Highly stable loading of Mcm proteins onto chromatin in living cells requires replication to unload

The heterohexameric minichromosome maintenance protein complex (Mcm2-7) functions as the eukaryotic helicase during DNA replication. Mcm2-7 loads onto chromatin during early G1 phase but is not converted into an active helicase until much later during S phase. Hence, inactive Mcm complexes are presu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of cell biology 2011-01, Vol.192 (1), p.29-41
Hauptverfasser: Kuipers, Marjorie A, Stasevich, Timothy J, Sasaki, Takayo, Wilson, Korey A, Hazelwood, Kristin L, McNally, James G, Davidson, Michael W, Gilbert, David M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 41
container_issue 1
container_start_page 29
container_title The Journal of cell biology
container_volume 192
creator Kuipers, Marjorie A
Stasevich, Timothy J
Sasaki, Takayo
Wilson, Korey A
Hazelwood, Kristin L
McNally, James G
Davidson, Michael W
Gilbert, David M
description The heterohexameric minichromosome maintenance protein complex (Mcm2-7) functions as the eukaryotic helicase during DNA replication. Mcm2-7 loads onto chromatin during early G1 phase but is not converted into an active helicase until much later during S phase. Hence, inactive Mcm complexes are presumed to remain stably bound from early G1 through the completion of S phase. Here, we investigated Mcm protein dynamics in live mammalian cells. We demonstrate that Mcm proteins are irreversibly loaded onto chromatin cumulatively throughout G1 phase, showing no detectable exchange with a gradually diminishing soluble pool. Eviction of Mcm requires replication; during replication arrest, Mcm proteins remained bound indefinitely. Moreover, the density of immobile Mcms is reduced together with chromatin decondensation within sites of active replication, which provides an explanation for the lack of colocalization of Mcm with replication fork proteins. These results provide in vivo evidence for an exceptionally stable lockdown mechanism to retain all loaded Mcm proteins on chromatin throughout prolonged cell cycles.
doi_str_mv 10.1083/jcb.201007111
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3019549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>907148456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-2df5c8c6b946f5df7629ed130c32fefbce62b68719126680f218781ed501412a3</originalsourceid><addsrcrecordid>eNqFkUFr3DAQRkVpaTZpj70W0UtPTmdkSZYvhRKapJCSS3oWtizvapGljWQH8u8rk2RpeykIJJinx8x8hHxAOEdQ9Ze96c8ZIECDiK_IBgWHSiGH12QDwLBqBRMn5DTnPQDwhtdvyQlDxkBAsyHm2m13_pHmueu9pT52gwtbGkf600z0kOJsXcg0hjlSs0tx6mYXaDnePaygsd5nmuz94pJdHwfvTGFioOXHElbhO_Jm7Hy275_vM_Lr8vvdxXV1c3v14-LbTWUE4lyxYRRGGdm3XI5iGBvJWjtgDaZmox17YyXrpWqwRSalgpGhahTaQQByZF19Rr4-eQ9LP9nB2DCnzutDclOXHnXsnP67EtxOb-ODrgFbwdsi-PwsSPF-sXnWk8vrhF2wccm6LUvmigv5X1LVDRdcYl3IT_-Q-7ikUPagFS-6RklWoOoJMinmnOx4bBpBrzHrErM-xlz4j39OeqRfcq1_A2G3o-A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>847147862</pqid></control><display><type>article</type><title>Highly stable loading of Mcm proteins onto chromatin in living cells requires replication to unload</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Kuipers, Marjorie A ; Stasevich, Timothy J ; Sasaki, Takayo ; Wilson, Korey A ; Hazelwood, Kristin L ; McNally, James G ; Davidson, Michael W ; Gilbert, David M</creator><creatorcontrib>Kuipers, Marjorie A ; Stasevich, Timothy J ; Sasaki, Takayo ; Wilson, Korey A ; Hazelwood, Kristin L ; McNally, James G ; Davidson, Michael W ; Gilbert, David M</creatorcontrib><description>The heterohexameric minichromosome maintenance protein complex (Mcm2-7) functions as the eukaryotic helicase during DNA replication. Mcm2-7 loads onto chromatin during early G1 phase but is not converted into an active helicase until much later during S phase. Hence, inactive Mcm complexes are presumed to remain stably bound from early G1 through the completion of S phase. Here, we investigated Mcm protein dynamics in live mammalian cells. We demonstrate that Mcm proteins are irreversibly loaded onto chromatin cumulatively throughout G1 phase, showing no detectable exchange with a gradually diminishing soluble pool. Eviction of Mcm requires replication; during replication arrest, Mcm proteins remained bound indefinitely. Moreover, the density of immobile Mcms is reduced together with chromatin decondensation within sites of active replication, which provides an explanation for the lack of colocalization of Mcm with replication fork proteins. These results provide in vivo evidence for an exceptionally stable lockdown mechanism to retain all loaded Mcm proteins on chromatin throughout prolonged cell cycles.