Fluorescence of Phytochrome Adducts with Synthetic Locked Chromophores
We performed steady state fluorescence measurements with phytochromes Agp1 and Agp2 of Agrobacterium tumefaciens and three mutants in which photoconversion is inhibited. These proteins were assembled with the natural chromophore biliverdin (BV), with phycoerythrobilin (PEB), which lacks a double bon...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2011-01, Vol.286 (2), p.1103-1113 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1113 |
---|---|
container_issue | 2 |
container_start_page | 1103 |
container_title | The Journal of biological chemistry |
container_volume | 286 |
creator | Zienicke, Benjamin Chen, Li-Yi Khawn, Htoi Hammam, Mostafa A.S. Kinoshita, Hideki Reichert, Johannes Ulrich, Anne S. Inomata, Katsuhiko Lamparter, Tilman |
description | We performed steady state fluorescence measurements with phytochromes Agp1 and Agp2 of Agrobacterium tumefaciens and three mutants in which photoconversion is inhibited. These proteins were assembled with the natural chromophore biliverdin (BV), with phycoerythrobilin (PEB), which lacks a double bond in the ring C-D-connecting methine bridge, and with synthetic bilin derivatives in which the ring C-D-connecting methine bridge is locked. All PEB and locked chromophore adducts are photoinactive. According to fluorescence quantum yields, the adducts may be divided into four different groups: wild type BV adducts exhibiting a weak fluorescence, mutant BV adducts with about 10-fold enhanced fluorescence, adducts with locked chromophores in which the fluorescence quantum yields are around 0.02, and PEB adducts with a high quantum yield of around 0.5. Thus, the strong fluorescence of the PEB adducts is not reached by the locked chromophore adducts, although the photoconversion energy dissipation pathway is blocked. We therefore suggest that ring D of the bilin chromophore, which contributes to the extended π-electron system of the locked chromophores, provides an energy dissipation pathway that is independent on photoconversion. |
doi_str_mv | 10.1074/jbc.M110.155143 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3020717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820562984</els_id><sourcerecordid>21071442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-19660c6f4cf624a85821573b3baa65c8dde2e22594a61ca8ab5c391c273449503</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMotlbP3nT_wGq-u3sRSrEqVBSq4C1kZ7NuatuUZFvpvzfLatGDuYQwzzszeRA6J_iK4CG_nhdw9UjalxCEswPUJzhjKRPk7RD1MaYkzanIeugkhDmOh-fkGPVoDBPOaR9NJouN8yaAWYFJXJU817vGQe3d0iSjstxAE5JP29TJbLdqatNYSKYOPkyZjFvIres2foqOKr0I5uz7HqDXye3L-D6dPt09jEfTFLiUTUpyKTHIikMlKdeZyCgRQ1awQmspICtLQw2lIudaEtCZLgSwnAAdMs5zgdkA3XR915tiacq4deP1Qq29XWq_U05b9beysrV6d1vFMI1fHsYG110D8C4Eb6p9lmDVKlVRqWqVqk5pTFz8HrnnfxxG4LIDKu2Ufvc2qNcZxYRhkrO4vYxE3hEmqtla41UA2wovrTfQqNLZf8d_AdcSj74</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fluorescence of Phytochrome Adducts with Synthetic Locked Chromophores</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Zienicke, Benjamin ; Chen, Li-Yi ; Khawn, Htoi ; Hammam, Mostafa A.S. ; Kinoshita, Hideki ; Reichert, Johannes ; Ulrich, Anne S. ; Inomata, Katsuhiko ; Lamparter, Tilman</creator><creatorcontrib>Zienicke, Benjamin ; Chen, Li-Yi ; Khawn, Htoi ; Hammam, Mostafa A.S. ; Kinoshita, Hideki ; Reichert, Johannes ; Ulrich, Anne S. ; Inomata, Katsuhiko ; Lamparter, Tilman</creatorcontrib><description>We performed steady state fluorescence measurements with phytochromes Agp1 and Agp2 of Agrobacterium tumefaciens and three mutants in which photoconversion is inhibited. These proteins were assembled with the natural chromophore biliverdin (BV), with phycoerythrobilin (PEB), which lacks a double bond in the ring C-D-connecting methine bridge, and with synthetic bilin derivatives in which the ring C-D-connecting methine bridge is locked. All PEB and locked chromophore adducts are