Highly stable loading of Mcm proteins onto chromatin in living cells requires replication to unload
The heterohexameric minichromosome maintenance protein complex (Mcm2-7) functions as the eukaryotic helicase during DNA replication. Mcm2-7 loads onto chromatin during early G1 phase but is not converted into an active helicase until much later during S phase. Hence, inactive Mcm complexes are presu...
Gespeichert in:
Veröffentlicht in: | The Journal of cell biology 2011-01, Vol.192 (1), p.29-41 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 41 |
---|---|
container_issue | 1 |
container_start_page | 29 |
container_title | The Journal of cell biology |
container_volume | 192 |
creator | Kuipers, Marjorie A Stasevich, Timothy J Sasaki, Takayo Wilson, Korey A Hazelwood, Kristin L McNally, James G Davidson, Michael W Gilbert, David M |
description | The heterohexameric minichromosome maintenance protein complex (Mcm2-7) functions as the eukaryotic helicase during DNA replication. Mcm2-7 loads onto chromatin during early G1 phase but is not converted into an active helicase until much later during S phase. Hence, inactive Mcm complexes are presumed to remain stably bound from early G1 through the completion of S phase. Here, we investigated Mcm protein dynamics in live mammalian cells. We demonstrate that Mcm proteins are irreversibly loaded onto chromatin cumulatively throughout G1 phase, showing no detectable exchange with a gradually diminishing soluble pool. Eviction of Mcm requires replication; during replication arrest, Mcm proteins remained bound indefinitely. Moreover, the density of immobile Mcms is reduced together with chromatin decondensation within sites of active replication, which provides an explanation for the lack of colocalization of Mcm with replication fork proteins. These results provide in vivo evidence for an exceptionally stable lockdown mechanism to retain all loaded Mcm proteins on chromatin throughout prolonged cell cycles. |
doi_str_mv | 10.1083/jcb.201007111 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3019549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>907148456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-2df5c8c6b946f5df7629ed130c32fefbce62b68719126680f218781ed501412a3</originalsourceid><addsrcrecordid>eNqFkUFr3DAQRkVpaTZpj70W0UtPTmdkSZYvhRKapJCSS3oWtizvapGljWQH8u8rk2RpeykIJJinx8x8hHxAOEdQ9Ze96c8ZIECDiK_IBgWHSiGH12QDwLBqBRMn5DTnPQDwhtdvyQlDxkBAsyHm2m13_pHmueu9pT52gwtbGkf600z0kOJsXcg0hjlSs0tx6mYXaDnePaygsd5nmuz94pJdHwfvTGFioOXHElbhO_Jm7Hy275_vM_Lr8vvdxXV1c3v14-LbTWUE4lyxYRRGGdm3XI5iGBvJWjtgDaZmox17YyXrpWqwRSalgpGhahTaQQByZF19Rr4-eQ9LP9nB2DCnzutDclOXHnXsnP67EtxOb-ODrgFbwdsi-PwsSPF-sXnWk8vrhF2wccm6LUvmigv5X1LVDRdcYl3IT_-Q-7ikUPagFS-6RklWoOoJMinmnOx4bBpBrzHrErM-xlz4j39OeqRfcq1_A2G3o-A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>847147862</pqid></control><display><type>article</type><title>Highly stable loading of Mcm proteins onto chromatin in living cells requires replication to unload</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Kuipers, Marjorie A ; Stasevich, Timothy J ; Sasaki, Takayo ; Wilson, Korey A ; Hazelwood, Kristin L ; McNally, James G ; Davidson, Michael W ; Gilbert, David M</creator><creatorcontrib>Kuipers, Marjorie A ; Stasevich, Timothy J ; Sasaki, Takayo ; Wilson, Korey A ; Hazelwood, Kristin L ; McNally, James G ; Davidson, Michael W ; Gilbert, David M</creatorcontrib><description>The heterohexameric minichromosome maintenance protein complex (Mcm2-7) functions as the eukaryotic helicase during DNA replication. Mcm2-7 loads onto chromatin during early G1 phase but is not converted into an active helicase until much later during S phase. Hence, inactive Mcm complexes are presumed to remain stably bound from early G1 through the completion of S phase. Here, we investigated Mcm protein dynamics in live mammalian cells. We demonstrate that Mcm proteins are irreversibly loaded onto chromatin cumulatively throughout G1 phase, showing no detectable exchange with a gradually diminishing soluble pool. Eviction of Mcm requires replication; during replication arrest, Mcm proteins remained bound indefinitely. Moreover, the density of immobile Mcms is reduced together with chromatin decondensation within sites of active replication, which provides an explanation for the lack of colocalization of Mcm with replication fork proteins. These results provide in vivo evidence for an exceptionally stable lockdown mechanism to retain all loaded Mcm proteins on chromatin throughout prolonged cell cycles.