</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.201007111</identifier><identifier>PMID: 21220507</identifier><identifier>CODEN: JCLBA3</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Animals ; Cell cycle ; Cell Cycle Proteins - metabolism ; Cell Line ; Cell Survival ; Cells ; CHO Cells ; Chromatin ; Chromatin - metabolism ; Cricetinae ; Cricetulus ; Deoxyribonucleic acid ; DNA ; DNA - biosynthesis ; DNA Helicases - metabolism ; DNA Replication ; Fluorescence Recovery After Photobleaching ; G1 Phase ; Mice ; Minichromosome Maintenance Complex Component 4 ; Proliferating Cell Nuclear Antigen - metabolism ; Protein Transport ; Proteins</subject><ispartof>The Journal of cell biology, 2011-01, Vol.192 (1), p.29-41</ispartof><rights>Copyright Rockefeller University Press Jan 10, 2011</rights><rights>2011 Kuipers et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-2df5c8c6b946f5df7629ed130c32fefbce62b68719126680f218781ed501412a3</citedby><cites>FETCH-LOGICAL-c511t-2df5c8c6b946f5df7629ed130c32fefbce62b68719126680f218781ed501412a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21220507$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuipers, Marjorie A</creatorcontrib><creatorcontrib>Stasevich, Timothy J</creatorcontrib><creatorcontrib>Sasaki, Takayo</creatorcontrib><creatorcontrib>Wilson, Korey A</creatorcontrib><creatorcontrib>Hazelwood, Kristin L</creatorcontrib><creatorcontrib>McNally, James G</creatorcontrib><creatorcontrib>Davidson, Michael W</creatorcontrib><creatorcontrib>Gilbert, David M</creatorcontrib><title>Highly stable loading of Mcm proteins onto chromatin in living cells requires replication to unload</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>The heterohexameric minichromosome maintenance protein complex (Mcm2-7) functions as the eukaryotic helicase during DNA replication. Mcm2-7 loads onto chromatin during early G1 phase but is not converted into an active helicase until much later during S phase. Hence, inactive Mcm complexes are presumed to remain stably bound from early G1 through the completion of S phase. Here, we investigated Mcm protein dynamics in live mammalian cells. We demonstrate that Mcm proteins are irreversibly loaded onto chromatin cumulatively throughout G1 phase, showing no detectable exchange with a gradually diminishing soluble pool. Eviction of Mcm requires replication; during replication arrest, Mcm proteins remained bound indefinitely. Moreover, the density of immobile Mcms is reduced together with chromatin decondensation within sites of active replication, which provides an explanation for the lack of colocalization of Mcm with replication fork proteins. These results provide in vivo evidence for an exceptionally stable lockdown mechanism to retain all loaded Mcm proteins on chromatin throughout prolonged cell cycles.</description><subject>Animals</subject><subject>Cell cycle</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Line</subject><subject>Cell Survival</subject><subject>Cells</subject><subject>CHO Cells</subject><subject>Chromatin</subject><subject>Chromatin - metabolism</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - biosynthesis</subject><subject>DNA Helicases - metabolism</subject><subject>DNA Replication</subject><subject>Fluorescence Recovery After Photobleaching</subject><subject>G1 Phase</subject><subject>Mice</subject><subject>Minichromosome Maintenance Complex Component 4</subject><subject>Proliferating Cell Nuclear Antigen - metabolism</subject><subject>Protein Transport</subject><subject>Proteins</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFr3DAQRkVpaTZpj70W0UtPTmdkSZYvhRKapJCSS3oWtizvapGljWQH8u8rk2RpeykIJJinx8x8hHxAOEdQ9Ze96c8ZIECDiK_IBgWHSiGH12QDwLBqBRMn5DTnPQDwhtdvyQlDxkBAsyHm2m13_pHmueu9pT52gwtbGkf600z0kOJsXcg0hjlSs0tx6mYXaDnePaygsd5nmuz94pJdHwfvTGFioOXHElbhO_Jm7Hy275_vM_Lr8vvdxXV1c3v14-LbTWUE4lyxYRRGGdm3XI5iGBvJWjtgDaZmox17YyXrpWqwRSalgpGhahTaQQByZF19Rr4-eQ9LP9nB2DCnzutDclOXHnXsnP67EtxOb-ODrgFbwdsi-PwsSPF-sXnWk8vrhF2wccm6LUvmigv5X1LVDRdcYl3IT_-Q-7ikUPagFS-6RklWoOoJMinmnOx4bBpBrzHrErM-xlz4j39OeqRfcq1_A2G3o-A</recordid><startdate>20110110</startdate><enddate>20110110</enddate><creator>Kuipers, Marjorie A</creator><creator>Stasevich, Timothy J</creator><creator>Sasaki, Takayo</creator><creator>Wilson, Korey A</creator><creator>Hazelwood, Kristin L</creator><creator>McNally, James G</creator><creator>Davidson, Michael W</creator><creator>Gilbert, David M</creator><general>Rockefeller University Press</general><general>The Rockefeller University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110110</creationdate><title>Highly stable loading of Mcm proteins onto chromatin in living cells requires