photoinactive. According to fluorescence quantum yields, the adducts may be divided into four different groups: wild type BV adducts exhibiting a weak fluorescence, mutant BV adducts with about 10-fold enhanced fluorescence, adducts with locked chromophores in which the fluorescence quantum yields are around 0.02, and PEB adducts with a high quantum yield of around 0.5. Thus, the strong fluorescence of the PEB adducts is not reached by the locked chromophore adducts, although the photoconversion energy dissipation pathway is blocked. We therefore suggest that ring D of the bilin chromophore, which contributes to the extended π-electron system of the locked chromophores, provides an energy dissipation pathway that is independent on photoconversion.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M110.155143</identifier><identifier>PMID: 21071442</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Agrobacterium tumefaciens - chemistry ; Agrobacterium tumefaciens - genetics ; Agrobacterium tumefaciens - metabolism ; Bacterial Protein Kinases ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bilin ; Biliverdine - chemistry ; Biliverdine - genetics ; Biliverdine - metabolism ; Fluorescence ; Fluorescent Dyes - chemistry ; Fluorescent Dyes - metabolism ; Mutagenesis, Site-Directed ; Photochemistry ; Photoreceptors ; Phycobilins - chemistry ; Phycobilins - genetics ; Phycobilins - metabolism ; Phycoerythrin - chemistry ; Phycoerythrin - genetics ; Phycoerythrin - metabolism ; Phytochrome - chemistry ; Phytochrome - genetics ; Phytochrome - metabolism ; Protein Assembly ; Protein Structure, Tertiary ; Signal Transduction ; Site-directed Mutagenesis ; Synthetic Chromophores</subject><ispartof>The Journal of biological chemistry, 2011-01, Vol.286 (2), p.1103-1113</ispartof><rights>2011 © 2011 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2011 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-19660c6f4cf624a85821573b3baa65c8dde2e22594a61ca8ab5c391c273449503</citedby><cites>FETCH-LOGICAL-c466t-19660c6f4cf624a85821573b3baa65c8dde2e22594a61ca8ab5c391c273449503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3020717/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3020717/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21071442$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zienicke, Benjamin</creatorcontrib><creatorcontrib>Chen, Li-Yi</creatorcontrib><creatorcontrib>Khawn, Htoi</creatorcontrib><creatorcontrib>Hammam, Mostafa A.S.</creatorcontrib><creatorcontrib>Kinoshita, Hideki</creatorcontrib><creatorcontrib>Reichert, Johannes</creatorcontrib><creatorcontrib>Ulrich, Anne S.</creatorcontrib><creatorcontrib>Inomata, Katsuhiko</creatorcontrib><creatorcontrib>Lamparter, Tilman</creatorcontrib><title>Fluorescence of Phytochrome Adducts with Synthetic Locked Chromophores</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>We performed steady state fluorescence measurements with phytochromes Agp1 and Agp2 of Agrobacterium tumefaciens and three mutants in which photoconversion is inhibited. These proteins were assembled with the natural chromophore biliverdin (BV), with phycoerythrobilin (PEB), which lacks a double bond in the ring C-D-connecting methine bridge, and with synthetic bilin derivatives in which the ring C-D-connecting methine bridge is locked. All PEB and locked chromophore adducts are photoinactive. According to fluorescence quantum yields, the adducts may be divided into four different groups: wild type BV adducts exhibiting a weak fluorescence, mutant BV adducts with about 10-fold enhanced fluorescence, adducts with locked chromophores in which the fluorescence quantum yields are around 0.02, and PEB adducts with a high quantum yield of around 0.5. Thus, the strong fluorescence of the PEB adducts is not reached by the locked chromophore adducts, although the photoconversion energy dissipation pathway is blocked. We therefore suggest that ring D of the bilin chromophore, which contributes to the extended π-electron system of the locked chromophores, provides an energy dissipation pathway that is independent on photoconversion.