Fluorescence of Phytochrome Adducts with Synthetic Locked Chromophores

We performed steady state fluorescence measurements with phytochromes Agp1 and Agp2 of Agrobacterium tumefaciens and three mutants in which photoconversion is inhibited. These proteins were assembled with the natural chromophore biliverdin (BV), with phycoerythrobilin (PEB), which lacks a double bon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2011-01, Vol.286 (2), p.1103-1113
Hauptverfasser: Zienicke, Benjamin, Chen, Li-Yi, Khawn, Htoi, Hammam, Mostafa A.S., Kinoshita, Hideki, Reichert, Johannes, Ulrich, Anne S., Inomata, Katsuhiko, Lamparter, Tilman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1113
container_issue 2
container_start_page 1103
container_title The Journal of biological chemistry
container_volume 286
creator Zienicke, Benjamin
Chen, Li-Yi
Khawn, Htoi
Hammam, Mostafa A.S.
Kinoshita, Hideki
Reichert, Johannes
Ulrich, Anne S.
Inomata, Katsuhiko
Lamparter, Tilman
description We performed steady state fluorescence measurements with phytochromes Agp1 and Agp2 of Agrobacterium tumefaciens and three mutants in which photoconversion is inhibited. These proteins were assembled with the natural chromophore biliverdin (BV), with phycoerythrobilin (PEB), which lacks a double bond in the ring C-D-connecting methine bridge, and with synthetic bilin derivatives in which the ring C-D-connecting methine bridge is locked. All PEB and locked chromophore adducts are photoinactive. According to fluorescence quantum yields, the adducts may be divided into four different groups: wild type BV adducts exhibiting a weak fluorescence, mutant BV adducts with about 10-fold enhanced fluorescence, adducts with locked chromophores in which the fluorescence quantum yields are around 0.02, and PEB adducts with a high quantum yield of around 0.5. Thus, the strong fluorescence of the PEB adducts is not reached by the locked chromophore adducts, although the photoconversion energy dissipation pathway is blocked. We therefore suggest that ring D of the bilin chromophore, which contributes to the extended π-electron system of the locked chromophores, provides an energy dissipation pathway that is independent on photoconversion.
doi_str_mv 10.1074/jbc.M110.155143
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3020717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820562984</els_id><sourcerecordid>21071442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-19660c6f4cf624a85821573b3baa65c8dde2e22594a61ca8ab5c391c273449503</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMotlbP3nT_wGq-u3sRSrEqVBSq4C1kZ7NuatuUZFvpvzfLatGDuYQwzzszeRA6J_iK4CG_nhdw9UjalxCEswPUJzhjKRPk7RD1MaYkzanIeugkhDmOh-fkGPVoDBPOaR9NJouN8yaAWYFJXJU817vGQe3d0iSjstxAE5JP29TJbLdqatNYSKYOPkyZjFvIres2foqOKr0I5uz7HqDXye3L-D6dPt09jEfTFLiUTUpyKTHIikMlKdeZyCgRQ1awQmspICtLQw2lIudaEtCZLgSwnAAdMs5zgdkA3XR915tiacq4deP1Qq29XWq_U05b9beysrV6d1vFMI1fHsYG110D8C4Eb6p9lmDVKlVRqWqVqk5pTFz8HrnnfxxG4LIDKu2Ufvc2qNcZxYRhkrO4vYxE3hEmqtla41UA2wovrTfQqNLZf8d_AdcSj74</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fluorescence of Phytochrome Adducts with Synthetic Locked Chromophores</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Zienicke, Benjamin ; Chen, Li-Yi ; Khawn, Htoi ; Hammam, Mostafa A.S. ; Kinoshita, Hideki ; Reichert, Johannes ; Ulrich, Anne S. ; Inomata, Katsuhiko ; Lamparter, Tilman</creator><creatorcontrib>Zienicke, Benjamin ; Chen, Li-Yi ; Khawn, Htoi ; Hammam, Mostafa A.S. ; Kinoshita, Hideki ; Reichert, Johannes ; Ulrich, Anne S. ; Inomata, Katsuhiko ; Lamparter, Tilman</creatorcontrib><description>We performed steady state fluorescence measurements with phytochromes Agp1 and Agp2 of Agrobacterium tumefaciens and three mutants in which photoconversion is inhibited. These proteins were assembled with the natural chromophore biliverdin (BV), with phycoerythrobilin (PEB), which lacks a double bond in the ring C-D-connecting methine bridge, and with synthetic bilin derivatives