Interactions between plasma membrane aquaporins modulate their water channel activity

Plant plasma membrane intrinsic proteins (PIPs) cluster in two evolutionary subgroups, PIP1 and PIP2, with different aquaporin activities when expressed in Xenopus oocytes. Maize ZmPIP1;1 and ZmPIP1;2 do not increase the osmotic water permeability coefficient (Pf), whereas ZmPIP2;1, ZmPIP2;4, and Zm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant cell 2004, Vol.16 (1), p.215-228
Hauptverfasser: Fetter, K, Wilder, V. van, Moshelion, M, Chaumont, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 228
container_issue 1
container_start_page 215
container_title The Plant cell
container_volume 16
creator Fetter, K
Wilder, V. van
Moshelion, M
Chaumont, F
description Plant plasma membrane intrinsic proteins (PIPs) cluster in two evolutionary subgroups, PIP1 and PIP2, with different aquaporin activities when expressed in Xenopus oocytes. Maize ZmPIP1;1 and ZmPIP1;2 do not increase the osmotic water permeability coefficient (Pf), whereas ZmPIP2;1, ZmPIP2;4, and ZmPIP2;5 do. Here, we show that coexpression of the nonfunctional ZmPIP1;2 and the functional ZmPIP2;1, ZmPIP2;4, or ZmPIP2;5 resulted in an increase in Pf that was dependent on the amount of injected ZmPIP1;2 complementary RNA. Confocal analysis of oocytes expressing ZmPIP1;2-green fluorescent protein (GFP) alone or ZmPIP1;2-GFP plus ZmPIP2;5 showed that the amount of ZmPIP1;2-GFP present in the plasma membrane was significantly greater in coexpressing cells. Nickel affinity chromatography purification of ZmPIP2;1 fused to a His tag coeluted with ZmPIP1;2-GFP demonstrated physical interaction and heteromerization of both isoforms. Interestingly, coexpression of ZmPIP1;1 and ZmPIP2;5 did not result in a greater increase in Pf than did the expression of ZmPIP2;5 alone, but coexpression of the ZmPIP1;1 and ZmPIP1;2 isoforms induced a Pf increase, indicating that PIP1 isoform heteromerization is required for both of them to act as functional water channels. Mutational analysis demonstrated the important role of the C-terminal part of loop E in PIP interaction and water channel activity induction. This study has revealed a new mechanism of plant aquaporin regulation that might be important in plant water relations.
doi_str_mv 10.1105/tpc.017194
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_301406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3872111</jstor_id><sourcerecordid>3872111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-67c694655b3087c3b167d699b57dc2e155b9d869f89911846af98c76833233c93</originalsourceid><addsrcrecordid>eNqFkbtv1TAUxi1ERUthYUYQMTAgpZxjJ34MDKjiUakSA1yJzXIcpzdXSZzaTqv-97jNVYEunc6Rvt95foS8QjhBhPpjmu0JoEBVPSFHWDNaUiV_P805VFBWvMZD8jzGHcAd9YwcYsUFAq2OyOZsSi4Ym3o_xaJx6dq5qZgHE0dTjG5sgplcYS4XM_vQZ2T07TKY5Iq0dX0ornMaCrs10-SG4rbPVZ9uXpCDzgzRvdzHY7L5-uXX6ffy_Me3s9PP56WtQaaSC8tV3q9uGEhhWYNctFypphatpQ6zoFrJVSeVQpQVN52SVnDJGGXMKnZMPq1956UZXWvdlIIZ9Bz60YQb7U2v_1emfqsv_JVmgBXwXP9-Xx_85eJi0mMfrRuGfLRfopYAknKqHgVR0RpR0Ay-ewDu_BKm_ARNUQpJQcoMfVghG3yMwXX3GyPoW0t1tlSvlmb4zb83_kX3Hmbg9QrsYvLhXmdSUETM8ttV7ozX5iL0UW9-UkAGoCqRZ7A_juyvaA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218782088</pqid></control><display><type>article</type><title>Interactions between plasma membrane aquaporins modulate their water channel activity</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Fetter, K ; Wilder, V. van ; Moshelion, M ; Chaumont, F</creator><creatorcontrib>Fetter, K ; Wilder, V. van ; Moshelion, M ; Chaumont, F</creatorcontrib><description>Plant plasma membrane intrinsic proteins (PIPs) cluster in two evolutionary subgroups, PIP1 and PIP2, with different aquaporin activities when expressed in Xenopus oocytes. Maize ZmPIP1;1 and ZmPIP1;2 do not increase the osmotic water permeability coefficient (Pf), whereas ZmPIP2;1, ZmPIP2;4, and ZmPIP2;5 do. Here, we show that coexpression of the nonfunctional ZmPIP1;2 and the functional ZmPIP2;1, ZmPIP2;4, or ZmPIP2;5 resulted in an increase in Pf that was dependent on the amount of injected ZmPIP1;2 complementary RNA. Confocal analysis of oocytes expressing ZmPIP1;2-green fluorescent protein (GFP) alone or ZmPIP1;2-GFP plus ZmPIP2;5 showed that the amount of ZmPIP1;2-GFP present in the plasma membrane was significantly greater in coexpressing cells. Nickel affinity chromatography purification of ZmPIP2;1 fused to a His tag coeluted