Controlled Delivery of Transforming Growth Factor β1 by Self-Assembling Peptide Hydrogels Induces Chondrogenesis of Bone Marrow Stromal Cells and Modulates Smad2/3 Signaling

Self-assembling peptide hydrogels were modified to deliver transforming growth factor β1 (TGF-β1) to encapsulated bone-marrow-derived stromal cells (BMSCs) for cartilage tissue engineering applications using two different approaches: (i) biotin-streptavidin tethering; (ii) adsorption to the peptide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tissue engineering. Part A 2011-01, Vol.17 (1-2), p.83-92
Hauptverfasser: Kopesky, Paul W., Vanderploeg, Eric J., Kisiday, John D., Frisbie, David D., Sandy, John D., Grodzinsky, Alan J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 92
container_issue 1-2
container_start_page 83
container_title Tissue engineering. Part A
container_volume 17
creator Kopesky, Paul W.
Vanderploeg, Eric J.
Kisiday, John D.
Frisbie, David D.
Sandy, John D.
Grodzinsky, Alan J.
description Self-assembling peptide hydrogels were modified to deliver transforming growth factor β1 (TGF-β1) to encapsulated bone-marrow-derived stromal cells (BMSCs) for cartilage tissue engineering applications using two different approaches: (i) biotin-streptavidin tethering; (ii) adsorption to the peptide scaffold. Initial studies to determine the duration of TGF-β1 medium supplementation necessary to stimulate chondrogenesis showed that 4 days of transient soluble TGF-β1 to newborn bovine BMSCs resulted in 10-fold higher proteoglycan accumulation than TGF-β1-free culture after 3 weeks. Subsequently, BMSC-seeded peptide hydrogels with either tethered TGF-β1 (Teth-TGF) or adsorbed TGF-β1 (Ads-TGF) were cultured in the TGF-β1-free medium, and chondrogenesis was compared to that for BMSCs encapsulated in unmodified peptide hydrogels, both with and without soluble TGF-β1 medium supplementation. Ads-TGF peptide hydrogels stimulated chondrogenesis of BMSCs as demonstrated by cell proliferation and cartilage-like extracellular matrix accumulation, whereas Teth-TGF did not stimulate chondrogenesis. In parallel experiments, TGF-β1 adsorbed to agarose hydrogels stimulated comparable chondrogenesis. Full-length aggrecan was produced by BMSCs in response to Ads-TGF in both peptide and agarose hydrogels, whereas medium-delivered TGF-β1 stimulated catabolic aggrecan cleavage product formation in agarose but not peptide scaffolds. Smad2/3 was transiently phosphorylated in response to Ads-TGF but not Teth-TGF, whereas medium-delivered TGF-β1 produced sustained signaling, suggesting that dose and signal duration are potentially important for minimizing aggrecan cleavage product formation. Robustness of this technology for use in multiple species and ages was demonstrated by effective chondrogenic stimulation of adult equine BMSCs, an important translational model used before the initiation of human clinical studies.
