Xenopus sonic hedgehog guides retinal axons along the optic tract

The role of classic morphogens such as Sonic hedgehog (Shh) as axon guidance cues has been reported in a variety of vertebrate organisms (Charron and Tessier‐Lavigne [2005] Development 132:2251–2262). In this work, we provide the first evidence that Xenopus sonic hedgehog (Xshh) signaling is involve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Developmental dynamics 2010-11, Vol.239 (11), p.2921-2932
Hauptverfasser: Gordon, Laura, Mansh, Matthew, Kinsman, Helen, Morris, Andrea R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2932
container_issue 11
container_start_page 2921
container_title Developmental dynamics
container_volume 239
creator Gordon, Laura
Mansh, Matthew
Kinsman, Helen
Morris, Andrea R.
description The role of classic morphogens such as Sonic hedgehog (Shh) as axon guidance cues has been reported in a variety of vertebrate organisms (Charron and Tessier‐Lavigne [2005] Development 132:2251–2262). In this work, we provide the first evidence that Xenopus sonic hedgehog (Xshh) signaling is involved in guiding retinal ganglion cell (RGC) axons along the optic tract. Xshh is expressed in the brain during retinal axon extension, adjacent to these axons in the ventral diencephalon. Retinal axons themselves express Patched 1 and Smoothened co‐receptors during RGC axon growth. Blocking Shh signaling causes abnormal ventral pathfinding, and targeting errors at the optic tectum. Misexpression of exogenous N‐Shh peptide in vivo also causes pathfinding errors. Retinal axons grown in culture respond to N‐Shh in a dose‐dependent manner, either by decreasing extension at lower concentrations, or retracting axons in the presence of higher doses. These data suggest that Shh signaling is required for normal RGC axon pathfinding and tectal targeting in the developing visual system of Xenopus. We propose that Shh serves as a ventral optic tract repellent that helps to define the caudal boundary for retinal axons in the diencephalon, and that this signaling is also required for initial target recognition at the optic tectum. Developmental Dynamics 239:2921–2932, 2010. © 2010 Wiley‐Liss, Inc.
doi_str_mv 10.1002/dvdy.22430
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3016086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>761032738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4190-c91e847b458e6658e3e9d60145cb6fc84ba470c14d715aca6194f18851bd064d3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoun5c_AHSmyBUZ9o0TS-C7PoFC15U9BTSZLZb6TZr067uv7frqujFSxLIw_POvIwdIpwiQHRmF3Z5GkU8hg02QMjSEDBNN1fvRIYylnKH7Xr_AgBScNxmOxFkMYokG7CLJ6rdvPOBd3VpginZgqauCIqutOSDhtqy1lWg313tA125ugjaKQVu3vZ022jT7rOtia48HXzde-zh6vJ-eBOO765vhxfj0HDMIDQZkuRpzhNJQvRHTJkVgDwxuZgYyXPNUzDIbYqJNlpgxicoZYK5BcFtvMfO1955l8_IGqr7-ErNm3Kmm6VyulR_f-pyqgq3UDGg6BfvBcdfgsa9duRbNSu9oarSNbnOq1QgxFEay548WZOmcd43NPlJQVCrytWqcvVZeQ8f_Z7rB_3uuAdwDbyVFS3_UanR4-h5Lf0AxQaM0A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>761032738</pqid></control><display><type>article</type><title>Xenopus sonic hedgehog guides retinal axons along the optic tract</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Gordon, Laura ; Mansh, Matthew ; Kinsman, Helen ; Morris, Andrea R.</creator><creatorcontrib>Gordon, Laura ; Mansh, Matthew ; Kinsman, Helen ; Morris, Andrea R.</creatorcontrib><description>The role of classic morphogens such as Sonic hedgehog (Shh) as axon guidance cues has been reported in a variety of vertebrate organisms (Charron and Tessier‐Lavigne [2005] Development 132:2251–2262). In this work, we provide the first evidence that Xenopus sonic hedgehog (Xshh) signaling is involved in guiding retinal ganglion cell (RGC) axons along the optic tract. Xshh is expressed in the brain during retinal axon extension, adjacent to these axons in the ventral diencephalon. Retinal axons themselves express Patched 1 and Smoothened co‐receptors during RGC axon growth. Blocking Shh signaling causes abnormal ventral pathfinding, and targeting errors at the optic tectum. Misexpression of exogenous N‐Shh peptide in vivo also causes pathfinding errors. Retinal axons grown in culture respond to N‐Shh in a dose‐dependent manner, either by decreasing extension at lower concentrations, or retracting axons in the presence of higher doses. These data suggest that Shh signaling is required for normal RGC axon pathfinding and tectal targeting in the developing visual system of Xenopus. We propose that Shh serves as a ventral optic tract repellent that helps to define the caudal boundary for retinal axons in the diencephalon, and that this signaling is also required for initial target recognition at the optic tectum. Developmental Dynamics 239:2921–2932, 2010. © 2010 Wiley‐Liss, Inc.