with ZmPIP1;2-GFP demonstrated physical interaction and heteromerization of both isoforms. Interestingly, coexpression of ZmPIP1;1 and ZmPIP2;5 did not result in a greater increase in Pf than did the expression of ZmPIP2;5 alone, but coexpression of the ZmPIP1;1 and ZmPIP1;2 isoforms induced a Pf increase, indicating that PIP1 isoform heteromerization is required for both of them to act as functional water channels. Mutational analysis demonstrated the important role of the C-terminal part of loop E in PIP interaction and water channel activity induction. This study has revealed a new mechanism of plant aquaporin regulation that might be important in plant water relations.</description><identifier>ISSN: 1040-4651</identifier><identifier>EISSN: 1532-298X</identifier><identifier>DOI: 10.1105/tpc.017194</identifier><identifier>PMID: 14671024</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Amino Acid Sequence ; Animals ; Aquaporins ; Aquaporins - chemistry ; Aquaporins - genetics ; Aquaporins - metabolism ; Cell Membrane - metabolism ; Cell membranes ; Complementary RNA ; corn ; Female ; gene expression ; Gene Expression Regulation, Plant ; Green Fluorescent Proteins ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; messenger RNA ; Molecular Sequence Data ; Monomers ; Mutation ; Nickel ; Oocytes ; Oocytes - metabolism ; Osmotic Pressure ; Permeability ; Permeability coefficient ; physiological transport ; PIP1 gene ; Plant cells ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plasma interactions ; plasma membrane ; plasma membrane intrinsic proteins ; Protein Interaction Mapping ; Protein isoforms ; Protein Isoforms - chemistry ; Protein Isoforms - genetics ; Protein Isoforms - metabolism ; Proteins ; roots ; Sequence Homology, Amino Acid ; transport proteins ; water ; Water - physiology ; Water channels ; Water relations ; Xenopus ; Xenopus laevis ; Zea mays ; Zea mays - genetics</subject><ispartof>The Plant cell, 2004, Vol.16 (1), p.215-228</ispartof><rights>Copyright 2003 American Society of Plant Biologists</rights><rights>Copyright American Society of Plant Physiologists Jan 2004</rights><rights>Copyright © 2004, American Society of Plant Biologists 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-67c694655b3087c3b167d699b57dc2e155b9d869f89911846af98c76833233c93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3872111$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3872111$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,4024,27923,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14671024$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fetter, K</creatorcontrib><creatorcontrib>Wilder, V. van</creatorcontrib><creatorcontrib>Moshelion, M</creatorcontrib><creatorcontrib>Chaumont, F</creatorcontrib><title>Interactions between plasma membrane aquaporins modulate their water channel activity</title><title>The Plant cell</title><addtitle>Plant Cell</addtitle><description>Plant plasma membrane intrinsic proteins (PIPs) cluster in two evolutionary subgroups, PIP1 and PIP2, with different aquaporin activities when expressed in Xenopus oocytes. Maize ZmPIP1;1 and ZmPIP1;2 do not increase the osmotic water permeability coefficient (Pf), whereas ZmPIP2;1, ZmPIP2;4, and ZmPIP2;5 do. Here, we show that coexpression of the nonfunctional ZmPIP1;2 and the functional ZmPIP2;1, ZmPIP2;4, or ZmPIP2;5 resulted in an increase in Pf that was dependent on the amount of injected ZmPIP1;2 complementary RNA. Confocal analysis of oocytes expressing ZmPIP1;2-green fluorescent protein (GFP) alone or ZmPIP1;2-GFP plus ZmPIP2;5 showed that the amount of ZmPIP1;2-GFP present in the plasma membrane was significantly greater in coexpressing cells. Nickel affinity chromatography purification of ZmPIP2;1 fused to a His tag coeluted with ZmPIP1;2-GFP demonstrated physical interaction and heteromerization of both isoforms. Interestingly, coexpression of ZmPIP1;1 and ZmPIP2;5 did not result in a greater increase in Pf than did the expression of ZmPIP2;5 alone, but coexpression of the ZmPIP1;1 and ZmPIP1;2 isoforms induced a Pf increase, indicating that PIP1 isoform heteromerization is required for both of them to act as functional water channels. Mutational analysis demonstrated the important role of the C-terminal part of loop E in PIP interaction and water channel activity induction. This study has revealed a new mechanism of plant aquaporin regulation that might be important in plant water relations.