doi_str_mv 10.1089/ten.tea.2010.0198
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3011906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A248405470</galeid><sourcerecordid>A248405470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4948-b07a43bc4e653abaff4043a88d2d3c43de68c5996e434332e1de6375fce3965e3</originalsourceid><addsrcrecordid>eNqNUsuKFDEULURxxtEPcCMBF666J6mkHtkIbek8YAaFHsFdSCW3qiOppCepGumfcuGH-E2m7LFxwIWEcMPJOecml5NlLwleElzz0xHccgS5zHFCMOH1o-yYcFotKC2-PD6cGTnKnsX4FeMSl1X1NDvKU805z4-z7413Y_DWgkbvwZo7CDvkO3QTpIudD4NxPToP_tu4QWdSjT6gnz8IandoDbZbrGKEobUz6RNsR6MBXex08D3YiC6dnhRE1Gy8-405iCbO7u-8A3QtQ_JF69R-kBY1YJNGOo2uvZ6sHJNyPUidn1K0Nr2Tc5fn2ZNO2ggv7utJ9vnsw01zsbj6eH7ZrK4WinFWL1pcSUZbxaAsqGxl1zHMqKxrnWuqGNVQ1qrgvARGGaU5kITQqugUUF4WQE-yt3vf7dQOoBWkIUkrtsEMMuyEl0Y8vHFmI3p_JygmhOMyGby5Nwj-doI4isFElb4oHfgpijrPa855wRPz9Z7ZSwvCuM4nQzWzxSpnNcMFq3BiLf_BSkvDYFQaZ2cS_kBA9gIVfIwBusPjCRZzekRKT9pSzOkRc3qS5tXfvz4o_sQlEao9YYalc9ZAC2H8D-tfq5TYPw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>822899959</pqid></control><display><type>article</type><title>Controlled Delivery of Transforming Growth Factor β1 by Self-Assembling Peptide Hydrogels Induces Chondrogenesis of Bone Marrow Stromal Cells and Modulates Smad2/3 Signaling</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Kopesky, Paul W. ; Vanderploeg, Eric J. ; Kisiday, John D. ; Frisbie, David D. ; Sandy, John D. ; Grodzinsky, Alan J.</creator><creatorcontrib>Kopesky, Paul W. ; Vanderploeg, Eric J. ; Kisiday, John D. ; Frisbie, David D. ; Sandy, John D. ; Grodzinsky, Alan J.</creatorcontrib><description>Self-assembling peptide hydrogels were modified to deliver transforming growth factor β1 (TGF-β1) to encapsulated bone-marrow-derived stromal cells (BMSCs) for cartilage tissue engineering applications using two different approaches: (i) biotin-streptavidin tethering; (ii) adsorption to the peptide scaffold. Initial studies to determine the duration of TGF-β1 medium supplementation necessary to stimulate chondrogenesis showed that 4 days of transient soluble TGF-β1 to newborn bovine BMSCs resulted in 10-fold higher proteoglycan accumulation than TGF-β1-free culture after 3 weeks. Subsequently, BMSC-seeded peptide hydrogels with either tethered TGF-β1 (Teth-TGF) or adsorbed TGF-β1 (Ads-TGF) were cultured in the TGF-β1-free medium, and chondrogenesis was compared to that for BMSCs encapsulated in unmodified peptide hydrogels, both with and without soluble TGF-β1 medium supplementation. Ads-TGF peptide hydrogels stimulated chondrogenesis of BMSCs as demonstrated by cell proliferation and cartilage-like extracellular matrix accumulation, whereas Teth-TGF did not stimulate chondrogenesis. In parallel experiments, TGF-β1 adsorbed to agarose hydrogels stimulated comparable chondrogenesis. Full-length aggrecan was produced by BMSCs in response to Ads-TGF in both peptide and agarose hydrogels, whereas medium-delivered TGF-β1 stimulated catabolic aggrecan cleavage product formation in agarose but not peptide scaffolds. Smad2/3 was transiently phosphorylated in response to Ads-TGF but not Teth-TGF, whereas medium-delivered TGF-β1 produced sustained signaling, suggesting that dose and signal duration are potentially important for minimizing aggrecan cleavage product formation. Robustness of this technology for use in multiple species and ages was demonstrated by effective chondrogenic stimulation of adult equine BMSCs, an important translational model used before the initiation of human clinical studies.