</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.201007111</identifier><identifier>PMID: 21220507</identifier><identifier>CODEN: JCLBA3</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Animals ; Cell cycle ; Cell Cycle Proteins - metabolism ; Cell Line ; Cell Survival ; Cells ; CHO Cells ; Chromatin ; Chromatin - metabolism ; Cricetinae ; Cricetulus ; Deoxyribonucleic acid ; DNA ; DNA - biosynthesis ; DNA Helicases - metabolism ; DNA Replication ; Fluorescence Recovery After Photobleaching ; G1 Phase ; Mice ; Minichromosome Maintenance Complex Component 4 ; Proliferating Cell Nuclear Antigen - metabolism ; Protein Transport ; Proteins</subject><ispartof>The Journal of cell biology, 2011-01, Vol.192 (1), p.29-41</ispartof><rights>Copyright Rockefeller University Press Jan 10, 2011</rights><rights>2011 Kuipers et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-2df5c8c6b946f5df7629ed130c32fefbce62b68719126680f218781ed501412a3</citedby><cites>FETCH-LOGICAL-c511t-2df5c8c6b946f5df7629ed130c32fefbce62b68719126680f218781ed501412a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21220507$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuipers, Marjorie A</creatorcontrib><creatorcontrib>Stasevich, Timothy J</creatorcontrib><creatorcontrib>Sasaki, Takayo</creatorcontrib><creatorcontrib>Wilson, Korey A</creatorcontrib><creatorcontrib>Hazelwood, Kristin L</creatorcontrib><creatorcontrib>McNally, James G</creatorcontrib><creatorcontrib>Davidson, Michael W</creatorcontrib><creatorcontrib>Gilbert, David M</creatorcontrib><title>Highly stable loading of Mcm proteins onto chromatin in living cells requires replication to unload</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>The heterohexameric minichromosome maintenance protein complex (Mcm2-7) functions as the eukaryotic helicase during DNA replication. Mcm2-7 loads onto chromatin during early G1 phase but is not converted into an active helicase until much later during S phase. Hence, inactive Mcm complexes are presumed to remain stably bound from early G1 through the completion of S phase. Here, we investigated Mcm protein dynamics in live mammalian cells. We demonstrate that Mcm proteins are irreversibly loaded onto chromatin cumulatively throughout G1 phase, showing no detectable exchange with a gradually diminishing soluble pool. Eviction of Mcm requires replication; during replication arrest, Mcm proteins remained bound indefinitely. Moreover, the density of immobile Mcms is reduced together with chromatin decondensation within sites of active replication, which provides an explanation for the lack of colocalization of Mcm with replication fork proteins. These results provide in vivo evidence for an exceptionally stable lockdown mechanism to retain all loaded Mcm proteins on chromatin throughout prolonged cell cycles.</description><subject>Animals</subject><subject>Cell cycle</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Line</subject><subject>Cell Survival</subject><subject>Cells</subject><subject>CHO Cells</subject><subject>Chromatin</subject><subject>Chromatin - metabolism</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - biosynthesis</subject><subject>DNA Helicases - metabolism</subject><subject>DNA Replication</subject><subject>Fluorescence Recovery After Photobleaching</subject><subject>G1 Phase</subject><subject>Mice</subject><subject>Minichromosome Maintenance Complex Component 4</subject><subject>Proliferating Cell Nuclear Antigen - metabolism</subject><subject>Protein Transport</subject><subject>Proteins</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFr3DAQRkVpaTZpj70W0UtPTmdkSZYvhRKapJCSS3oWtizvapGljWQH8u8rk2RpeykIJJinx8x8hHxAOEdQ9Ze96c8ZIECDiK_IBgWHSiGH12QDwLBqBRMn5DTnPQDwhtdvyQlDxkBAsyHm2m13_pHmueu9pT52gwtbGkf600z0kOJsXcg0hjlSs0tx6mYXaDnePaygsd5nmuz94pJdHwfvTGFioOXHElbhO_Jm7Hy275_vM_Lr8vvdxXV1c3v14-LbTWUE4lyxYRRGGdm3XI5iGBvJWjtgDaZmox17YyXrpWqwRSalgpGhahTaQQByZF19Rr4-eQ9LP9nB2DCnzutDclOXHnXsnP67EtxOb-ODrgFbwdsi-PwsSPF-sXnWk8vrhF2wccm6LUvmigv5X1LVDRdcYl3IT_-Q-7ikUPagFS-6RklWoOoJMinmnOx4bBpBrzHrErM-xlz4j39OeqRfcq1_A2G3o-A</recordid><startdate>20110110</startdate><enddate>20110110</enddate><creator>Kuipers, Marjorie A</creator><creator>Stasevich, Timothy J</creator><creator>Sasaki, Takayo</creator><creator>Wilson, Korey A</creator><creator>Hazelwood, Kristin L</creator><creator>McNally, James G</creator><creator>Davidson, Michael W</creator><creator>Gilbert, David M</creator><general>Rockefeller University Press</general><general>The Rockefeller University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110110</creationdate><title>Highly stable loading of Mcm proteins onto chromatin in living cells requires replication to unload</title><author>Kuipers, Marjorie