A small protein that mediates the activation of a two-component system by another two-component system

The PmrA–PmrB two‐component system of Salmonella enterica controls resistance to the peptide antibiotic polymyxin B and to several antimicrobial proteins from human neutrophils. Transcription of PmrA‐activated genes is induced by high iron, but can also be promoted by growth in low magnesium in a pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2000-04, Vol.19 (8), p.1861-1872
Hauptverfasser: Kox, Linda F.F., Wösten, Marc M.S.M., Groisman, Eduardo A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1872
container_issue 8
container_start_page 1861
container_title The EMBO journal
container_volume 19
creator Kox, Linda F.F.
Wösten, Marc M.S.M.
Groisman, Eduardo A.
description The PmrA–PmrB two‐component system of Salmonella enterica controls resistance to the peptide antibiotic polymyxin B and to several antimicrobial proteins from human neutrophils. Transcription of PmrA‐activated genes is induced by high iron, but can also be promoted by growth in low magnesium in a process that requires another two‐component system, PhoP–PhoQ. Here, we define the genetic basis for the interaction between the PhoP–PhoQ and PmrA–PmrB systems. We have identified pmrD as a PhoP‐activated gene that mediates the transcriptional activation of PmrA‐regulated genes during growth in low magnesium. When transcription of pmrD is driven from a heterologous promoter, expression of PmrA‐activated genes occurs even at repressing magnesium concentrations and becomes independent of the phoP and phoQ genes. The PmrD effect is specific for PmrA‐regulated genes and requires functional PmrA and PmrB proteins. A pmrD mutant is sensitive to polymyxin if grown in low magnesium, but resistant if grown in high iron. The PmrD protein controls the activity of the PmrA–PmrB system at a post‐transcriptional level.
doi_str_mv 10.1093/emboj/19.8.1861
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_302009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>374528061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5962-d9d2cd64854d379a9e35776e20f37c1e3a2bebd00386c76d91c4e4b865e21473</originalsourceid><addsrcrecordid>eNqFkc9v0zAcxS0EYqVw5gSyOHBL6x-xnRw4jGoM0AAhJnG0HOfbLSWxi-1s9L_HW6ZSEIiTZb3P-_p9_RB6SsmCkpovYWj8ZknrRbWglaT30IyWkhSMKHEfzQiTtChpVR-hRzFuCCGiUvQhOqJEKcEUmaH1MY6D6Xu8DT5B53C6NAkP0HYmQcw3wMam7sqkzjvs19jgdO0L64etd-ASjruYYMDNDhvnMx7-qj9GD9amj_Dk7pyj8zcn56u3xdmn03er47PCilqyoq1bZltZVqJsuapNDVwoJYGRNVeWAjesgaYlhFfSKtnW1JZQNpUUwGip-By9msZuxybvYHOAYHq9Dd1gwk570-nfFddd6gt_pTlhJP_nHL288wf_fYSY9NBFC31vHPgxaqoEF7IsM_jiD3Djx-DyaprWgklVUZah5QTZ4GMMsN4HoUTf1Kdv68sOXemb-rLj-WH-A37qKwPVBFx3Pez-N0-ffHj9Xomak9s0ZLLG7HIXEA4i_zPOs8niTBoD7J_7NbKY9C53_GMvm_BNS8WV0F8_nmrKVquSfxH6M_8JCrrTHw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195267812</pqid></control><display><type>article</type><title>A small protein that mediates the activation of a two-component system by another two-component system</title><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kox, Linda F.F. ; Wösten, Marc M.S.M. ; Groisman, Eduardo A.</creator><creatorcontrib>Kox, Linda F.F. ; Wösten, Marc M.S.M. ; Groisman, Eduardo A.</creatorcontrib><description>The PmrA–PmrB two‐component system of Salmonella enterica controls resistance to the peptide antibiotic polymyxin B and to several antimicrobial proteins from human neutrophils. Transcription of PmrA‐activated genes is induced by high iron, but can also be promoted by growth in low magnesium in a process that requires another two‐component system, PhoP–PhoQ. Here, we define the genetic basis for the interaction between the PhoP–PhoQ and PmrA–PmrB systems. We have identified pmrD as a PhoP‐activated gene that mediates the transcriptional activation of PmrA‐regulated genes during growth in low magnesium. When transcription of pmrD is driven from a heterologous promoter, expression of PmrA‐activated genes occurs even at repressing magnesium concentrations and becomes independent of the phoP and phoQ genes. The PmrD effect is specific for PmrA‐regulated genes and requires functional PmrA and PmrB proteins. A pmrD mutant is sensitive to polymyxin if grown in low magnesium, but resistant if grown in high iron. The PmrD protein controls the activity of the PmrA–PmrB system at a post‐transcriptional level.