</description><identifier>ISSN: 1937-3341</identifier><identifier>EISSN: 1937-335X</identifier><identifier>DOI: 10.1089/ten.tea.2010.0198</identifier><identifier>PMID: 20672992</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Animals ; Blotting, Western ; Bone Marrow Cells - cytology ; Bone Marrow Cells - drug effects ; Bone Marrow Cells - metabolism ; Cartilage cells ; Cattle ; Cells, Cultured ; Chondrogenesis - drug effects ; Growth ; Horses ; Hydrogels - chemistry ; Methods ; Original ; Original Articles ; Peptides - chemistry ; Physiological aspects ; Smad2 Protein - metabolism ; Smad3 Protein - metabolism ; Tissue Engineering ; Transforming Growth Factor beta1 - chemistry ; Transforming Growth Factor beta1 - pharmacology ; Transforming growth factors</subject><ispartof>Tissue engineering. Part A, 2011-01, Vol.17 (1-2), p.83-92</ispartof><rights>2011, Mary Ann Liebert, Inc.</rights><rights>COPYRIGHT 2011 Mary Ann Liebert, Inc.</rights><rights>Copyright 2011, Mary Ann Liebert, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4948-b07a43bc4e653abaff4043a88d2d3c43de68c5996e434332e1de6375fce3965e3</citedby><cites>FETCH-LOGICAL-c4948-b07a43bc4e653abaff4043a88d2d3c43de68c5996e434332e1de6375fce3965e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20672992$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kopesky, Paul W.</creatorcontrib><creatorcontrib>Vanderploeg, Eric J.</creatorcontrib><creatorcontrib>Kisiday, John D.</creatorcontrib><creatorcontrib>Frisbie, David D.</creatorcontrib><creatorcontrib>Sandy, John D.</creatorcontrib><creatorcontrib>Grodzinsky, Alan J.</creatorcontrib><title>Controlled Delivery of Transforming Growth Factor β1 by Self-Assembling Peptide Hydrogels Induces Chondrogenesis of Bone Marrow Stromal Cells and Modulates Smad2/3 Signaling</title><title>Tissue engineering. Part A</title><addtitle>Tissue Eng Part A</addtitle><description>Self-assembling peptide hydrogels were modified to deliver transforming growth factor β1 (TGF-β1) to encapsulated bone-marrow-derived stromal cells (BMSCs) for cartilage tissue engineering applications using two different approaches: (i) biotin-streptavidin tethering; (ii) adsorption to the peptide scaffold. Initial studies to determine the duration of TGF-β1 medium supplementation necessary to stimulate chondrogenesis showed that 4 days of transient soluble TGF-β1 to newborn bovine BMSCs resulted in 10-fold higher proteoglycan accumulation than TGF-β1-free culture after 3 weeks. Subsequently, BMSC-seeded peptide hydrogels with either tethered TGF-β1 (Teth-TGF) or adsorbed TGF-β1 (Ads-TGF) were cultured in the TGF-β1-free medium, and chondrogenesis was compared to that for BMSCs encapsulated in unmodified peptide hydrogels, both with and without soluble TGF-β1 medium supplementation. Ads-TGF peptide hydrogels stimulated chondrogenesis of BMSCs as demonstrated by cell proliferation and cartilage-like extracellular matrix accumulation, whereas Teth-TGF did not stimulate chondrogenesis. In parallel experiments, TGF-β1 adsorbed to agarose hydrogels stimulated comparable chondrogenesis. Full-length aggrecan was produced by BMSCs in response to Ads-TGF in both peptide and agarose hydrogels, whereas medium-delivered TGF-β1 stimulated catabolic aggrecan cleavage product formation in agarose but not peptide scaffolds. Smad2/3 was transiently phosphorylated in response to Ads-TGF but not Teth-TGF, whereas medium-delivered TGF-β1 produced sustained signaling, suggesting that dose and signal duration are potentially important for minimizing aggrecan cleavage product formation. Robustness of this technology for use in multiple species and ages was demonstrated by effective chondrogenic stimulation of adult equine BMSCs, an important translational model used before the initiation of human clinical studies.