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Aquaporins</subject><subject>Aquaporins - chemistry</subject><subject>Aquaporins - genetics</subject><subject>Aquaporins - metabolism</subject><subject>Cell Membrane - metabolism</subject><subject>Cell membranes</subject><subject>Complementary RNA</subject><subject>corn</subject><subject>Female</subject><subject>gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Green Fluorescent Proteins</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>messenger RNA</subject><subject>Molecular Sequence Data</subject><subject>Monomers</subject><subject>Mutation</subject><subject>Nickel</subject><subject>Oocytes</subject><subject>Oocytes - metabolism</subject><subject>Osmotic Pressure</subject><subject>Permeability</subject><subject>Permeability coefficient</subject><subject>physiological transport</subject><subject>PIP1 gene</subject><subject>Plant cells</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plasma interactions</subject><subject>plasma membrane</subject><subject>plasma membrane intrinsic proteins</subject><subject>Protein Interaction Mapping</subject><subject>Protein isoforms</subject><subject>Protein Isoforms - chemistry</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Isoforms - metabolism</subject><subject>Proteins</subject><subject>roots</subject><subject>Sequence Homology, Amino Acid</subject><subject>transport proteins</subject><subject>water</subject><subject>Water - physiology</subject><subject>Water channels</subject><subject>Water relations</subject><subject>Xenopus</subject><subject>Xenopus laevis</subject><subject>Zea mays</subject><subject>Zea mays - genetics</subject><issn>1040-4651</issn><issn>1532-298X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkbtv1TAUxi1ERUthYUYQMTAgpZxjJ34MDKjiUakSA1yJzXIcpzdXSZzaTqv-97jNVYEunc6Rvt95foS8QjhBhPpjmu0JoEBVPSFHWDNaUiV_P805VFBWvMZD8jzGHcAd9YwcYsUFAq2OyOZsSi4Ym3o_xaJx6dq5qZgHE0dTjG5sgplcYS4XM_vQZ2T07TKY5Iq0dX0ornMaCrs10-SG4rbPVZ9uXpCDzgzRvdzHY7L5-uXX6ffy_Me3s9PP56WtQaaSC8tV3q9uGEhhWYNctFypphatpQ6zoFrJVSeVQpQVN52SVnDJGGXMKnZMPq1956UZXWvdlIIZ9Bz60YQb7U2v_1emfqsv_JVmgBXwXP9-Xx_85eJi0mMfrRuGfLRfopYAknKqHgVR0RpR0Ay-ewDu_BKm_ARNUQpJQcoMfVghG3yMwXX3GyPoW0t1tlSvlmb4zb83_kX3Hmbg9QrsYvLhXmdSUETM8ttV7ozX5iL0UW9-UkAGoCqRZ7A_juyvaA</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Fetter, K</creator><creator>Wilder, V. van</creator><creator>Moshelion, M</creator><creator>Chaumont, F</creator><general>American Society of Plant Biologists</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7QO</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2004</creationdate><title>Interactions between plasma membrane aquaporins modulate their water channel activity</title><author>Fetter, K ; Wilder, V. van ; Moshelion, M ; Chaumont, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-67c694655b3087c3b167d699b57dc2e155b9d869f89911846af98c76833233c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Aquaporins</topic><topic>Aquaporins - chemistry</topic><topic>Aquaporins - genetics</topic><topic>Aquaporins - metabolism</topic><topic>Cell Membrane - metabolism</topic><topic>Cell membranes</topic><topic>Complementary RNA</topic><topic>corn</topic><topic>Female</topic><topic>gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Green Fluorescent Proteins</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>messenger RNA</topic><topic>Molecular Sequence Data</topic><topic>Monomers</topic><topic>Mutation</topic><topic>Nickel</topic><topic>Oocytes</topic><topic>Oocytes - metabolism</topic><topic>Osmotic Pressure</topic><topic>Permeability</topic><topic>Permeability coefficient</topic><topic>physiological transport</topic><topic>PIP1 gene</topic><topic>Plant cells</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plasma interactions</topic><topic>plasma membrane</topic><topic>plasma membrane intrinsic proteins</topic><topic>Protein Interaction Mapping</topic><topic>Protein isoforms</topic><topic>Protein Isoforms - chemistry</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Isoforms - metabolism</topic><topic>Proteins</topic><topic>roots</topic><topic>Sequence Homology, Amino Acid</topic><topic>transport proteins</topic><topic>water</topic><topic>Water - physiology</topic><topic>Water channels</topic><topic>Water relations</topic><topic>Xenopus</topic><topic>Xenopus