Xenopus sonic hedgehog guides retinal axons along the optic tract
The role of classic morphogens such as Sonic hedgehog (Shh) as axon guidance cues has been reported in a variety of vertebrate organisms (Charron and Tessier‐Lavigne [2005] Development 132:2251–2262). In this work, we provide the first evidence that Xenopus sonic hedgehog (Xshh) signaling is involve...
Gespeichert in:
Veröffentlicht in: | Developmental dynamics 2010-11, Vol.239 (11), p.2921-2932 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2932 |
---|---|
container_issue | 11 |
container_start_page | 2921 |
container_title | Developmental dynamics |
container_volume | 239 |
creator | Gordon, Laura Mansh, Matthew Kinsman, Helen Morris, Andrea R. |
description | The role of classic morphogens such as Sonic hedgehog (Shh) as axon guidance cues has been reported in a variety of vertebrate organisms (Charron and Tessier‐Lavigne [2005] Development 132:2251–2262). In this work, we provide the first evidence that Xenopus sonic hedgehog (Xshh) signaling is involved in guiding retinal ganglion cell (RGC) axons along the optic tract. Xshh is expressed in the brain during retinal axon extension, adjacent to these axons in the ventral diencephalon. Retinal axons themselves express Patched 1 and Smoothened co‐receptors during RGC axon growth. Blocking Shh signaling causes abnormal ventral pathfinding, and targeting errors at the optic tectum. Misexpression of exogenous N‐Shh peptide in vivo also causes pathfinding errors. Retinal axons grown in culture respond to N‐Shh in a dose‐dependent manner, either by decreasing extension at lower concentrations, or retracting axons in the presence of higher doses. These data suggest that Shh signaling is required for normal RGC axon pathfinding and tectal targeting in the developing visual system of Xenopus. We propose that Shh serves as a ventral optic tract repellent that helps to define the caudal boundary for retinal axons in the diencephalon, and that this signaling is also required for initial target recognition at the optic tectum. Developmental Dynamics 239:2921–2932, 2010. © 2010 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/dvdy.22430 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3016086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>761032738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4190-c91e847b458e6658e3e9d60145cb6fc84ba470c14d715aca6194f18851bd064d3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoun5c_AHSmyBUZ9o0TS-C7PoFC15U9BTSZLZb6TZr067uv7frqujFSxLIw_POvIwdIpwiQHRmF3Z5GkU8hg02QMjSEDBNN1fvRIYylnKH7Xr_AgBScNxmOxFkMYokG7CLJ6rdvPOBd3VpginZgqauCIqutOSDhtqy1lWg313tA125ugjaKQVu3vZ022jT7rOtia48HXzde-zh6vJ-eBOO765vhxfj0HDMIDQZkuRpzhNJQvRHTJkVgDwxuZgYyXPNUzDIbYqJNlpgxicoZYK5BcFtvMfO1955l8_IGqr7-ErNm3Kmm6VyulR_f-pyqgq3UDGg6BfvBcdfgsa9duRbNSu9oarSNbnOq1QgxFEay548WZOmcd43NPlJQVCrytWqcvVZeQ8f_Z7rB_3uuAdwDbyVFS3_UanR4-h5Lf0AxQaM0A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>761032738</pqid></control><display><type>article</type><title>Xenopus sonic hedgehog guides retinal axons along the optic tract</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Gordon, Laura ; Mansh, Matthew ; Kinsman, Helen ; Morris, Andrea R.</creator><creatorcontrib>Gordon, Laura ; Mansh, Matthew ; Kinsman, Helen ; Morris, Andrea R.</creatorcontrib><description>The role of classic morphogens such as Sonic hedgehog (Shh) as axon guidance cues has been reported in a variety of vertebrate organisms (Charron and Tessier‐Lavigne [2005] Development 132:2251–2262). In this work, we provide the first evidence that Xenopus sonic hedgehog (Xshh) signaling is involved in guiding retinal ganglion cell (RGC) axons along the optic tract. Xshh is expressed in the brain during retinal axon extension, adjacent to these axons in the ventral diencephalon. Retinal axons themselves express Patched 1 and Smoothened co‐receptors during RGC axon growth. Blocking Shh signaling causes abnormal ventral pathfinding, and targeting errors at the optic tectum. Misexpression of exogenous N‐Shh peptide in vivo also causes pathfinding errors. Retinal axons grown in culture respond to N‐Shh in a dose‐dependent manner, either by decreasing extension at lower concentrations, or retracting axons in the presence of higher doses. These data suggest that Shh signaling is required for normal RGC axon pathfinding and tectal targeting in the developing visual system of Xenopus. We propose that Shh serves as a ventral optic tract repellent that helps to define the caudal boundary for retinal axons in the diencephalon, and that this signaling is also required for initial target recognition at the optic tectum. Developmental Dynamics 239:2921–2932, 2010. © 2010 Wiley‐Liss, Inc.