Interactions between plasma membrane aquaporins modulate their water channel activity
Plant plasma membrane intrinsic proteins (PIPs) cluster in two evolutionary subgroups, PIP1 and PIP2, with different aquaporin activities when expressed in Xenopus oocytes. Maize ZmPIP1;1 and ZmPIP1;2 do not increase the osmotic water permeability coefficient (Pf), whereas ZmPIP2;1, ZmPIP2;4, and Zm...
Gespeichert in:
Veröffentlicht in: | The Plant cell 2004, Vol.16 (1), p.215-228 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 228 |
---|---|
container_issue | 1 |
container_start_page | 215 |
container_title | The Plant cell |
container_volume | 16 |
creator | Fetter, K Wilder, V. van Moshelion, M Chaumont, F |
description | Plant plasma membrane intrinsic proteins (PIPs) cluster in two evolutionary subgroups, PIP1 and PIP2, with different aquaporin activities when expressed in Xenopus oocytes. Maize ZmPIP1;1 and ZmPIP1;2 do not increase the osmotic water permeability coefficient (Pf), whereas ZmPIP2;1, ZmPIP2;4, and ZmPIP2;5 do. Here, we show that coexpression of the nonfunctional ZmPIP1;2 and the functional ZmPIP2;1, ZmPIP2;4, or ZmPIP2;5 resulted in an increase in Pf that was dependent on the amount of injected ZmPIP1;2 complementary RNA. Confocal analysis of oocytes expressing ZmPIP1;2-green fluorescent protein (GFP) alone or ZmPIP1;2-GFP plus ZmPIP2;5 showed that the amount of ZmPIP1;2-GFP present in the plasma membrane was significantly greater in coexpressing cells. Nickel affinity chromatography purification of ZmPIP2;1 fused to a His tag coeluted with ZmPIP1;2-GFP demonstrated physical interaction and heteromerization of both isoforms. Interestingly, coexpression of ZmPIP1;1 and ZmPIP2;5 did not result in a greater increase in Pf than did the expression of ZmPIP2;5 alone, but coexpression of the ZmPIP1;1 and ZmPIP1;2 isoforms induced a Pf increase, indicating that PIP1 isoform heteromerization is required for both of them to act as functional water channels. Mutational analysis demonstrated the important role of the C-terminal part of loop E in PIP interaction and water channel activity induction. This study has revealed a new mechanism of plant aquaporin regulation that might be important in plant water relations. |
doi_str_mv | 10.1105/tpc.017194 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_301406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3872111</jstor_id><sourcerecordid>3872111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-67c694655b3087c3b167d699b57dc2e155b9d869f89911846af98c76833233c93</originalsourceid><addsrcrecordid>eNqFkbtv1TAUxi1ERUthYUYQMTAgpZxjJ34MDKjiUakSA1yJzXIcpzdXSZzaTqv-97jNVYEunc6Rvt95foS8QjhBhPpjmu0JoEBVPSFHWDNaUiV_P805VFBWvMZD8jzGHcAd9YwcYsUFAq2OyOZsSi4Ym3o_xaJx6dq5qZgHE0dTjG5sgplcYS4XM_vQZ2T07TKY5Iq0dX0ornMaCrs10-SG4rbPVZ9uXpCDzgzRvdzHY7L5-uXX6ffy_Me3s9PP56WtQaaSC8tV3q9uGEhhWYNctFypphatpQ6zoFrJVSeVQpQVN52SVnDJGGXMKnZMPq1956UZXWvdlIIZ9Bz60YQb7U2v_1emfqsv_JVmgBXwXP9-Xx_85eJi0mMfrRuGfLRfopYAknKqHgVR0RpR0Ay-ewDu_BKm_ARNUQpJQcoMfVghG3yMwXX3GyPoW0t1tlSvlmb4zb83_kX3Hmbg9QrsYvLhXmdSUETM8ttV7ozX5iL0UW9-UkAGoCqRZ7A_juyvaA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218782088</pqid></control><display><type>article</type><title>Interactions between plasma membrane aquaporins modulate their water channel activity</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Fetter, K ; Wilder, V. van ; Moshelion, M ; Chaumont, F</creator><creatorcontrib>Fetter, K ; Wilder, V. van ; Moshelion, M ; Chaumont, F</creatorcontrib><description>Plant plasma membrane intrinsic proteins (PIPs) cluster in two evolutionary subgroups, PIP1 and PIP2, with different aquaporin activities when expressed in Xenopus oocytes. Maize ZmPIP1;1 and ZmPIP1;2 do not increase the osmotic water permeability coefficient (Pf), whereas ZmPIP2;1, ZmPIP2;4, and ZmPIP2;5 do. Here, we show that coexpression of the nonfunctional ZmPIP1;2 and the functional ZmPIP2;1, ZmPIP2;4, or ZmPIP2;5 resulted in an increase in Pf that was dependent on the amount of injected ZmPIP1;2 complementary RNA. Confocal analysis of oocytes expressing ZmPIP1;2-green fluorescent protein (GFP) alone or ZmPIP1;2-GFP plus ZmPIP2;5 showed that the amount of ZmPIP1;2-GFP present in the plasma membrane was significantly greater in coexpressing cells. Nickel affinity chromatography purification of ZmPIP2;1 fused to a His tag coeluted with ZmPIP1;2-GFP demonstrated physical interaction and heteromerization of both isoforms. Interestingly, coexpression of ZmPIP1;1 and ZmPIP2;5 did not result in a greater increase in Pf than did the expression of ZmPIP2;5 alone, but coexpression of the ZmPIP1;1 and ZmPIP1;2 isoforms induced a Pf increase, indicating that PIP1 isoform heteromerization is required for both of them to act as functional water channels. Mutational analysis demonstrated the important role of the C-terminal part of loop E in PIP interaction and water channel activity induction. This study has revealed a new mechanism of plant aquaporin regulation that might be important in plant water relations.