in which the ring C-D-connecting methine bridge is locked. All PEB and locked chromophore adducts are photoinactive. According to fluorescence quantum yields, the adducts may be divided into four different groups: wild type BV adducts exhibiting a weak fluorescence, mutant BV adducts with about 10-fold enhanced fluorescence, adducts with locked chromophores in which the fluorescence quantum yields are around 0.02, and PEB adducts with a high quantum yield of around 0.5. Thus, the strong fluorescence of the PEB adducts is not reached by the locked chromophore adducts, although the photoconversion energy dissipation pathway is blocked. We therefore suggest that ring D of the bilin chromophore, which contributes to the extended π-electron system of the locked chromophores, provides an energy dissipation pathway that is independent on photoconversion.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M110.155143</identifier><identifier>PMID: 21071442</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Agrobacterium tumefaciens - chemistry ; Agrobacterium tumefaciens - genetics ; Agrobacterium tumefaciens - metabolism ; Bacterial Protein Kinases ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bilin ; Biliverdine - chemistry ; Biliverdine - genetics ; Biliverdine - metabolism ; Fluorescence ; Fluorescent Dyes - chemistry ; Fluorescent Dyes - metabolism ; Mutagenesis, Site-Directed ; Photochemistry ; Photoreceptors ; Phycobilins - chemistry ; Phycobilins - genetics ; Phycobilins - metabolism ; Phycoerythrin - chemistry ; Phycoerythrin - genetics ; Phycoerythrin - metabolism ; Phytochrome - chemistry ; Phytochrome - genetics ; Phytochrome - metabolism ; Protein Assembly ; Protein Structure, Tertiary ; Signal Transduction ; Site-directed Mutagenesis ; Synthetic Chromophores</subject><ispartof>The Journal of biological chemistry, 2011-01, Vol.286 (2), p.1103-1113</ispartof><rights>2011 © 2011 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2011 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-19660c6f4cf624a85821573b3baa65c8dde2e22594a61ca8ab5c391c273449503</citedby><cites>FETCH-LOGICAL-c466t-19660c6f4cf624a85821573b3baa65c8dde2e22594a61ca8ab5c391c273449503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3020717/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3020717/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21071442$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zienicke, Benjamin</creatorcontrib><creatorcontrib>Chen, Li-Yi</creatorcontrib><creatorcontrib>Khawn, Htoi</creatorcontrib><creatorcontrib>Hammam, Mostafa A.S.</creatorcontrib><creatorcontrib>Kinoshita, Hideki</creatorcontrib><creatorcontrib>Reichert, Johannes</creatorcontrib><creatorcontrib>Ulrich, Anne S.</creatorcontrib><creatorcontrib>Inomata, Katsuhiko</creatorcontrib><creatorcontrib>Lamparter, Tilman</creatorcontrib><title>Fluorescence of Phytochrome Adducts with Synthetic Locked Chromophores</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>We performed steady state fluorescence measurements with phytochromes Agp1 and Agp2 of Agrobacterium tumefaciens and three mutants in which photoconversion is inhibited. These proteins were assembled with the natural chromophore biliverdin (BV), with phycoerythrobilin (PEB), which lacks a double bond in the ring C-D-connecting methine bridge, and with synthetic bilin derivatives in which the ring C-D-connecting methine bridge is locked. All PEB and locked chromophore adducts are photoinactive. According to fluorescence quantum yields, the adducts may be divided into four different groups: wild type BV adducts exhibiting a weak fluorescence, mutant BV adducts with about 10-fold enhanced fluorescence, adducts with locked chromophores in which the fluorescence quantum yields are around 0.02, and PEB adducts with a high quantum yield of around 0.5. Thus, the strong fluorescence of the PEB adducts is not reached by the locked chromophore adducts, although the photoconversion energy dissipation pathway is blocked. We therefore suggest that ring D of the bilin chromophore, which contributes to the extended π-electron system of the locked chromophores, provides an energy dissipation pathway that is independent on photoconversion.