</description><identifier>ISSN: 1058-8388</identifier><identifier>EISSN: 1097-0177</identifier><identifier>DOI: 10.1002/dvdy.22430</identifier><identifier>PMID: 20931659</identifier><language>eng</language><publisher>New York: Wiley‐Liss, Inc</publisher><subject>Animals ; Axons - metabolism ; diencephalon ; Diencephalon - cytology ; Diencephalon - metabolism ; Embryo, Nonmammalian - cytology ; Embryo, Nonmammalian - metabolism ; Immunohistochemistry ; In Situ Hybridization ; optic tract ; Patched Receptors ; Receptors, Cell Surface - metabolism ; retinal ganglion cells ; Retinal Ganglion Cells - cytology ; Retinal Ganglion Cells - metabolism ; retinotectal pathfinding ; sonic hedgehog ; Visual Pathways - cytology ; Visual Pathways - metabolism ; Xenopus axon guidance ; Xenopus laevis</subject><ispartof>Developmental dynamics, 2010-11, Vol.239 (11), p.2921-2932</ispartof><rights>Copyright © 2010 Wiley‐Liss, Inc.</rights><rights>2010 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4190-c91e847b458e6658e3e9d60145cb6fc84ba470c14d715aca6194f18851bd064d3</citedby><cites>FETCH-LOGICAL-c4190-c91e847b458e6658e3e9d60145cb6fc84ba470c14d715aca6194f18851bd064d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fdvdy.22430$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fdvdy.22430$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20931659$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gordon, Laura</creatorcontrib><creatorcontrib>Mansh, Matthew</creatorcontrib><creatorcontrib>Kinsman, Helen</creatorcontrib><creatorcontrib>Morris, Andrea R.</creatorcontrib><title>Xenopus sonic hedgehog guides retinal axons along the optic tract</title><title>Developmental dynamics</title><addtitle>Dev Dyn</addtitle><description>The role of classic morphogens such as Sonic hedgehog (Shh) as axon guidance cues has been reported in a variety of vertebrate organisms (Charron and Tessier‐Lavigne [2005] Development 132:2251–2262). In this work, we provide the first evidence that Xenopus sonic hedgehog (Xshh) signaling is involved in guiding retinal ganglion cell (RGC) axons along the optic tract. Xshh is expressed in the brain during retinal axon extension, adjacent to these axons in the ventral diencephalon. Retinal axons themselves express Patched 1 and Smoothened co‐receptors during RGC axon growth. Blocking Shh signaling causes abnormal ventral pathfinding, and targeting errors at the optic tectum. Misexpression of exogenous N‐Shh peptide in vivo also causes pathfinding errors. Retinal axons grown in culture respond to N‐Shh in a dose‐dependent manner, either by decreasing extension at lower concentrations, or retracting axons in the presence of higher doses. These data suggest that Shh signaling is required for normal RGC axon pathfinding and tectal targeting in the developing visual system of Xenopus. We propose that Shh serves as a ventral optic tract repellent that helps to define the caudal boundary for retinal axons in the diencephalon, and that this signaling is also required for initial target recognition at the optic tectum. Developmental Dynamics 239:2921–2932, 2010. © 2010 Wiley‐Liss, Inc.</description><subject>Animals</subject><subject>Axons - metabolism</subject><subject>diencephalon</subject><subject>Diencephalon - cytology</subject><subject>Diencephalon - metabolism</subject><subject>Embryo, Nonmammalian - cytology</subject><subject>Embryo, Nonmammalian - metabolism</subject><subject>Immunohistochemistry</subject><subject>In Situ Hybridization</subject><subject>optic tract</subject><subject>Patched Receptors</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>retinal ganglion cells</subject><subject>Retinal Ganglion Cells - cytology</subject><subject>Retinal Ganglion Cells - metabolism</subject><subject>retinotectal pathfinding</subject><subject>sonic hedgehog</subject><subject>Visual Pathways - cytology</subject><subject>Visual Pathways - metabolism</subject><subject>Xenopus axon guidance</subject><subject>Xenopus laevis</subject><issn>1058-8388</issn><issn>1097-0177</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LxDAQhoMoun5c_AHSmyBUZ9o0TS-C7PoFC15U9BTSZLZb6TZr067uv7frqujFSxLIw_POvIwdIpwiQHRmF3Z5GkU8hg02QMjSEDBNN1fvRIYylnKH7Xr_AgBScNxmOxFkMYokG7CLJ6rdvPOBd3VpginZgqauCIqutOSDhtqy1lWg313tA125ugjaKQVu3vZ022jT7rOtia48HXzde-zh6vJ-eBOO765vhxfj0HDMIDQZkuRpzhNJQvRHTJkVgDwxuZgYyXPNUzDIbYqJNlpgxicoZYK5BcFtvMfO1955l8_IGqr7-ErNm3Kmm6VyulR_f-pyqgq3UDGg6BfvBcdfgsa9duRbNSu9oarSNbnOq1QgxFEay548WZOmcd43NPlJQVCrytWqcvVZeQ8f_Z7rB_3uuAdwDbyVFS3_UanR4-h5Lf0AxQaM0A</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Gordon, Laura</creator><creator>Mansh, Matthew</creator><creator>Kinsman, Helen</creator><creator>Morris, Andrea R.