</description><identifier>ISSN: 1040-4651</identifier><identifier>EISSN: 1532-298X</identifier><identifier>DOI: 10.1105/tpc.017194</identifier><identifier>PMID: 14671024</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Amino Acid Sequence ; Animals ; Aquaporins ; Aquaporins - chemistry ; Aquaporins - genetics ; Aquaporins - metabolism ; Cell Membrane - metabolism ; Cell membranes ; Complementary RNA ; corn ; Female ; gene expression ; Gene Expression Regulation, Plant ; Green Fluorescent Proteins ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; messenger RNA ; Molecular Sequence Data ; Monomers ; Mutation ; Nickel ; Oocytes ; Oocytes - metabolism ; Osmotic Pressure ; Permeability ; Permeability coefficient ; physiological transport ; PIP1 gene ; Plant cells ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plasma interactions ; plasma membrane ; plasma membrane intrinsic proteins ; Protein Interaction Mapping ; Protein isoforms ; Protein Isoforms - chemistry ; Protein Isoforms - genetics ; Protein Isoforms - metabolism ; Proteins ; roots ; Sequence Homology, Amino Acid ; transport proteins ; water ; Water - physiology ; Water channels ; Water relations ; Xenopus ; Xenopus laevis ; Zea mays ; Zea mays - genetics</subject><ispartof>The Plant cell, 2004, Vol.16 (1), p.215-228</ispartof><rights>Copyright 2003 American Society of Plant Biologists</rights><rights>Copyright American Society of Plant Physiologists Jan 2004</rights><rights>Copyright © 2004, American Society of Plant Biologists 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-67c694655b3087c3b167d699b57dc2e155b9d869f89911846af98c76833233c93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3872111$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3872111$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,4024,27923,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14671024$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fetter, K</creatorcontrib><creatorcontrib>Wilder, V. van</creatorcontrib><creatorcontrib>Moshelion, M</creatorcontrib><creatorcontrib>Chaumont, F</creatorcontrib><title>Interactions between plasma membrane aquaporins modulate their water channel activity</title><title>The Plant cell</title><addtitle>Plant Cell</addtitle><description>Plant plasma membrane intrinsic proteins (PIPs) cluster in two evolutionary subgroups, PIP1 and PIP2, with different aquaporin activities when expressed in Xenopus oocytes. Maize ZmPIP1;1 and ZmPIP1;2 do not increase the osmotic water permeability coefficient (Pf), whereas ZmPIP2;1, ZmPIP2;4, and ZmPIP2;5 do. Here, we show that coexpression of the nonfunctional ZmPIP1;2 and the functional ZmPIP2;1, ZmPIP2;4, or ZmPIP2;5 resulted in an increase in Pf that was dependent on the amount of injected ZmPIP1;2 complementary RNA. Confocal analysis of oocytes expressing ZmPIP1;2-green fluorescent protein (GFP) alone or ZmPIP1;2-GFP plus ZmPIP2;5 showed that the amount of ZmPIP1;2-GFP present in the plasma membrane was significantly greater in coexpressing cells. Nickel affinity chromatography purification of ZmPIP2;1 fused to a His tag coeluted with ZmPIP1;2-GFP demonstrated physical interaction and heteromerization of both isoforms. Interestingly, coexpression of ZmPIP1;1 and ZmPIP2;5 did not result in a greater increase in Pf than did the expression of ZmPIP2;5 alone, but coexpression of the ZmPIP1;1 and ZmPIP1;2 isoforms induced a Pf increase, indicating that PIP1 isoform heteromerization is required for both of them to act as functional water channels. Mutational analysis demonstrated the important role of the C-terminal part of loop E in PIP interaction and water channel activity induction. This study has revealed a new mechanism of plant aquaporin regulation that might be important in plant water relations.