Controlled Delivery of Transforming Growth Factor β1 by Self-Assembling Peptide Hydrogels Induces Chondrogenesis of Bone Marrow Stromal Cells and Modulates Smad2/3 Signaling
Self-assembling peptide hydrogels were modified to deliver transforming growth factor β1 (TGF-β1) to encapsulated bone-marrow-derived stromal cells (BMSCs) for cartilage tissue engineering applications using two different approaches: (i) biotin-streptavidin tethering; (ii) adsorption to the peptide...
Gespeichert in:
Veröffentlicht in: | Tissue engineering. Part A 2011-01, Vol.17 (1-2), p.83-92 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 92 |
---|---|
container_issue | 1-2 |
container_start_page | 83 |
container_title | Tissue engineering. Part A |
container_volume | 17 |
creator | Kopesky, Paul W. Vanderploeg, Eric J. Kisiday, John D. Frisbie, David D. Sandy, John D. Grodzinsky, Alan J. |
description | Self-assembling peptide hydrogels were modified to deliver transforming growth factor β1 (TGF-β1) to encapsulated bone-marrow-derived stromal cells (BMSCs) for cartilage tissue engineering applications using two different approaches: (i) biotin-streptavidin tethering; (ii) adsorption to the peptide scaffold. Initial studies to determine the duration of TGF-β1 medium supplementation necessary to stimulate chondrogenesis showed that 4 days of transient soluble TGF-β1 to newborn bovine BMSCs resulted in 10-fold higher proteoglycan accumulation than TGF-β1-free culture after 3 weeks. Subsequently, BMSC-seeded peptide hydrogels with either tethered TGF-β1 (Teth-TGF) or adsorbed TGF-β1 (Ads-TGF) were cultured in the TGF-β1-free medium, and chondrogenesis was compared to that for BMSCs encapsulated in unmodified peptide hydrogels, both with and without soluble TGF-β1 medium supplementation. Ads-TGF peptide hydrogels stimulated chondrogenesis of BMSCs as demonstrated by cell proliferation and cartilage-like extracellular matrix accumulation, whereas Teth-TGF did not stimulate chondrogenesis. In parallel experiments, TGF-β1 adsorbed to agarose hydrogels stimulated comparable chondrogenesis. Full-length aggrecan was produced by BMSCs in response to Ads-TGF in both peptide and agarose hydrogels, whereas medium-delivered TGF-β1 stimulated catabolic aggrecan cleavage product formation in agarose but not peptide scaffolds. Smad2/3 was transiently phosphorylated in response to Ads-TGF but not Teth-TGF, whereas medium-delivered TGF-β1 produced sustained signaling, suggesting that dose and signal duration are potentially important for minimizing aggrecan cleavage product formation. Robustness of this technology for use in multiple species and ages was demonstrated by effective chondrogenic stimulation of adult equine BMSCs, an important translational model used before the initiation of human clinical studies. |
doi_str_mv | 10.1089/ten.tea.2010.0198 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3011906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A248405470</galeid><sourcerecordid>A248405470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4948-b07a43bc4e653abaff4043a88d2d3c43de68c5996e434332e1de6375fce3965e3</originalsourceid><addsrcrecordid>eNqNUsuKFDEULURxxtEPcCMBF666J6mkHtkIbek8YAaFHsFdSCW3qiOppCepGumfcuGH-E2m7LFxwIWEcMPJOecml5NlLwleElzz0xHccgS5zHFCMOH1o-yYcFotKC2-PD6cGTnKnsX4FeMSl1X1NDvKU805z4-z7413Y_DWgkbvwZo7CDvkO3QTpIudD4NxPToP_tu4QWdSjT6gnz8IandoDbZbrGKEobUz6RNsR6MBXex08D3YiC6dnhRE1Gy8-405iCbO7u-8A3QtQ_JF69R-kBY1YJNGOo2uvZ6sHJNyPUidn1K0Nr2Tc5fn2ZNO2ggv7utJ9vnsw01zsbj6eH7ZrK4WinFWL1pcSUZbxaAsqGxl1zHMqKxrnWuqGNVQ1qrgvARGGaU5kITQqugUUF4WQE-yt3vf7dQOoBWkIUkrtsEMMuyEl0Y8vHFmI3p_JygmhOMyGby5Nwj-doI4isFElb4oHfgpijrPa855wRPz9Z7ZSwvCuM4nQzWzxSpnNcMFq3BiLf_BSkvDYFQaZ2cS_kBA9gIVfIwBusPjCRZzekRKT9pSzOkRc3qS5tXfvz4o_sQlEao9YYalc9ZAC2H8D-tfq5TYPw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>822899959</pqid></control><display><type>article</type><title>Controlled Delivery of Transforming Growth Factor β1 by Self-Assembling Peptide Hydrogels Induces Chondrogenesis of Bone Marrow Stromal Cells and Modulates Smad2/3 Signaling</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Kopesky, Paul W. ; Vanderploeg, Eric J. ; Kisiday, John D. ; Frisbie, David D. ; Sandy, John D. ; Grodzinsky, Alan J.