</description><identifier>ISSN: 1058-8388</identifier><identifier>EISSN: 1097-0177</identifier><identifier>DOI: 10.1002/dvdy.22430</identifier><identifier>PMID: 20931659</identifier><language>eng</language><publisher>New York: Wiley‐Liss, Inc</publisher><subject>Animals ; Axons - metabolism ; diencephalon ; Diencephalon - cytology ; Diencephalon - metabolism ; Embryo, Nonmammalian - cytology ; Embryo, Nonmammalian - metabolism ; Immunohistochemistry ; In Situ Hybridization ; optic tract ; Patched Receptors ; Receptors, Cell Surface - metabolism ; retinal ganglion cells ; Retinal Ganglion Cells - cytology ; Retinal Ganglion Cells - metabolism ; retinotectal pathfinding ; sonic hedgehog ; Visual Pathways - cytology ; Visual Pathways - metabolism ; Xenopus axon guidance ; Xenopus laevis</subject><ispartof>Developmental dynamics, 2010-11, Vol.239 (11), p.2921-2932</ispartof><rights>Copyright © 2010 Wiley‐Liss, Inc.</rights><rights>2010 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4190-c91e847b458e6658e3e9d60145cb6fc84ba470c14d715aca6194f18851bd064d3</citedby><cites>FETCH-LOGICAL-c4190-c91e847b458e6658e3e9d60145cb6fc84ba470c14d715aca6194f18851bd064d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fdvdy.22430$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fdvdy.22430$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20931659$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gordon, Laura</creatorcontrib><creatorcontrib>Mansh, Matthew</creatorcontrib><creatorcontrib>Kinsman, Helen</creatorcontrib><creatorcontrib>Morris, Andrea R.</creatorcontrib><title>Xenopus sonic hedgehog guides retinal axons along the optic tract</title><title>Developmental dynamics</title><addtitle>Dev Dyn</addtitle><description>The role of classic morphogens such as Sonic hedgehog (Shh) as axon guidance cues has been reported in a variety of vertebrate organisms (Charron and Tessier‐Lavigne [2005] Development 132:2251–2262). In this work, we provide the first evidence that Xenopus sonic hedgehog (Xshh) signaling is involved in guiding retinal ganglion cell (RGC) axons along the optic tract. Xshh is expressed in the brain during retinal axon extension, adjacent to these axons in the ventral diencephalon. Retinal axons themselves express Patched 1 and Smoothened co‐receptors during RGC axon growth. Blocking Shh signaling causes abnormal ventral pathfinding, and targeting errors at the optic tectum. Misexpression of exogenous N‐Shh peptide in vivo also causes pathfinding errors. Retinal axons grown in culture respond to N‐Shh in a dose‐dependent manner, either by decreasing extension at lower concentrations, or retracting axons in the presence of higher doses. These data suggest that Shh signaling is required for normal RGC axon pathfinding and tectal targeting in the developing visual system of Xenopus. We propose that Shh serves as a ventral optic tract repellent that helps to define the caudal boundary for retinal axons in the diencephalon, and that this signaling is also required for initial target recognition at the optic tectum. Developmental Dynamics 239:2921–2932, 2010. © 2010 Wiley‐Liss, Inc.</description><subject>Animals</subject><subject>Axons - metabolism</subject><subject>diencephalon</subject><subject>Diencephalon - cytology</subject><subject>Diencephalon - metabolism</subject><subject>Embryo, Nonmammalian - cytology</subject><subject>Embryo, Nonmammalian - metabolism</subject><subject>Immunohistochemistry</subject><subject>In Situ Hybridization</subject><subject>optic tract</subject><subject>Patched Receptors</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>retinal ganglion cells</subject><subject>Retinal Ganglion Cells - cytology</subject><subject>Retinal Ganglion Cells - metabolism</subject><subject>retinotectal pathfinding</subject><subject>sonic hedgehog</subject><subject>Visual Pathways - cytology</subject><subject>Visual Pathways - metabolism</subject><subject>Xenopus axon guidance</subject><subject>Xenopus laevis</subject><issn>1058-8388</issn><issn>1097-0177</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LxDAQhoMoun5c_AHSmyBUZ9o0TS-C7PoFC15U9BTSZLZb6TZr067uv7frqujFSxLIw_POvIwdIpwiQHRmF3Z5GkU8hg02QMjSEDBNN1fvRIYylnKH7Xr_AgBScNxmOxFkMYokG7CLJ6rdvPOBd3VpginZgqauCIqutOSDhtqy1lWg313tA125ugjaKQVu3vZ022jT7rOtia48HXzde-zh6vJ-eBOO765vhxfj0HDMIDQZkuRpzhNJQvRHTJkVgDwxuZgYyXPNUzDIbYqJNlpgxicoZYK5BcFtvMfO1955l8_IGqr7-ErNm3Kmm6VyulR_f-pyqgq3UDGg6BfvBcdfgsa9duRbNSu9oarSNbnOq1QgxFEay548WZOmcd43NPlJQVCrytWqcvVZeQ8f_Z7rB_3uuAdwDbyVFS3_UanR4-h5Lf0AxQaM0A</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Gordon, Laura</creator><creator>Mansh, Matthew</creator><creator>Kinsman, Helen</creator><creator>Morris, Andrea R.