A ; Stasevich, Timothy J ; Sasaki, Takayo ; Wilson, Korey A ; Hazelwood, Kristin L ; McNally, James G ; Davidson, Michael W ; Gilbert, David M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-2df5c8c6b946f5df7629ed130c32fefbce62b68719126680f218781ed501412a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Cell cycle</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Line</topic><topic>Cell Survival</topic><topic>Cells</topic><topic>CHO Cells</topic><topic>Chromatin</topic><topic>Chromatin - metabolism</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - biosynthesis</topic><topic>DNA Helicases - metabolism</topic><topic>DNA Replication</topic><topic>Fluorescence Recovery After Photobleaching</topic><topic>G1 Phase</topic><topic>Mice</topic><topic>Minichromosome Maintenance Complex Component 4</topic><topic>Proliferating Cell Nuclear Antigen - metabolism</topic><topic>Protein Transport</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuipers, Marjorie A</creatorcontrib><creatorcontrib>Stasevich, Timothy J</creatorcontrib><creatorcontrib>Sasaki, Takayo</creatorcontrib><creatorcontrib>Wilson, Korey A</creatorcontrib><creatorcontrib>Hazelwood, Kristin L</creatorcontrib><creatorcontrib>McNally, James G</creatorcontrib><creatorcontrib>Davidson, Michael W</creatorcontrib><creatorcontrib>Gilbert, David M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuipers, Marjorie A</au><au>Stasevich, Timothy J</au><au>Sasaki, Takayo</au><au>Wilson, Korey A</au><au>Hazelwood, Kristin L</au><au>McNally, James G</au><au>Davidson, Michael W</au><au>Gilbert, David M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly stable loading of Mcm proteins onto chromatin in living cells requires replication to unload</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>2011-01-10</date><risdate>2011</risdate><volume>192</volume><issue>1</issue><spage>29</spage><epage>41</epage><pages>29-41</pages><issn>0021-9525</issn><eissn>1540-8140</eissn><coden>JCLBA3</coden><abstract>The heterohexameric minichromosome maintenance protein complex (Mcm2-7) functions as the eukaryotic helicase during DNA replication. Mcm2-7 loads onto chromatin during early G1 phase but is not converted into an active helicase until much later during S phase. Hence, inactive Mcm complexes are presumed to remain stably bound from early G1 through the completion of S phase. Here, we investigated Mcm protein dynamics in live mammalian cells. We demonstrate that Mcm proteins are irreversibly loaded onto chromatin cumulatively throughout G1 phase, showing no detectable exchange with a gradually diminishing soluble pool. Eviction of Mcm requires replication; during replication arrest, Mcm proteins remained bound indefinitely. Moreover, the density of immobile Mcms is reduced together with chromatin decondensation within sites of active replication, which provides an explanation for the lack of colocalization of Mcm with replication fork proteins. These results provide in vivo evidence for an exceptionally stable lockdown mechanism to retain all loaded Mcm proteins on chromatin throughout prolonged cell cycles.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>21220507</pmid><doi>10.1083/jcb.201007111</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9525 |
ispartof | The Journal of cell biology, 2011-01, Vol.192 (1), p.29-41 |
issn | 0021-9525 1540-8140 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3019549 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Animals Cell cycle Cell Cycle Proteins - metabolism Cell Line Cell Survival Cells CHO Cells Chromatin Chromatin - metabolism Cricetinae Cricetulus Deoxyribonucleic acid DNA DNA - biosynthesis DNA Helicases - metabolism DNA Replication Fluorescence Recovery After Photobleaching G1 Phase Mice Minichromosome Maintenance Complex Component 4 Proliferating Cell Nuclear Antigen - metabolism Protein Transport Proteins |
title | Highly stable loading of Mcm proteins onto chromatin in living cells requires replication to unload |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A22%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20stable%20loading%20of%20Mcm%20proteins%20onto%20chromatin%20in%20living%20cells%20requires%20replication%20to%20unload&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Kuipers,%20Marjorie%20A&rft.date=2011-01-10&rft.volume=192&rft.issue=1&rft.spage=29&rft.epage=41&rft.pages=29-41&rft.issn=0021-9525&rft.eissn=1540-8140&rft.coden=JCLBA3&rft_id=info:doi/10.1083/jcb.201007111&rft_dat=%3Cproquest_pubme%3E907148456%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=847147862&rft_id=info:pmid/21220507&rfr_iscdi=true |