</creator><creatorcontrib>Kopesky, Paul W. ; Vanderploeg, Eric J. ; Kisiday, John D. ; Frisbie, David D. ; Sandy, John D. ; Grodzinsky, Alan J.</creatorcontrib><description>Self-assembling peptide hydrogels were modified to deliver transforming growth factor β1 (TGF-β1) to encapsulated bone-marrow-derived stromal cells (BMSCs) for cartilage tissue engineering applications using two different approaches: (i) biotin-streptavidin tethering; (ii) adsorption to the peptide scaffold. Initial studies to determine the duration of TGF-β1 medium supplementation necessary to stimulate chondrogenesis showed that 4 days of transient soluble TGF-β1 to newborn bovine BMSCs resulted in 10-fold higher proteoglycan accumulation than TGF-β1-free culture after 3 weeks. Subsequently, BMSC-seeded peptide hydrogels with either tethered TGF-β1 (Teth-TGF) or adsorbed TGF-β1 (Ads-TGF) were cultured in the TGF-β1-free medium, and chondrogenesis was compared to that for BMSCs encapsulated in unmodified peptide hydrogels, both with and without soluble TGF-β1 medium supplementation. Ads-TGF peptide hydrogels stimulated chondrogenesis of BMSCs as demonstrated by cell proliferation and cartilage-like extracellular matrix accumulation, whereas Teth-TGF did not stimulate chondrogenesis. In parallel experiments, TGF-β1 adsorbed to agarose hydrogels stimulated comparable chondrogenesis. Full-length aggrecan was produced by BMSCs in response to Ads-TGF in both peptide and agarose hydrogels, whereas medium-delivered TGF-β1 stimulated catabolic aggrecan cleavage product formation in agarose but not peptide scaffolds. Smad2/3 was transiently phosphorylated in response to Ads-TGF but not Teth-TGF, whereas medium-delivered TGF-β1 produced sustained signaling, suggesting that dose and signal duration are potentially important for minimizing aggrecan cleavage product formation. Robustness of this technology for use in multiple species and ages was demonstrated by effective chondrogenic stimulation of adult equine BMSCs, an important translational model used before the initiation of human clinical studies.</description><identifier>ISSN: 1937-3341</identifier><identifier>EISSN: 1937-335X</identifier><identifier>DOI: 10.1089/ten.tea.2010.0198</identifier><identifier>PMID: 20672992</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Animals ; Blotting, Western ; Bone Marrow Cells - cytology ; Bone Marrow Cells - drug effects ; Bone Marrow Cells - metabolism ; Cartilage cells ; Cattle ; Cells, Cultured ; Chondrogenesis - drug effects ; Growth ; Horses ; Hydrogels - chemistry ; Methods ; Original ; Original Articles ; Peptides - chemistry ; Physiological aspects ; Smad2 Protein - metabolism ; Smad3 Protein - metabolism ; Tissue Engineering ; Transforming Growth Factor beta1 - chemistry ; Transforming Growth Factor beta1 - pharmacology ; Transforming growth factors</subject><ispartof>Tissue engineering. Part A, 2011-01, Vol.17 (1-2), p.83-92</ispartof><rights>2011, Mary Ann Liebert, Inc.</rights><rights>COPYRIGHT 2011 Mary Ann Liebert, Inc.</rights><rights>Copyright 2011, Mary Ann Liebert, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4948-b07a43bc4e653abaff4043a88d2d3c43de68c5996e434332e1de6375fce3965e3</citedby><cites>FETCH-LOGICAL-c4948-b07a43bc4e653abaff4043a88d2d3c43de68c5996e434332e1de6375fce3965e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20672992$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kopesky, Paul W.</creatorcontrib><creatorcontrib>Vanderploeg, Eric J.</creatorcontrib><creatorcontrib>Kisiday, John D.</creatorcontrib><creatorcontrib>Frisbie, David D.</creatorcontrib><creatorcontrib>Sandy, John D.</creatorcontrib><creatorcontrib>Grodzinsky, Alan J.