</creator><general>Wiley‐Liss, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201011</creationdate><title>Xenopus sonic hedgehog guides retinal axons along the optic tract</title><author>Gordon, Laura ; Mansh, Matthew ; Kinsman, Helen ; Morris, Andrea R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4190-c91e847b458e6658e3e9d60145cb6fc84ba470c14d715aca6194f18851bd064d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Axons - metabolism</topic><topic>diencephalon</topic><topic>Diencephalon - cytology</topic><topic>Diencephalon - metabolism</topic><topic>Embryo, Nonmammalian - cytology</topic><topic>Embryo, Nonmammalian - metabolism</topic><topic>Immunohistochemistry</topic><topic>In Situ Hybridization</topic><topic>optic tract</topic><topic>Patched Receptors</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>retinal ganglion cells</topic><topic>Retinal Ganglion Cells - cytology</topic><topic>Retinal Ganglion Cells - metabolism</topic><topic>retinotectal pathfinding</topic><topic>sonic hedgehog</topic><topic>Visual Pathways - cytology</topic><topic>Visual Pathways - metabolism</topic><topic>Xenopus axon guidance</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gordon, Laura</creatorcontrib><creatorcontrib>Mansh, Matthew</creatorcontrib><creatorcontrib>Kinsman, Helen</creatorcontrib><creatorcontrib>Morris, Andrea R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Developmental dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gordon, Laura</au><au>Mansh, Matthew</au><au>Kinsman, Helen</au><au>Morris, Andrea R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Xenopus sonic hedgehog guides retinal axons along the optic tract</atitle><jtitle>Developmental dynamics</jtitle><addtitle>Dev Dyn</addtitle><date>2010-11</date><risdate>2010</risdate><volume>239</volume><issue>11</issue><spage>2921</spage><epage>2932</epage><pages>2921-2932</pages><issn>1058-8388</issn><eissn>1097-0177</eissn><abstract>The role of classic morphogens such as Sonic hedgehog (Shh) as axon guidance cues has been reported in a variety of vertebrate organisms (Charron and Tessier‐Lavigne [2005] Development 132:2251–2262). In this work, we provide the first evidence that Xenopus sonic hedgehog (Xshh) signaling is involved in guiding retinal ganglion cell (RGC) axons along the optic tract. Xshh is expressed in the brain during retinal axon extension, adjacent to these axons in the ventral diencephalon. Retinal axons themselves express Patched 1 and Smoothened co‐receptors during RGC axon growth. Blocking Shh signaling causes abnormal ventral pathfinding, and targeting errors at the optic tectum. Misexpression of exogenous N‐Shh peptide in vivo also causes pathfinding errors. Retinal axons grown in culture respond to N‐Shh in a dose‐dependent manner, either by decreasing extension at lower concentrations, or retracting axons in the presence of higher doses. These data suggest that Shh signaling is required for normal RGC axon pathfinding and tectal targeting in the developing visual system of Xenopus. We propose that Shh serves as a ventral optic tract repellent that helps to define the caudal boundary for retinal axons in the diencephalon, and that this signaling is also required for initial target recognition at the optic tectum. Developmental Dynamics 239:2921–2932, 2010. © 2010 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>Wiley‐Liss, Inc</pub><pmid>20931659</pmid><doi>10.1002/dvdy.22430</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1058-8388 |
ispartof | Developmental dynamics, 2010-11, Vol.239 (11), p.2921-2932 |
issn | 1058-8388 1097-0177 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3016086 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Animals Axons - metabolism diencephalon Diencephalon - cytology Diencephalon - metabolism Embryo, Nonmammalian - cytology Embryo, Nonmammalian - metabolism Immunohistochemistry In Situ Hybridization optic tract Patched Receptors Receptors, Cell Surface - metabolism retinal ganglion cells Retinal Ganglion Cells - cytology Retinal Ganglion Cells - metabolism retinotectal pathfinding sonic hedgehog Visual Pathways - cytology Visual Pathways - metabolism Xenopus axon guidance Xenopus laevis |
title | Xenopus sonic hedgehog guides retinal axons along the optic tract |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T10%3A59%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Xenopus%20sonic%20hedgehog%20guides%20retinal%20axons%20along%20the%20optic%20tract&rft.jtitle=Developmental%20dynamics&rft.au=Gordon,%20Laura&rft.date=2010-11&rft.volume=239&rft.issue=11&rft.spage=2921&rft.epage=2932&rft.pages=2921-2932&rft.issn=1058-8388&rft.eissn=1097-0177&rft_id=info:doi/10.1002/dvdy.22430&rft_dat=%3Cproquest_pubme%3E761032738%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=761032738&rft_id=info:pmid/20931659&rfr_iscdi=true |