</creator><general>Wiley‐Liss, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201011</creationdate><title>Xenopus sonic hedgehog guides retinal axons along the optic tract</title><author>Gordon, Laura ; Mansh, Matthew ; Kinsman, Helen ; Morris, Andrea R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4190-c91e847b458e6658e3e9d60145cb6fc84ba470c14d715aca6194f18851bd064d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Axons - metabolism</topic><topic>diencephalon</topic><topic>Diencephalon - cytology</topic><topic>Diencephalon - metabolism</topic><topic>Embryo, Nonmammalian - cytology</topic><topic>Embryo, Nonmammalian - metabolism</topic><topic>Immunohistochemistry</topic><topic>In Situ Hybridization</topic><topic>optic tract</topic><topic>Patched Receptors</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>retinal ganglion cells</topic><topic>Retinal Ganglion Cells - cytology</topic><topic>Retinal Ganglion Cells - metabolism</topic><topic>retinotectal pathfinding</topic><topic>sonic hedgehog</topic><topic>Visual Pathways - cytology</topic><topic>Visual Pathways - metabolism</topic><topic>Xenopus axon guidance</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gordon, Laura</creatorcontrib><creatorcontrib>Mansh, Matthew</creatorcontrib><creatorcontrib>Kinsman, Helen</creatorcontrib><creatorcontrib>Morris, Andrea R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Developmental dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gordon, Laura</au><au>Mansh, Matthew</au><au>Kinsman, Helen</au><au>Morris, Andrea R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Xenopus sonic hedgehog guides retinal axons along the optic tract</atitle><jtitle>Developmental dynamics</jtitle><addtitle>Dev Dyn</addtitle><date>2010-11</date><risdate>2010</risdate><volume>239</volume><issue>11</issue><spage>2921</spage><epage>2932</epage><pages>2921-2932</pages><issn>1058-8388</issn><eissn>1097-0177</eissn><abstract>The role of classic morphogens such as Sonic hedgehog (Shh) as axon guidance cues has been reported in a variety of vertebrate organisms (Charron and Tessier‐Lavigne [2005] Development 132:2251–2262). In this work, we provide the first evidence that Xenopus sonic hedgehog (Xshh) signaling is involved in guiding retinal ganglion cell (RGC) axons along the optic tract. Xshh is expressed in the brain during retinal axon extension, adjacent to these axons in the ventral diencephalon. Retinal axons themselves express Patched 1 and Smoothened co‐receptors during RGC axon growth. Blocking Shh signaling causes abnormal ventral pathfinding, and targeting errors at the optic tectum. Misexpression of exogenous N‐Shh peptide in vivo also causes pathfinding errors. Retinal axons grown in culture respond to N‐Shh in a dose‐dependent manner, either by decreasing extension at lower concentrations, or retracting axons in the presence of higher doses. These data suggest that Shh signaling is required for normal RGC axon pathfinding and tectal targeting in the developing visual system of Xenopus. We propose that Shh serves as a ventral optic tract repellent that helps to define the caudal boundary for retinal axons in the diencephalon, and that this signaling is also required for initial target recognition at the optic tectum. Developmental Dynamics 239:2921–2932, 2010. © 2010 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>Wiley‐Liss, Inc</pub><pmid>20931659</pmid><doi>10.1002/dvdy.22430</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1058-8388
ispartof Developmental dynamics, 2010-11, Vol.239 (11), p.2921-2932
issn 1058-8388
1097-0177
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3016086
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Animals
Axons - metabolism
diencephalon
Diencephalon - cytology
Diencephalon - metabolism
Embryo, Nonmammalian - cytology
Embryo, Nonmammalian - metabolism
Immunohistochemistry
In Situ Hybridization
optic tract
Patched Receptors
Receptors, Cell Surface - metabolism
retinal ganglion cells
Retinal Ganglion Cells - cytology
Retinal Ganglion Cells - metabolism
retinotectal pathfinding
sonic hedgehog
Visual Pathways - cytology
Visual Pathways - metabolism
Xenopus axon guidance
Xenopus laevis
title Xenopus sonic hedgehog guides retinal axons along the optic tract
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T10%3A59%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Xenopus%20sonic%20hedgehog%20guides%20retinal%20axons%20along%20the%20optic%20tract&rft.jtitle=Developmental%20dynamics&rft.au=Gordon,%20Laura&rft.date=2010-11&rft.volume=239&rft.issue=11&rft.spage=2921&rft.epage=2932&rft.pages=2921-2932&rft.issn=1058-8388&rft.eissn=1097-0177&rft_id=info:doi/10.1002/dvdy.22430&rft_dat=%3Cproquest_pubme%3E761032738%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=761032738&rft_id=info:pmid/20931659&rfr_iscdi=true