</creatorcontrib><title>Controlled Delivery of Transforming Growth Factor β1 by Self-Assembling Peptide Hydrogels Induces Chondrogenesis of Bone Marrow Stromal Cells and Modulates Smad2/3 Signaling</title><title>Tissue engineering. Part A</title><addtitle>Tissue Eng Part A</addtitle><description>Self-assembling peptide hydrogels were modified to deliver transforming growth factor β1 (TGF-β1) to encapsulated bone-marrow-derived stromal cells (BMSCs) for cartilage tissue engineering applications using two different approaches: (i) biotin-streptavidin tethering; (ii) adsorption to the peptide scaffold. Initial studies to determine the duration of TGF-β1 medium supplementation necessary to stimulate chondrogenesis showed that 4 days of transient soluble TGF-β1 to newborn bovine BMSCs resulted in 10-fold higher proteoglycan accumulation than TGF-β1-free culture after 3 weeks. Subsequently, BMSC-seeded peptide hydrogels with either tethered TGF-β1 (Teth-TGF) or adsorbed TGF-β1 (Ads-TGF) were cultured in the TGF-β1-free medium, and chondrogenesis was compared to that for BMSCs encapsulated in unmodified peptide hydrogels, both with and without soluble TGF-β1 medium supplementation. Ads-TGF peptide hydrogels stimulated chondrogenesis of BMSCs as demonstrated by cell proliferation and cartilage-like extracellular matrix accumulation, whereas Teth-TGF did not stimulate chondrogenesis. In parallel experiments, TGF-β1 adsorbed to agarose hydrogels stimulated comparable chondrogenesis. Full-length aggrecan was produced by BMSCs in response to Ads-TGF in both peptide and agarose hydrogels, whereas medium-delivered TGF-β1 stimulated catabolic aggrecan cleavage product formation in agarose but not peptide scaffolds. Smad2/3 was transiently phosphorylated in response to Ads-TGF but not Teth-TGF, whereas medium-delivered TGF-β1 produced sustained signaling, suggesting that dose and signal duration are potentially important for minimizing aggrecan cleavage product formation. Robustness of this technology for use in multiple species and ages was demonstrated by effective chondrogenic stimulation of adult equine BMSCs, an important translational model used before the initiation of human clinical studies.</description><subject>Animals</subject><subject>Blotting, Western</subject><subject>Bone Marrow Cells - cytology</subject><subject>Bone Marrow Cells - drug effects</subject><subject>Bone Marrow Cells - metabolism</subject><subject>Cartilage cells</subject><subject>Cattle</subject><subject>Cells, Cultured</subject><subject>Chondrogenesis - drug effects</subject><subject>Growth</subject><subject>Horses</subject><subject>Hydrogels - chemistry</subject><subject>Methods</subject><subject>Original</subject><subject>Original Articles</subject><subject>Peptides - chemistry</subject><subject>Physiological aspects</subject><subject>Smad2 Protein - metabolism</subject><subject>Smad3 Protein - metabolism</subject><subject>Tissue Engineering</subject><subject>Transforming Growth Factor beta1 - chemistry</subject><subject>Transforming Growth Factor beta1 - pharmacology</subject><subject>Transforming growth factors</subject><issn>1937-3341</issn><issn>1937-335X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUsuKFDEULURxxtEPcCMBF666J6mkHtkIbek8YAaFHsFdSCW3qiOppCepGumfcuGH-E2m7LFxwIWEcMPJOecml5NlLwleElzz0xHccgS5zHFCMOH1o-yYcFotKC2-PD6cGTnKnsX4FeMSl1X1NDvKU805z4-z7413Y_DWgkbvwZo7CDvkO3QTpIudD4NxPToP_tu4QWdSjT6gnz8IandoDbZbrGKEobUz6RNsR6MBXex08D3YiC6dnhRE1Gy8-405iCbO7u-8A3QtQ_JF69R-kBY1YJNGOo2uvZ6sHJNyPUidn1K0Nr2Tc5fn2ZNO2ggv7utJ9vnsw01zsbj6eH7ZrK4WinFWL1pcSUZbxaAsqGxl1zHMqKxrnWuqGNVQ1qrgvARGGaU5kITQqugUUF4WQE-yt3vf7dQOoBWkIUkrtsEMMuyEl0Y8vHFmI3p_JygmhOMyGby5Nwj-doI4isFElb4oHfgpijrPa855wRPz9Z7ZSwvCuM4nQzWzxSpnNcMFq3BiLf_BSkvDYFQaZ2cS_kBA9gIVfIwBusPjCRZzekRKT9pSzOkRc3qS5tXfvz4o_sQlEao9YYalc9ZAC2H8D-tfq5TYPw</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Kopesky, Paul W.</creator><creator>Vanderploeg, Eric J.</creator><creator>Kisiday, John D.</creator><creator>Frisbie, David D.</creator><creator>Sandy, John D.</creator><creator>Grodzinsky, Alan J.</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110101</creationdate><title>Controlled Delivery of Transforming Growth Factor β1 by Self-Assembling Peptide Hydrogels Induces Chondrogenesis of Bone Marrow Stromal Cells and Modulates Smad2/3 Signaling</title><author>Kopesky, Paul W. ; Vanderploeg, Eric J. ; Kisiday, John D. ; Frisbie, David D. ; Sandy, John D. ; Grodzinsky, Alan J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4948-b07a43bc4e653abaff4043a88d2d3c43de68c5996e434332e1de6375fce3965e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Blotting, Western</topic><topic>Bone Marrow Cells - cytology</topic><topic>Bone Marrow Cells - drug effects</topic><topic>Bone Marrow Cells - metabolism</topic><topic>Cartilage cells</topic><topic>Cattle</topic><topic>Cells, Cultured</topic><topic>Chondrogenesis - drug effects</topic><topic>Growth</topic><topic>Horses</topic><topic>Hydrogels - chemistry</topic><topic>Methods</topic><topic>Original</topic><topic>Original Articles</topic><topic>Peptides - chemistry</topic><topic>Physiological aspects</topic><topic>Smad2 Protein - metabolism</topic><topic>Smad3 Protein - metabolism</topic><topic>Tissue Engineering</topic><topic>Transforming Growth Factor beta1 - chemistry</topic><topic>Transforming Growth Factor beta1 - pharmacology</topic><topic>Transforming growth factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kopesky, Paul W.