</description><subject>Animals</subject><subject>Blotting, Western</subject><subject>Bone Marrow Cells - cytology</subject><subject>Bone Marrow Cells - drug effects</subject><subject>Bone Marrow Cells - metabolism</subject><subject>Cartilage cells</subject><subject>Cattle</subject><subject>Cells, Cultured</subject><subject>Chondrogenesis - drug effects</subject><subject>Growth</subject><subject>Horses</subject><subject>Hydrogels - chemistry</subject><subject>Methods</subject><subject>Original</subject><subject>Original Articles</subject><subject>Peptides - chemistry</subject><subject>Physiological aspects</subject><subject>Smad2 Protein - metabolism</subject><subject>Smad3 Protein - metabolism</subject><subject>Tissue Engineering</subject><subject>Transforming Growth Factor beta1 - chemistry</subject><subject>Transforming Growth Factor beta1 - pharmacology</subject><subject>Transforming growth factors</subject><issn>1937-3341</issn><issn>1937-335X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUsuKFDEULURxxtEPcCMBF666J6mkHtkIbek8YAaFHsFdSCW3qiOppCepGumfcuGH-E2m7LFxwIWEcMPJOecml5NlLwleElzz0xHccgS5zHFCMOH1o-yYcFotKC2-PD6cGTnKnsX4FeMSl1X1NDvKU805z4-z7413Y_DWgkbvwZo7CDvkO3QTpIudD4NxPToP_tu4QWdSjT6gnz8IandoDbZbrGKEobUz6RNsR6MBXex08D3YiC6dnhRE1Gy8-405iCbO7u-8A3QtQ_JF69R-kBY1YJNGOo2uvZ6sHJNyPUidn1K0Nr2Tc5fn2ZNO2ggv7utJ9vnsw01zsbj6eH7ZrK4WinFWL1pcSUZbxaAsqGxl1zHMqKxrnWuqGNVQ1qrgvARGGaU5kITQqugUUF4WQE-yt3vf7dQOoBWkIUkrtsEMMuyEl0Y8vHFmI3p_JygmhOMyGby5Nwj-doI4isFElb4oHfgpijrPa855wRPz9Z7ZSwvCuM4nQzWzxSpnNcMFq3BiLf_BSkvDYFQaZ2cS_kBA9gIVfIwBusPjCRZzekRKT9pSzOkRc3qS5tXfvz4o_sQlEao9YYalc9ZAC2H8D-tfq5TYPw</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Kopesky, Paul W.</creator><creator>Vanderploeg, Eric J.</creator><creator>Kisiday, John D.</creator><creator>Frisbie, David D.</creator><creator>Sandy, John D.</creator><creator>Grodzinsky, Alan J.</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110101</creationdate><title>Controlled Delivery of Transforming Growth Factor β1 by Self-Assembling Peptide Hydrogels Induces Chondrogenesis of Bone Marrow Stromal Cells and Modulates Smad2/3 Signaling</title><author>Kopesky, Paul W. ; Vanderploeg, Eric J. ; Kisiday, John D. ; Frisbie, David D. ; Sandy, John D. ; Grodzinsky, Alan J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4948-b07a43bc4e653abaff4043a88d2d3c43de68c5996e434332e1de6375fce3965e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Blotting, Western</topic><topic>Bone Marrow Cells - cytology</topic><topic>Bone Marrow Cells - drug effects</topic><topic>Bone Marrow Cells - metabolism</topic><topic>Cartilage cells</topic><topic>Cattle</topic><topic>Cells, Cultured</topic><topic>Chondrogenesis - drug effects</topic><topic>Growth</topic><topic>Horses</topic><topic>Hydrogels - chemistry</topic><topic>Methods</topic><topic>Original</topic><topic>Original Articles</topic><topic>Peptides - chemistry</topic><topic>Physiological aspects</topic><topic>Smad2 Protein - metabolism</topic><topic>Smad3 Protein - metabolism</topic><topic>Tissue Engineering</topic><topic>Transforming Growth Factor beta1 - chemistry</topic><topic>Transforming Growth Factor beta1 - pharmacology</topic><topic>Transforming growth factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kopesky, Paul W.</creatorcontrib><creatorcontrib>Vanderploeg, Eric J.</creatorcontrib><creatorcontrib>Kisiday, John D.</creatorcontrib><creatorcontrib>Frisbie, David D.</creatorcontrib><creatorcontrib>Sandy, John D.</creatorcontrib><creatorcontrib>Grodzinsky, Alan J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Tissue engineering. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kopesky, Paul W.</au><au>Vanderploeg, Eric J.</au><au>Kisiday, John D.</au><au>Frisbie, David D.</au><au>Sandy, John D.