replication to unload</title><author>Kuipers, Marjorie A ; Stasevich, Timothy J ; Sasaki, Takayo ; Wilson, Korey A ; Hazelwood, Kristin L ; McNally, James G ; Davidson, Michael W ; Gilbert, David M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-2df5c8c6b946f5df7629ed130c32fefbce62b68719126680f218781ed501412a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Cell cycle</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Line</topic><topic>Cell Survival</topic><topic>Cells</topic><topic>CHO Cells</topic><topic>Chromatin</topic><topic>Chromatin - metabolism</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - biosynthesis</topic><topic>DNA Helicases - metabolism</topic><topic>DNA Replication</topic><topic>Fluorescence Recovery After Photobleaching</topic><topic>G1 Phase</topic><topic>Mice</topic><topic>Minichromosome Maintenance Complex Component 4</topic><topic>Proliferating Cell Nuclear Antigen - metabolism</topic><topic>Protein Transport</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuipers, Marjorie A</creatorcontrib><creatorcontrib>Stasevich, Timothy J</creatorcontrib><creatorcontrib>Sasaki, Takayo</creatorcontrib><creatorcontrib>Wilson, Korey A</creatorcontrib><creatorcontrib>Hazelwood, Kristin L</creatorcontrib><creatorcontrib>McNally, James G</creatorcontrib><creatorcontrib>Davidson, Michael W</creatorcontrib><creatorcontrib>Gilbert, David M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuipers, Marjorie A</au><au>Stasevich, Timothy J</au><au>Sasaki, Takayo</au><au>Wilson, Korey A</au><au>Hazelwood, Kristin L</au><au>McNally, James G</au><au>Davidson, Michael W</au><au>Gilbert, David M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly stable loading of Mcm proteins onto chromatin in living cells requires replication to unload</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>2011-01-10</date><risdate>2011</risdate><volume>192</volume><issue>1</issue><spage>29</spage><epage>41</epage><pages>29-41</pages><issn>0021-9525</issn><eissn>1540-8140</eissn><coden>JCLBA3</coden><abstract>The heterohexameric minichromosome maintenance protein complex (Mcm2-7) functions as the eukaryotic helicase during DNA replication. Mcm2-7 loads onto chromatin during early G1 phase but is not converted into an active helicase until much later during S phase. Hence, inactive Mcm complexes are presumed to remain stably bound from early G1 through the completion of S phase. Here, we investigated Mcm protein dynamics in live mammalian cells. We demonstrate that Mcm proteins are irreversibly loaded onto chromatin cumulatively throughout G1 phase, showing no detectable exchange with a gradually diminishing soluble pool. Eviction of Mcm requires replication; during replication arrest, Mcm proteins remained bound indefinitely. Moreover, the density of immobile Mcms is reduced together with chromatin decondensation within sites of active replication, which provides an explanation for the lack of colocalization of Mcm with replication fork proteins. These results provide in vivo evidence for an exceptionally stable lockdown mechanism to retain all loaded Mcm proteins on chromatin throughout prolonged cell cycles.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>21220507</pmid><doi>10.1083/jcb.201007111</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9525
ispartof The Journal of cell biology, 2011-01, Vol.192 (1), p.29-41
issn 0021-9525
1540-8140
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3019549
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Animals
Cell cycle
Cell Cycle Proteins - metabolism
Cell Line
Cell Survival
Cells
CHO Cells
Chromatin
Chromatin - metabolism
Cricetinae
Cricetulus
Deoxyribonucleic acid
DNA
DNA - biosynthesis
DNA Helicases - metabolism
DNA Replication
Fluorescence Recovery After Photobleaching
G1 Phase
Mice
Minichromosome Maintenance Complex Component 4
Proliferating Cell Nuclear Antigen - metabolism
Protein Transport
Proteins
title Highly stable loading of Mcm proteins onto chromatin in living cells requires replication to unload
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A22%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20stable%20loading%20of%20Mcm%20proteins%20onto%20chromatin%20in%20living%20cells%20requires%20replication%20to%20unload&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Kuipers,%20Marjorie%20A&rft.date=2011-01-10&rft.volume=192&rft.issue=1&rft.spage=29&rft.epage=41&rft.pages=29-41&rft.issn=0021-9525&rft.eissn=1540-8140&rft.coden=JCLBA3&rft_id=info:doi/10.1083/jcb.201007111&rft_dat=%3Cproquest_pubme%3E907148456%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=847147862&rft_id=info:pmid/21220507&rfr_iscdi=true