</description><identifier>ISSN: 0261-4189</identifier><identifier>ISSN: 1460-2075</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1093/emboj/19.8.1861</identifier><identifier>PMID: 10775270</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Anti-Bacterial Agents - metabolism ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Base Sequence ; Drug Resistance, Microbial ; Iron - metabolism ; Magnesium ; Magnesium - metabolism ; Models, Biological ; Molecular Sequence Data ; Mutagenesis ; Mutation ; PhoP protein ; PhoP-PhoQ ; PhoQ protein ; Phosphorylation ; Plasmids ; PmrA protein ; PmrA-PmrB ; PmrB protein ; pmrD gene ; PmrD protein ; polymyxin ; Polymyxins - metabolism ; Protein Binding ; Recombinant Proteins - metabolism ; RNA Processing, Post-Transcriptional ; Salmonella enterica ; Salmonella enterica - chemistry ; Signal Transduction ; Single-Strand Specific DNA and RNA Endonucleases - metabolism ; transcription ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcription, Genetic</subject><ispartof>The EMBO journal, 2000-04, Vol.19 (8), p.1861-1872</ispartof><rights>European Molecular Biology Organization 2000</rights><rights>Copyright © 2000 European Molecular Biology Organization</rights><rights>Copyright Oxford University Press(England) Apr 17, 2000</rights><rights>Copyright © 2000 European Molecular Biology Organization 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5962-d9d2cd64854d379a9e35776e20f37c1e3a2bebd00386c76d91c4e4b865e21473</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC302009/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC302009/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10775270$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kox, Linda F.F.</creatorcontrib><creatorcontrib>Wösten, Marc M.S.M.</creatorcontrib><creatorcontrib>Groisman, Eduardo A.</creatorcontrib><title>A small protein that mediates the activation of a two-component system by another two-component system</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>The PmrA–PmrB two‐component system of Salmonella enterica controls resistance to the peptide antibiotic polymyxin B and to several antimicrobial proteins from human neutrophils. Transcription of PmrA‐activated genes is induced by high iron, but can also be promoted by growth in low magnesium in a process that requires another two‐component system, PhoP–PhoQ. Here, we define the genetic basis for the interaction between the PhoP–PhoQ and PmrA–PmrB systems. We have identified pmrD as a PhoP‐activated gene that mediates the transcriptional activation of PmrA‐regulated genes during growth in low magnesium. When transcription of pmrD is driven from a heterologous promoter, expression of PmrA‐activated genes occurs even at repressing magnesium concentrations and becomes independent of the phoP and phoQ genes. The PmrD effect is specific for PmrA‐regulated genes and requires functional PmrA and PmrB proteins. A pmrD mutant is sensitive to polymyxin if grown in low magnesium, but resistant if grown in high iron. The PmrD protein controls the activity of the PmrA–PmrB system at a post‐transcriptional level.</description><subject>Anti-Bacterial Agents - metabolism</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Base Sequence</subject><subject>Drug Resistance, Microbial</subject><subject>Iron - metabolism</subject><subject>Magnesium</subject><subject>Magnesium - metabolism</subject><subject>Models, Biological</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>PhoP protein</subject><subject>PhoP-PhoQ</subject><subject>PhoQ protein</subject><subject>Phosphorylation</subject><subject>Plasmids</subject><subject>PmrA protein</subject><subject>PmrA-PmrB</subject><subject>PmrB protein</subject><subject>pmrD gene</subject><subject>PmrD protein</subject><subject>polymyxin</subject><subject>Polymyxins - metabolism</subject><subject>Protein Binding</subject><subject>Recombinant Proteins - metabolism</subject><subject>RNA Processing, Post-Transcriptional</subject><subject>Salmonella enterica</subject><subject>Salmonella enterica - chemistry</subject><subject>Signal Transduction</subject><subject>Single-Strand Specific DNA and RNA Endonucleases - metabolism</subject><subject>transcription</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><issn>0261-4189</issn><issn>1460-2075</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkc9v0zAcxS0EYqVw5gSyOHBL6x-xnRw4jGoM0AAhJnG0HOfbLSWxi-1s9L_HW6ZSEIiTZb3P-_p9_RB6SsmCkpovYWj8ZknrRbWglaT30IyWkhSMKHEfzQiTtChpVR-hRzFuCCGiUvQhOqJEKcEUmaH1MY6D6Xu8DT5B53C6NAkP0HYmQcw3wMam7sqkzjvs19jgdO0L64etd-ASjruYYMDNDhvnMx7-qj9GD9amj_Dk7pyj8zcn56u3xdmn03er47PCilqyoq1bZltZVqJsuapNDVwoJYGRNVeWAjesgaYlhFfSKtnW1JZQNpUUwGip-By9msZuxybvYHOAYHq9Dd1gwk570-nfFddd6gt_pTlhJP_nHL288wf_fYSY9NBFC31vHPgxaqoEF7IsM_jiD3Djx-DyaprWgklVUZah5QTZ4GMMsN4HoUTf1Kdv68sOXemb-rLj-WH-A37qKwPVBFx3Pez-N0-ffHj9Xomak9s0ZLLG7HIXEA4i_zPOs8niTBoD7J_7NbKY9C53_GMvm_BNS8WV0F8_nmrKVquSfxH6M_8JCrrTHw</recordid><startdate>20000417</startdate><enddate>20000417</enddate><creator>Kox, Linda F.F.</creator><creator>Wösten, Marc M.S.M.</creator><creator>Groisman, Eduardo A.