward hyperpolarized potentials and increase current density. In conclusion, we use a combined biochemical and functional approach to identify a cluster of basic residues important for the binding and action of anionic phospholipids on the KCNQ1/KCNE1 complex.</description><subject>Amino Acid Substitution</subject><subject>Amino Acids</subject><subject>Animals</subject><subject>Binding Sites</subject><subject>CHO Cells</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>Heart</subject><subject>Humans</subject><subject>Ion Channels</subject><subject>KCNQ1 Potassium Channel - genetics</subject><subject>KCNQ1 Potassium Channel - metabolism</subject><subject>Membrane Biology</subject><subject>Membrane Potentials - physiology</subject><subject>Multiprotein Complexes - genetics</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Mutation, Missense</subject><subject>Myocardium - metabolism</subject><subject>Peptide Mapping - methods</subject><subject>Phosphatidylinositol Signaling</subject><subject>Phosphatidylinositols - metabolism</subject><subject>Plasma Membrane</subject><subject>Potassium - metabolism</subject><subject>Potassium Channels</subject><subject>Potassium Channels, Voltage-Gated - genetics</subject><subject>Potassium Channels, Voltage-Gated - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMtKAzEUhoMotlbX7nReYNpcpzMbQYd6wXqjFtyFTC5tSjspyVjQpzdltOjCswmH853_hA-AUwT7CA7pYFHJ_gPadowwhvZAF8GcpISht33QhRCjtMAs74CjEBYwFi3QIejgSFGCYBeMyrnwQjba20_RWFcnziQiubK1svUsmdhGJ8b55LKOMyuT57kL67lb2rVVIYn4ffn4go7BgRHLoE--3x6YXo9ey9t0_HRzV16OU0mzrEmJIGyosdBIGDHEGZGiYjgzMjfUEIWrIc4hFYoYTYu8MhIVJFMFoYpVlTQV6YGLNnf9Xq20krpuvFjytbcr4T-4E5b_ndR2zmduwwnEhMEsBgzaAOldCF6b3S6CfGuUR6N8a5S3RuPG2e-TO_5HYQTOW8AIx8XM28CnEwwRgfH3FOIiEkVL6KhmY7XnQVpdS62s17Lhytl_z38B2vuPkw</recordid><startdate>20110121</startdate><enddate>20110121</enddate><creator>Thomas, Alison M.</creator><creator>Harmer, Stephen C.</creator><creator>Khambra, Tapsi</creator><creator>Tinker, Andrew</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20110121</creationdate><title>Characterization of a Binding Site for Anionic Phospholipids on KCNQ1</title><author>Thomas, Alison M. ; Harmer, Stephen C. ; Khambra, Tapsi ; Tinker, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-3a357e2ae1afa7263cab526fc8f4f3d2b72804ad3fe498bfc1936d934d5bbcfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amino Acid Substitution</topic><topic>Amino Acids</topic><topic>Animals</topic><topic>Binding Sites</topic><topic>CHO Cells</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>Heart</topic><topic>Humans</topic><topic>Ion Channels</topic><topic>KCNQ1 Potassium Channel - genetics</topic><topic>KCNQ1 Potassium Channel - metabolism</topic><topic>Membrane Biology</topic><topic>Membrane Potentials - physiology</topic><topic>Multiprotein Complexes - genetics</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Mutation, Missense</topic><topic>Myocardium - metabolism</topic><topic>Peptide Mapping - methods</topic><topic>Phosphatidylinositol Signaling</topic><topic>Phosphatidylinositols - metabolism</topic><topic>Plasma Membrane</topic><topic>Potassium - metabolism</topic><topic>Potassium Channels</topic><topic>Potassium Channels, Voltage-Gated - genetics</topic><topic>Potassium Channels, Voltage-Gated - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomas, Alison M.</creatorcontrib><creatorcontrib>Harmer, Stephen C.</creatorcontrib><creatorcontrib>Khambra, Tapsi</creatorcontrib><creatorcontrib>Tinker, Andrew</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomas, Alison M.</au><au>Harmer, Stephen C.</au><au>Khambra, Tapsi</au><au>Tinker, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of a Binding Site for Anionic Phospholipids on KCNQ1</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2011-01-21</date><risdate>2011</risdate><volume>286</volume><issue>3</issue><spage>2088</spage><epage>2100</epage><pages>2088-2100</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The KCNQ family of potassium channels underlie a repolarizing K+ current in the heart and the M-current in neurones. The assembly of KCNQ1 with KCNE1 generates the delayed rectifier current IKs in the heart. Characteristically these channels are regulated via Gq/11-coupled receptors and the inhibition seen after phospholipase C activation is now thought to occur from membrane phosphatidylinositol (4,5)-bisphosphate (PIP2) depletion. It is not clear how KCNQ1 recognizes PIP2 and specifically which residues in the channel complex are important. Using biochemical techniques we identify a cluster of basic residues namely, Lys-354, Lys-358, Arg-360, and Lys-362, in the proximal C terminus as being involved in binding anionic phospholipids. The mutation of specific residues in combination, to alanine leads to the loss of binding to phosphoinositides. Functionally, the introduction of these mutations into KCNQ1 leads to shifts in the voltage dependence of channel activation toward depolarized potentials and reductions in current density. Additionally, the biophysical effects of the charge neutralizing mutations, which disrupt phosphoinositide binding, mirror the effects we see on channel function when we deplete cellular PIP2 levels through activation of a Gq/11-coupled receptor. Conversely, the addition of diC8-PIP2 to the wild-type channel, but not a PIP2 binding-deficient mutant, acts to shift the voltage dependence of channel activation toward hyperpolarized potentials and increase current density. In conclusion, we use a combined biochemical and functional approach to identify a cluster of basic residues important for the binding and action of anionic phospholipids on the KCNQ1/KCNE1 complex.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21084310</pmid><doi>10.1074/jbc.M110.153551</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2011-01, Vol.286 (3), p.2088-2100
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3023506
source MEDLINE; PubMed Central; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Amino Acid Substitution
Amino Acids
Animals
Binding Sites
CHO Cells
Cricetinae
Cricetulus
Heart
Humans
Ion Channels
KCNQ1 Potassium Channel - genetics
KCNQ1 Potassium Channel - metabolism
Membrane Biology
Membrane Potentials - physiology
Multiprotein Complexes - genetics
Multiprotein Complexes - metabolism
Mutation, Missense
Myocardium - metabolism
Peptide Mapping - methods
Phosphatidylinositol Signaling
Phosphatidylinositols - metabolism
Plasma Membrane
Potassium - metabolism
Potassium Channels
Potassium Channels, Voltage-Gated - genetics
Potassium Channels, Voltage-Gated - metabolism
title Characterization of a Binding Site for Anionic Phospholipids on KCNQ1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A39%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20a%20Binding%20Site%20for%20Anionic%20Phospholipids%20on%20KCNQ1&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Thomas,%20Alison%20M.&rft.date=2011-01-21&rft.volume=286&rft.issue=3&rft.spage=2088&rft.epage=2100&rft.pages=2088-2100&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M110.153551&rft_dat=%3Cpubmed_cross%3E21084310%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21084310&rft_els_id=S0021925820562443&rfr_iscdi=true