</description><subject>Agrobacterium tumefaciens - chemistry</subject><subject>Agrobacterium tumefaciens - genetics</subject><subject>Agrobacterium tumefaciens - metabolism</subject><subject>Bacterial Protein Kinases</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bilin</subject><subject>Biliverdine - chemistry</subject><subject>Biliverdine - genetics</subject><subject>Biliverdine - metabolism</subject><subject>Fluorescence</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Fluorescent Dyes - metabolism</subject><subject>Mutagenesis, Site-Directed</subject><subject>Photochemistry</subject><subject>Photoreceptors</subject><subject>Phycobilins - chemistry</subject><subject>Phycobilins - genetics</subject><subject>Phycobilins - metabolism</subject><subject>Phycoerythrin - chemistry</subject><subject>Phycoerythrin - genetics</subject><subject>Phycoerythrin - metabolism</subject><subject>Phytochrome - chemistry</subject><subject>Phytochrome - genetics</subject><subject>Phytochrome - metabolism</subject><subject>Protein Assembly</subject><subject>Protein Structure, Tertiary</subject><subject>Signal Transduction</subject><subject>Site-directed Mutagenesis</subject><subject>Synthetic Chromophores</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1LAzEQhoMotlbP3nT_wGq-u3sRSrEqVBSq4C1kZ7NuatuUZFvpvzfLatGDuYQwzzszeRA6J_iK4CG_nhdw9UjalxCEswPUJzhjKRPk7RD1MaYkzanIeugkhDmOh-fkGPVoDBPOaR9NJouN8yaAWYFJXJU817vGQe3d0iSjstxAE5JP29TJbLdqatNYSKYOPkyZjFvIres2foqOKr0I5uz7HqDXye3L-D6dPt09jEfTFLiUTUpyKTHIikMlKdeZyCgRQ1awQmspICtLQw2lIudaEtCZLgSwnAAdMs5zgdkA3XR915tiacq4deP1Qq29XWq_U05b9beysrV6d1vFMI1fHsYG110D8C4Eb6p9lmDVKlVRqWqVqk5pTFz8HrnnfxxG4LIDKu2Ufvc2qNcZxYRhkrO4vYxE3hEmqtla41UA2wovrTfQqNLZf8d_AdcSj74</recordid><startdate>20110114</startdate><enddate>20110114</enddate><creator>Zienicke, Benjamin</creator><creator>Chen, Li-Yi</creator><creator>Khawn, Htoi</creator><creator>Hammam, Mostafa A.S.</creator><creator>Kinoshita, Hideki</creator><creator>Reichert, Johannes</creator><creator>Ulrich, Anne S.</creator><creator>Inomata, Katsuhiko</creator><creator>Lamparter, Tilman</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20110114</creationdate><title>Fluorescence of Phytochrome Adducts with Synthetic Locked Chromophores</title><author>Zienicke, Benjamin ; Chen, Li-Yi ; Khawn, Htoi ; Hammam, Mostafa A.S. ; Kinoshita, Hideki ; Reichert, Johannes ; Ulrich, Anne S. ; Inomata, Katsuhiko ; Lamparter, Tilman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-19660c6f4cf624a85821573b3baa65c8dde2e22594a61ca8ab5c391c273449503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Agrobacterium tumefaciens - chemistry</topic><topic>Agrobacterium tumefaciens - genetics</topic><topic>Agrobacterium tumefaciens - metabolism</topic><topic>Bacterial Protein Kinases</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bilin</topic><topic>Biliverdine - chemistry</topic><topic>Biliverdine - genetics</topic><topic>Biliverdine - metabolism</topic><topic>Fluorescence</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Fluorescent Dyes - metabolism</topic><topic>Mutagenesis, Site-Directed</topic><topic>Photochemistry</topic><topic>Photoreceptors</topic><topic>Phycobilins - chemistry</topic><topic>Phycobilins - genetics</topic><topic>Phycobilins - metabolism</topic><topic>Phycoerythrin - chemistry</topic><topic>Phycoerythrin - genetics</topic><topic>Phycoerythrin - metabolism</topic><topic>Phytochrome - chemistry</topic><topic>Phytochrome - genetics</topic><topic>Phytochrome - metabolism</topic><topic>Protein Assembly</topic><topic>Protein Structure, Tertiary</topic><topic>Signal Transduction</topic><topic>Site-directed Mutagenesis</topic><topic>Synthetic Chromophores</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zienicke, Benjamin</creatorcontrib><creatorcontrib>Chen, Li-Yi</creatorcontrib><creatorcontrib>Khawn, Htoi</creatorcontrib><creatorcontrib>Hammam, Mostafa A.S.