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20000417</creationdate><title>A small protein that mediates the activation of a two-component system by another two-component system</title><author>Kox, Linda F.F. ; Wösten, Marc M.S.M. ; Groisman, Eduardo A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5962-d9d2cd64854d379a9e35776e20f37c1e3a2bebd00386c76d91c4e4b865e21473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Anti-Bacterial Agents - metabolism</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Base Sequence</topic><topic>Drug Resistance, Microbial</topic><topic>Iron - metabolism</topic><topic>Magnesium</topic><topic>Magnesium - metabolism</topic><topic>Models, Biological</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>PhoP protein</topic><topic>PhoP-PhoQ</topic><topic>PhoQ protein</topic><topic>Phosphorylation</topic><topic>Plasmids</topic><topic>PmrA protein</topic><topic>PmrA-PmrB</topic><topic>PmrB protein</topic><topic>pmrD gene</topic><topic>PmrD protein</topic><topic>polymyxin</topic><topic>Polymyxins - metabolism</topic><topic>Protein Binding</topic><topic>Recombinant Proteins - metabolism</topic><topic>RNA Processing, Post-Transcriptional</topic><topic>Salmonella enterica</topic><topic>Salmonella enterica - chemistry</topic><topic>Signal Transduction</topic><topic>Single-Strand Specific DNA and RNA Endonucleases - metabolism</topic><topic>transcription</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kox, Linda F.F.</creatorcontrib><creatorcontrib>Wösten, Marc M.S.M.</creatorcontrib><creatorcontrib>Groisman, Eduardo A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kox, Linda F.F.</au><au>Wösten, Marc M.S.M.</au><au>Groisman, Eduardo A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A small protein that mediates the activation of a two-component system by another two-component system</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2000-04-17</date><risdate>2000</risdate><volume>19</volume><issue>8</issue><spage>1861</spage><epage>1872</epage><pages>1861-1872</pages><issn>0261-4189</issn><issn>1460-2075</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>The PmrA–PmrB two‐component system of Salmonella enterica controls resistance to the peptide antibiotic polymyxin B and to several antimicrobial proteins from human neutrophils. Transcription of PmrA‐activated genes is induced by high iron, but can also be promoted by growth in low magnesium in a process that requires another two‐component system, PhoP–PhoQ. Here, we define the genetic basis for the interaction between the PhoP–PhoQ and PmrA–PmrB systems. We have identified pmrD as a PhoP‐activated gene that mediates the transcriptional activation of PmrA‐regulated genes during growth in low magnesium. When transcription of pmrD is driven from a heterologous promoter, expression of PmrA‐activated genes occurs even at repressing magnesium concentrations and becomes independent of the phoP and phoQ genes. The PmrD effect is specific for PmrA‐regulated genes and requires functional PmrA and PmrB proteins. A pmrD mutant is sensitive to polymyxin if grown in low magnesium, but resistant if grown in high iron. The PmrD protein controls the activity of the PmrA–PmrB system at a post‐transcriptional level.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>10775270</pmid><doi>10.1093/emboj/19.8.1861</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2000-04, Vol.19 (8), p.1861-1872
issn 0261-4189
1460-2075
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_302009
source MEDLINE; Wiley Online Library Free Content; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Anti-Bacterial Agents - metabolism
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Base Sequence
Drug Resistance, Microbial
Iron - metabolism
Magnesium
Magnesium - metabolism
Models, Biological
Molecular Sequence Data
Mutagenesis
Mutation
PhoP protein
PhoP-PhoQ
PhoQ protein
Phosphorylation
Plasmids
PmrA protein
PmrA-PmrB
PmrB protein
pmrD gene
PmrD protein
polymyxin
Polymyxins - metabolism
Protein Binding
Recombinant Proteins - metabolism
RNA Processing, Post-Transcriptional
Salmonella enterica
Salmonella enterica - chemistry
Signal Transduction
Single-Strand Specific DNA and RNA Endonucleases - metabolism
transcription
Transcription Factors - genetics
Transcription Factors - metabolism
Transcription, Genetic
title A small protein that mediates the activation of a two-component system by another two-component system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A18%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20small%20protein%20that%20mediates%20the%20activation%20of%20a%20two-component%20system%20by%20another%20two-component%20system&rft.jtitle=The%20EMBO%20journal&rft.au=Kox,%20Linda%20F.F.&rft.date=2000-04-17&rft.volume=19&rft.issue=8&rft.spage=1861&rft.epage=1872&rft.pages=1861-1872&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1093/emboj/19.8.1861&rft_dat=%3Cproquest_pubme%3E374528061%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195267812&rft_id=info:pmid/10775270&rfr_iscdi=true