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Aquaporins</subject><subject>Aquaporins - chemistry</subject><subject>Aquaporins - genetics</subject><subject>Aquaporins - metabolism</subject><subject>Cell Membrane - metabolism</subject><subject>Cell membranes</subject><subject>Complementary RNA</subject><subject>corn</subject><subject>Female</subject><subject>gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Green Fluorescent Proteins</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>messenger RNA</subject><subject>Molecular Sequence Data</subject><subject>Monomers</subject><subject>Mutation</subject><subject>Nickel</subject><subject>Oocytes</subject><subject>Oocytes - metabolism</subject><subject>Osmotic Pressure</subject><subject>Permeability</subject><subject>Permeability coefficient</subject><subject>physiological transport</subject><subject>PIP1 gene</subject><subject>Plant cells</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plasma interactions</subject><subject>plasma membrane</subject><subject>plasma membrane intrinsic proteins</subject><subject>Protein Interaction Mapping</subject><subject>Protein isoforms</subject><subject>Protein Isoforms - chemistry</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Isoforms - metabolism</subject><subject>Proteins</subject><subject>roots</subject><subject>Sequence Homology, Amino Acid</subject><subject>transport proteins</subject><subject>water</subject><subject>Water - physiology</subject><subject>Water channels</subject><subject>Water relations</subject><subject>Xenopus</subject><subject>Xenopus laevis</subject><subject>Zea mays</subject><subject>Zea mays - genetics</subject><issn>1040-4651</issn><issn>1532-298X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkbtv1TAUxi1ERUthYUYQMTAgpZxjJ34MDKjiUakSA1yJzXIcpzdXSZzaTqv-97jNVYEunc6Rvt95foS8QjhBhPpjmu0JoEBVPSFHWDNaUiV_P805VFBWvMZD8jzGHcAd9YwcYsUFAq2OyOZsSi4Ym3o_xaJx6dq5qZgHE0dTjG5sgplcYS4XM_vQZ2T07TKY5Iq0dX0ornMaCrs10-SG4rbPVZ9uXpCDzgzRvdzHY7L5-uXX6ffy_Me3s9PP56WtQaaSC8tV3q9uGEhhWYNctFypphatpQ6zoFrJVSeVQpQVN52SVnDJGGXMKnZMPq1956UZXWvdlIIZ9Bz60YQb7U2v_1emfqsv_JVmgBXwXP9-Xx_85eJi0mMfrRuGfLRfopYAknKqHgVR0RpR0Ay-ewDu_BKm_ARNUQpJQcoMfVghG3yMwXX3GyPoW0t1tlSvlmb4zb83_kX3Hmbg9QrsYvLhXmdSUETM8ttV7ozX5iL0UW9-UkAGoCqRZ7A_juyvaA</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Fetter, K</creator><creator>Wilder, V. van</creator><creator>Moshelion, M</creator><creator>Chaumont, F</creator><general>American Society of Plant Biologists</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7QO</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2004</creationdate><title>Interactions between plasma membrane aquaporins modulate their water channel activity</title><author>Fetter, K ; Wilder, V. van ; Moshelion, M ; Chaumont, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-67c694655b3087c3b167d699b57dc2e155b9d869f89911846af98c76833233c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Aquaporins</topic><topic>Aquaporins - chemistry</topic><topic>Aquaporins - genetics</topic><topic>Aquaporins - metabolism</topic><topic>Cell Membrane - metabolism</topic><topic>Cell membranes</topic><topic>Complementary RNA</topic><topic>corn</topic><topic>Female</topic><topic>gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Green Fluorescent Proteins</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>messenger RNA</topic><topic>Molecular Sequence Data</topic><topic>Monomers</topic><topic>Mutation</topic><topic>Nickel</topic><topic>Oocytes</topic><topic>Oocytes - metabolism</topic><topic>Osmotic Pressure</topic><topic>Permeability</topic><topic>Permeability coefficient</topic><topic>physiological transport</topic><topic>PIP1 gene</topic><topic>Plant cells</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plasma interactions</topic><topic>plasma membrane</topic><topic>plasma membrane intrinsic proteins</topic><topic>Protein Interaction Mapping</topic><topic>Protein isoforms</topic><topic>Protein Isoforms - chemistry</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Isoforms - metabolism</topic><topic>Proteins</topic><topic>roots</topic><topic>Sequence Homology, Amino Acid</topic><topic>transport proteins</topic><topic>water</topic><topic>Water - physiology</topic><topic>Water channels</topic><topic>Water relations</topic><topic>Xenopus</topic><topic>Xenopus