</creatorcontrib><creatorcontrib>Kinoshita, Hideki</creatorcontrib><creatorcontrib>Reichert, Johannes</creatorcontrib><creatorcontrib>Ulrich, Anne S.</creatorcontrib><creatorcontrib>Inomata, Katsuhiko</creatorcontrib><creatorcontrib>Lamparter, Tilman</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zienicke, Benjamin</au><au>Chen, Li-Yi</au><au>Khawn, Htoi</au><au>Hammam, Mostafa A.S.</au><au>Kinoshita, Hideki</au><au>Reichert, Johannes</au><au>Ulrich, Anne S.</au><au>Inomata, Katsuhiko</au><au>Lamparter, Tilman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluorescence of Phytochrome Adducts with Synthetic Locked Chromophores</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2011-01-14</date><risdate>2011</risdate><volume>286</volume><issue>2</issue><spage>1103</spage><epage>1113</epage><pages>1103-1113</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>We performed steady state fluorescence measurements with phytochromes Agp1 and Agp2 of Agrobacterium tumefaciens and three mutants in which photoconversion is inhibited. These proteins were assembled with the natural chromophore biliverdin (BV), with phycoerythrobilin (PEB), which lacks a double bond in the ring C-D-connecting methine bridge, and with synthetic bilin derivatives in which the ring C-D-connecting methine bridge is locked. All PEB and locked chromophore adducts are photoinactive. According to fluorescence quantum yields, the adducts may be divided into four different groups: wild type BV adducts exhibiting a weak fluorescence, mutant BV adducts with about 10-fold enhanced fluorescence, adducts with locked chromophores in which the fluorescence quantum yields are around 0.02, and PEB adducts with a high quantum yield of around 0.5. Thus, the strong fluorescence of the PEB adducts is not reached by the locked chromophore adducts, although the photoconversion energy dissipation pathway is blocked. We therefore suggest that ring D of the bilin chromophore, which contributes to the extended π-electron system of the locked chromophores, provides an energy dissipation pathway that is independent on photoconversion.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21071442</pmid><doi>10.1074/jbc.M110.155143</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2011-01, Vol.286 (2), p.1103-1113 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3020717 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Agrobacterium tumefaciens - chemistry Agrobacterium tumefaciens - genetics Agrobacterium tumefaciens - metabolism Bacterial Protein Kinases Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Bilin Biliverdine - chemistry Biliverdine - genetics Biliverdine - metabolism Fluorescence Fluorescent Dyes - chemistry Fluorescent Dyes - metabolism Mutagenesis, Site-Directed Photochemistry Photoreceptors Phycobilins - chemistry Phycobilins - genetics Phycobilins - metabolism Phycoerythrin - chemistry Phycoerythrin - genetics Phycoerythrin - metabolism Phytochrome - chemistry Phytochrome - genetics Phytochrome - metabolism Protein Assembly Protein Structure, Tertiary Signal Transduction Site-directed Mutagenesis Synthetic Chromophores |
title | Fluorescence of Phytochrome Adducts with Synthetic Locked Chromophores |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A56%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluorescence%20of%20Phytochrome%20Adducts%20with%20Synthetic%20Locked%20Chromophores&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Zienicke,%20Benjamin&rft.date=2011-01-14&rft.volume=286&rft.issue=2&rft.spage=1103&rft.epage=1113&rft.pages=1103-1113&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M110.155143&rft_dat=%3Cpubmed_cross%3E21071442%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21071442&rft_els_id=S0021925820562984&rfr_iscdi=true |