</description><subject>Agrobacterium tumefaciens - chemistry</subject><subject>Agrobacterium tumefaciens - genetics</subject><subject>Agrobacterium tumefaciens - metabolism</subject><subject>Bacterial Protein Kinases</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bilin</subject><subject>Biliverdine - chemistry</subject><subject>Biliverdine - genetics</subject><subject>Biliverdine - metabolism</subject><subject>Fluorescence</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Fluorescent Dyes - metabolism</subject><subject>Mutagenesis, Site-Directed</subject><subject>Photochemistry</subject><subject>Photoreceptors</subject><subject>Phycobilins - chemistry</subject><subject>Phycobilins - genetics</subject><subject>Phycobilins - metabolism</subject><subject>Phycoerythrin - chemistry</subject><subject>Phycoerythrin - genetics</subject><subject>Phycoerythrin - metabolism</subject><subject>Phytochrome - chemistry</subject><subject>Phytochrome - genetics</subject><subject>Phytochrome - metabolism</subject><subject>Protein Assembly</subject><subject>Protein Structure, Tertiary</subject><subject>Signal Transduction</subject><subject>Site-directed Mutagenesis</subject><subject>Synthetic Chromophores</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1LAzEQhoMotlbP3nT_wGq-u3sRSrEqVBSq4C1kZ7NuatuUZFvpvzfLatGDuYQwzzszeRA6J_iK4CG_nhdw9UjalxCEswPUJzhjKRPk7RD1MaYkzanIeugkhDmOh-fkGPVoDBPOaR9NJouN8yaAWYFJXJU817vGQe3d0iSjstxAE5JP29TJbLdqatNYSKYOPkyZjFvIres2foqOKr0I5uz7HqDXye3L-D6dPt09jEfTFLiUTUpyKTHIikMlKdeZyCgRQ1awQmspICtLQw2lIudaEtCZLgSwnAAdMs5zgdkA3XR915tiacq4deP1Qq29XWq_U05b9beysrV6d1vFMI1fHsYG110D8C4Eb6p9lmDVKlVRqWqVqk5pTFz8HrnnfxxG4LIDKu2Ufvc2qNcZxYRhkrO4vYxE3hEmqtla41UA2wovrTfQqNLZf8d_AdcSj74</recordid><startdate>20110114</startdate><enddate>20110114</enddate><creator>Zienicke, Benjamin</creator><creator>Chen, Li-Yi</creator><creator>Khawn, Htoi</creator><creator>Hammam, Mostafa A.S.</creator><creator>Kinoshita, Hideki</creator><creator>Reichert, Johannes</creator><creator>Ulrich, Anne S.</creator><creator>Inomata, Katsuhiko</creator><creator>Lamparter, Tilman</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20110114</creationdate><title>Fluorescence of Phytochrome Adducts with Synthetic Locked Chromophores</title><author>Zienicke, Benjamin ; Chen, Li-Yi ; Khawn, Htoi ; Hammam, Mostafa A.S. ; Kinoshita, Hideki ; Reichert, Johannes ; Ulrich, Anne S. ; Inomata, Katsuhiko ; Lamparter, Tilman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-19660c6f4cf624a85821573b3baa65c8dde2e22594a61ca8ab5c391c273449503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Agrobacterium tumefaciens - chemistry</topic><topic>Agrobacterium tumefaciens - genetics</topic><topic>Agrobacterium tumefaciens - metabolism</topic><topic>Bacterial Protein Kinases</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bilin</topic><topic>Biliverdine - chemistry</topic><topic>Biliverdine - genetics</topic><topic>Biliverdine - metabolism</topic><topic>Fluorescence</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Fluorescent Dyes - metabolism</topic><topic>Mutagenesis, Site-Directed</topic><topic>Photochemistry</topic><topic>Photoreceptors</topic><topic>Phycobilins - chemistry</topic><topic>Phycobilins - genetics</topic><topic>Phycobilins - metabolism</topic><topic>Phycoerythrin - chemistry</topic><topic>Phycoerythrin - genetics</topic><topic>Phycoerythrin - metabolism</topic><topic>Phytochrome - chemistry</topic><topic>Phytochrome - genetics</topic><topic>Phytochrome - metabolism</topic><topic>Protein Assembly</topic><topic>Protein Structure, Tertiary</topic><topic>Signal Transduction</topic><topic>Site-directed Mutagenesis</topic><topic>Synthetic Chromophores</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zienicke, Benjamin</creatorcontrib><creatorcontrib>Chen, Li-Yi</creatorcontrib><creatorcontrib>Khawn, Htoi</creatorcontrib><creatorcontrib>Hammam, Mostafa A.S.