laevis</topic><topic>Zea mays</topic><topic>Zea mays - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fetter, K</creatorcontrib><creatorcontrib>Wilder, V. van</creatorcontrib><creatorcontrib>Moshelion, M</creatorcontrib><creatorcontrib>Chaumont, F</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Plant cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fetter, K</au><au>Wilder, V. van</au><au>Moshelion, M</au><au>Chaumont, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactions between plasma membrane aquaporins modulate their water channel activity</atitle><jtitle>The Plant cell</jtitle><addtitle>Plant Cell</addtitle><date>2004</date><risdate>2004</risdate><volume>16</volume><issue>1</issue><spage>215</spage><epage>228</epage><pages>215-228</pages><issn>1040-4651</issn><eissn>1532-298X</eissn><abstract>Plant plasma membrane intrinsic proteins (PIPs) cluster in two evolutionary subgroups, PIP1 and PIP2, with different aquaporin activities when expressed in Xenopus oocytes. Maize ZmPIP1;1 and ZmPIP1;2 do not increase the osmotic water permeability coefficient (Pf), whereas ZmPIP2;1, ZmPIP2;4, and ZmPIP2;5 do. Here, we show that coexpression of the nonfunctional ZmPIP1;2 and the functional ZmPIP2;1, ZmPIP2;4, or ZmPIP2;5 resulted in an increase in Pf that was dependent on the amount of injected ZmPIP1;2 complementary RNA. Confocal analysis of oocytes expressing ZmPIP1;2-green fluorescent protein (GFP) alone or ZmPIP1;2-GFP plus ZmPIP2;5 showed that the amount of ZmPIP1;2-GFP present in the plasma membrane was significantly greater in coexpressing cells. Nickel affinity chromatography purification of ZmPIP2;1 fused to a His tag coeluted with ZmPIP1;2-GFP demonstrated physical interaction and heteromerization of both isoforms. Interestingly, coexpression of ZmPIP1;1 and ZmPIP2;5 did not result in a greater increase in Pf than did the expression of ZmPIP2;5 alone, but coexpression of the ZmPIP1;1 and ZmPIP1;2 isoforms induced a Pf increase, indicating that PIP1 isoform heteromerization is required for both of them to act as functional water channels. Mutational analysis demonstrated the important role of the C-terminal part of loop E in PIP interaction and water channel activity induction. This study has revealed a new mechanism of plant aquaporin regulation that might be important in plant water relations.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>14671024</pmid><doi>10.1105/tpc.017194</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1040-4651
ispartof The Plant cell, 2004, Vol.16 (1), p.215-228
issn 1040-4651
1532-298X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_301406
source MEDLINE; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals
subjects Amino Acid Sequence
Animals
Aquaporins
Aquaporins - chemistry
Aquaporins - genetics
Aquaporins - metabolism
Cell Membrane - metabolism
Cell membranes
Complementary RNA
corn
Female
gene expression
Gene Expression Regulation, Plant
Green Fluorescent Proteins
Luminescent Proteins - genetics
Luminescent Proteins - metabolism
Membrane Proteins - genetics
Membrane Proteins - metabolism
messenger RNA
Molecular Sequence Data
Monomers
Mutation
Nickel
Oocytes
Oocytes - metabolism
Osmotic Pressure
Permeability
Permeability coefficient
physiological transport
PIP1 gene
Plant cells
Plant Proteins - genetics
Plant Proteins - metabolism
Plasma interactions
plasma membrane
plasma membrane intrinsic proteins
Protein Interaction Mapping
Protein isoforms
Protein Isoforms - chemistry
Protein Isoforms - genetics
Protein Isoforms - metabolism
Proteins
roots
Sequence Homology, Amino Acid
transport proteins
water
Water - physiology
Water channels
Water relations
Xenopus
Xenopus laevis
Zea mays
Zea mays - genetics
title Interactions between plasma membrane aquaporins modulate their water channel activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A17%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactions%20between%20plasma%20membrane%20aquaporins%20modulate%20their%20water%20channel%20activity&rft.jtitle=The%20Plant%20cell&rft.au=Fetter,%20K&rft.date=2004&rft.volume=16&rft.issue=1&rft.spage=215&rft.epage=228&rft.pages=215-228&rft.issn=1040-4651&rft.eissn=1532-298X&rft_id=info:doi/10.1105/tpc.017194&rft_dat=%3Cjstor_pubme%3E3872111%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218782088&rft_id=info:pmid/14671024&rft_jstor_id=3872111&rfr_iscdi=true