laevis</topic><topic>Zea mays</topic><topic>Zea mays - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fetter, K</creatorcontrib><creatorcontrib>Wilder, V. van</creatorcontrib><creatorcontrib>Moshelion, M</creatorcontrib><creatorcontrib>Chaumont, F</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Plant cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fetter, K</au><au>Wilder, V. van</au><au>Moshelion, M</au><au>Chaumont, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactions between plasma membrane aquaporins modulate their water channel activity</atitle><jtitle>The Plant cell</jtitle><addtitle>Plant Cell</addtitle><date>2004</date><risdate>2004</risdate><volume>16</volume><issue>1</issue><spage>215</spage><epage>228</epage><pages>215-228</pages><issn>1040-4651</issn><eissn>1532-298X</eissn><abstract>Plant plasma membrane intrinsic proteins (PIPs) cluster in two evolutionary subgroups, PIP1 and PIP2, with different aquaporin activities when expressed in Xenopus oocytes. Maize ZmPIP1;1 and ZmPIP1;2 do not increase the osmotic water permeability coefficient (Pf), whereas ZmPIP2;1, ZmPIP2;4, and ZmPIP2;5 do. Here, we show that coexpression of the nonfunctional ZmPIP1;2 and the functional ZmPIP2;1, ZmPIP2;4, or ZmPIP2;5 resulted in an increase in Pf that was dependent on the amount of injected ZmPIP1;2 complementary RNA. Confocal analysis of oocytes expressing ZmPIP1;2-green fluorescent protein (GFP) alone or ZmPIP1;2-GFP plus ZmPIP2;5 showed that the amount of ZmPIP1;2-GFP present in the plasma membrane was significantly greater in coexpressing cells. Nickel affinity chromatography purification of ZmPIP2;1 fused to a His tag coeluted with ZmPIP1;2-GFP demonstrated physical interaction and heteromerization of both isoforms. Interestingly, coexpression of ZmPIP1;1 and ZmPIP2;5 did not result in a greater increase in Pf than did the expression of ZmPIP2;5 alone, but coexpression of the ZmPIP1;1 and ZmPIP1;2 isoforms induced a Pf increase, indicating that PIP1 isoform heteromerization is required for both of them to act as functional water channels. Mutational analysis demonstrated the important role of the C-terminal part of loop E in PIP interaction and water channel activity induction. This study has revealed a new mechanism of plant aquaporin regulation that might be important in plant water relations.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>14671024</pmid><doi>10.1105/tpc.017194</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1040-4651 |
ispartof | The Plant cell, 2004, Vol.16 (1), p.215-228 |
issn | 1040-4651 1532-298X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_301406 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals |
subjects | Amino Acid Sequence Animals Aquaporins Aquaporins - chemistry Aquaporins - genetics Aquaporins - metabolism Cell Membrane - metabolism Cell membranes Complementary RNA corn Female gene expression Gene Expression Regulation, Plant Green Fluorescent Proteins Luminescent Proteins - genetics Luminescent Proteins - metabolism Membrane Proteins - genetics Membrane Proteins - metabolism messenger RNA Molecular Sequence Data Monomers Mutation Nickel Oocytes Oocytes - metabolism Osmotic Pressure Permeability Permeability coefficient physiological transport PIP1 gene Plant cells Plant Proteins - genetics Plant Proteins - metabolism Plasma interactions plasma membrane plasma membrane intrinsic proteins Protein Interaction Mapping Protein isoforms Protein Isoforms - chemistry Protein Isoforms - genetics Protein Isoforms - metabolism Proteins roots Sequence Homology, Amino Acid transport proteins water Water - physiology Water channels Water relations Xenopus Xenopus laevis Zea mays Zea mays - genetics |
title | Interactions between plasma membrane aquaporins modulate their water channel activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A17%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactions%20between%20plasma%20membrane%20aquaporins%20modulate%20their%20water%20channel%20activity&rft.jtitle=The%20Plant%20cell&rft.au=Fetter,%20K&rft.date=2004&rft.volume=16&rft.issue=1&rft.spage=215&rft.epage=228&rft.pages=215-228&rft.issn=1040-4651&rft.eissn=1532-298X&rft_id=info:doi/10.1105/tpc.017194&rft_dat=%3Cjstor_pubme%3E3872111%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218782088&rft_id=info:pmid/14671024&rft_jstor_id=3872111&rfr_iscdi=true |