</creatorcontrib><creatorcontrib>Kinoshita, Hideki</creatorcontrib><creatorcontrib>Reichert, Johannes</creatorcontrib><creatorcontrib>Ulrich, Anne S.</creatorcontrib><creatorcontrib>Inomata, Katsuhiko</creatorcontrib><creatorcontrib>Lamparter, Tilman</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zienicke, Benjamin</au><au>Chen, Li-Yi</au><au>Khawn, Htoi</au><au>Hammam, Mostafa A.S.</au><au>Kinoshita, Hideki</au><au>Reichert, Johannes</au><au>Ulrich, Anne S.</au><au>Inomata, Katsuhiko</au><au>Lamparter, Tilman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluorescence of Phytochrome Adducts with Synthetic Locked Chromophores</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2011-01-14</date><risdate>2011</risdate><volume>286</volume><issue>2</issue><spage>1103</spage><epage>1113</epage><pages>1103-1113</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>We performed steady state fluorescence measurements with phytochromes Agp1 and Agp2 of Agrobacterium tumefaciens and three mutants in which photoconversion is inhibited. These proteins were assembled with the natural chromophore biliverdin (BV), with phycoerythrobilin (PEB), which lacks a double bond in the ring C-D-connecting methine bridge, and with synthetic bilin derivatives in which the ring C-D-connecting methine bridge is locked. All PEB and locked chromophore adducts are photoinactive. According to fluorescence quantum yields, the adducts may be divided into four different groups: wild type BV adducts exhibiting a weak fluorescence, mutant BV adducts with about 10-fold enhanced fluorescence, adducts with locked chromophores in which the fluorescence quantum yields are around 0.02, and PEB adducts with a high quantum yield of around 0.5. Thus, the strong fluorescence of the PEB adducts is not reached by the locked chromophore adducts, although the photoconversion energy dissipation pathway is blocked. We therefore suggest that ring D of the bilin chromophore, which contributes to the extended π-electron system of the locked chromophores, provides an energy dissipation pathway that is independent on photoconversion.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21071442</pmid><doi>10.1074/jbc.M110.155143</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2011-01, Vol.286 (2), p.1103-1113
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3020717
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Agrobacterium tumefaciens - chemistry
Agrobacterium tumefaciens - genetics
Agrobacterium tumefaciens - metabolism
Bacterial Protein Kinases
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bilin
Biliverdine - chemistry
Biliverdine - genetics
Biliverdine - metabolism
Fluorescence
Fluorescent Dyes - chemistry
Fluorescent Dyes - metabolism
Mutagenesis, Site-Directed
Photochemistry
Photoreceptors
Phycobilins - chemistry
Phycobilins - genetics
Phycobilins - metabolism
Phycoerythrin - chemistry
Phycoerythrin - genetics
Phycoerythrin - metabolism
Phytochrome - chemistry
Phytochrome - genetics
Phytochrome - metabolism
Protein Assembly
Protein Structure, Tertiary
Signal Transduction
Site-directed Mutagenesis
Synthetic Chromophores
title Fluorescence of Phytochrome Adducts with Synthetic Locked Chromophores
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A56%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluorescence%20of%20Phytochrome%20Adducts%20with%20Synthetic%20Locked%20Chromophores&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Zienicke,%20Benjamin&rft.date=2011-01-14&rft.volume=286&rft.issue=2&rft.spage=1103&rft.epage=1113&rft.pages=1103-1113&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M110.155143&rft_dat=%3Cpubmed_cross%3E21071442%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21071442&rft_els_id=S0021925820562984&rfr_iscdi=true