</au><au>Grodzinsky, Alan J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlled Delivery of Transforming Growth Factor β1 by Self-Assembling Peptide Hydrogels Induces Chondrogenesis of Bone Marrow Stromal Cells and Modulates Smad2/3 Signaling</atitle><jtitle>Tissue engineering. Part A</jtitle><addtitle>Tissue Eng Part A</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>17</volume><issue>1-2</issue><spage>83</spage><epage>92</epage><pages>83-92</pages><issn>1937-3341</issn><eissn>1937-335X</eissn><abstract>Self-assembling peptide hydrogels were modified to deliver transforming growth factor β1 (TGF-β1) to encapsulated bone-marrow-derived stromal cells (BMSCs) for cartilage tissue engineering applications using two different approaches: (i) biotin-streptavidin tethering; (ii) adsorption to the peptide scaffold. Initial studies to determine the duration of TGF-β1 medium supplementation necessary to stimulate chondrogenesis showed that 4 days of transient soluble TGF-β1 to newborn bovine BMSCs resulted in 10-fold higher proteoglycan accumulation than TGF-β1-free culture after 3 weeks. Subsequently, BMSC-seeded peptide hydrogels with either tethered TGF-β1 (Teth-TGF) or adsorbed TGF-β1 (Ads-TGF) were cultured in the TGF-β1-free medium, and chondrogenesis was compared to that for BMSCs encapsulated in unmodified peptide hydrogels, both with and without soluble TGF-β1 medium supplementation. Ads-TGF peptide hydrogels stimulated chondrogenesis of BMSCs as demonstrated by cell proliferation and cartilage-like extracellular matrix accumulation, whereas Teth-TGF did not stimulate chondrogenesis. In parallel experiments, TGF-β1 adsorbed to agarose hydrogels stimulated comparable chondrogenesis. Full-length aggrecan was produced by BMSCs in response to Ads-TGF in both peptide and agarose hydrogels, whereas medium-delivered TGF-β1 stimulated catabolic aggrecan cleavage product formation in agarose but not peptide scaffolds. Smad2/3 was transiently phosphorylated in response to Ads-TGF but not Teth-TGF, whereas medium-delivered TGF-β1 produced sustained signaling, suggesting that dose and signal duration are potentially important for minimizing aggrecan cleavage product formation. Robustness of this technology for use in multiple species and ages was demonstrated by effective chondrogenic stimulation of adult equine BMSCs, an important translational model used before the initiation of human clinical studies.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>20672992</pmid><doi>10.1089/ten.tea.2010.0198</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1937-3341
ispartof Tissue engineering. Part A, 2011-01, Vol.17 (1-2), p.83-92
issn 1937-3341
1937-335X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3011906
source MEDLINE; Alma/SFX Local Collection
subjects Animals
Blotting, Western
Bone Marrow Cells - cytology
Bone Marrow Cells - drug effects
Bone Marrow Cells - metabolism
Cartilage cells
Cattle
Cells, Cultured
Chondrogenesis - drug effects
Growth
Horses
Hydrogels - chemistry
Methods
Original
Original Articles
Peptides - chemistry
Physiological aspects
Smad2 Protein - metabolism
Smad3 Protein - metabolism
Tissue Engineering
Transforming Growth Factor beta1 - chemistry
Transforming Growth Factor beta1 - pharmacology
Transforming growth factors
title Controlled Delivery of Transforming Growth Factor β1 by Self-Assembling Peptide Hydrogels Induces Chondrogenesis of Bone Marrow Stromal Cells and Modulates Smad2/3 Signaling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A36%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlled%20Delivery%20of%20Transforming%20Growth%20Factor%20%CE%B21%20by%20Self-Assembling%20Peptide%20Hydrogels%20Induces%20Chondrogenesis%20of%20Bone%20Marrow%20Stromal%20Cells%20and%20Modulates%20Smad2/3%20Signaling&rft.jtitle=Tissue%20engineering.%20Part%20A&rft.au=Kopesky,%20Paul%20W.&rft.date=2011-01-01&rft.volume=17&rft.issue=1-2&rft.spage=83&rft.epage=92&rft.pages=83-92&rft.issn=1937-3341&rft.eissn=1937-335X&rft_id=info:doi/10.1089/ten.tea.2010.0198&rft_dat=%3Cgale_pubme%3EA248405470%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=822899959&rft_id=info:pmid/20672992&rft_galeid=A248405470&rfr_iscdi=true