</creatorcontrib><creatorcontrib>Vanderploeg, Eric J.</creatorcontrib><creatorcontrib>Kisiday, John D.</creatorcontrib><creatorcontrib>Frisbie, David D.</creatorcontrib><creatorcontrib>Sandy, John D.</creatorcontrib><creatorcontrib>Grodzinsky, Alan J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Tissue engineering. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kopesky, Paul W.</au><au>Vanderploeg, Eric J.</au><au>Kisiday, John D.</au><au>Frisbie, David D.</au><au>Sandy, John D.</au><au>Grodzinsky, Alan J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlled Delivery of Transforming Growth Factor β1 by Self-Assembling Peptide Hydrogels Induces Chondrogenesis of Bone Marrow Stromal Cells and Modulates Smad2/3 Signaling</atitle><jtitle>Tissue engineering. Part A</jtitle><addtitle>Tissue Eng Part A</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>17</volume><issue>1-2</issue><spage>83</spage><epage>92</epage><pages>83-92</pages><issn>1937-3341</issn><eissn>1937-335X</eissn><abstract>Self-assembling peptide hydrogels were modified to deliver transforming growth factor β1 (TGF-β1) to encapsulated bone-marrow-derived stromal cells (BMSCs) for cartilage tissue engineering applications using two different approaches: (i) biotin-streptavidin tethering; (ii) adsorption to the peptide scaffold. Initial studies to determine the duration of TGF-β1 medium supplementation necessary to stimulate chondrogenesis showed that 4 days of transient soluble TGF-β1 to newborn bovine BMSCs resulted in 10-fold higher proteoglycan accumulation than TGF-β1-free culture after 3 weeks. Subsequently, BMSC-seeded peptide hydrogels with either tethered TGF-β1 (Teth-TGF) or adsorbed TGF-β1 (Ads-TGF) were cultured in the TGF-β1-free medium, and chondrogenesis was compared to that for BMSCs encapsulated in unmodified peptide hydrogels, both with and without soluble TGF-β1 medium supplementation. Ads-TGF peptide hydrogels stimulated chondrogenesis of BMSCs as demonstrated by cell proliferation and cartilage-like extracellular matrix accumulation, whereas Teth-TGF did not stimulate chondrogenesis. In parallel experiments, TGF-β1 adsorbed to agarose hydrogels stimulated comparable chondrogenesis. Full-length aggrecan was produced by BMSCs in response to Ads-TGF in both peptide and agarose hydrogels, whereas medium-delivered TGF-β1 stimulated catabolic aggrecan cleavage product formation in agarose but not peptide scaffolds. Smad2/3 was transiently phosphorylated in response to Ads-TGF but not Teth-TGF, whereas medium-delivered TGF-β1 produced sustained signaling, suggesting that dose and signal duration are potentially important for minimizing aggrecan cleavage product formation. Robustness of this technology for use in multiple species and ages was demonstrated by effective chondrogenic stimulation of adult equine BMSCs, an important translational model used before the initiation of human clinical studies.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>20672992</pmid><doi>10.1089/ten.tea.2010.0198</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1937-3341 |
ispartof | Tissue engineering. Part A, 2011-01, Vol.17 (1-2), p.83-92 |
issn | 1937-3341 1937-335X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3011906 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | Animals Blotting, Western Bone Marrow Cells - cytology Bone Marrow Cells - drug effects Bone Marrow Cells - metabolism Cartilage cells Cattle Cells, Cultured Chondrogenesis - drug effects Growth Horses Hydrogels - chemistry Methods Original Original Articles Peptides - chemistry Physiological aspects Smad2 Protein - metabolism Smad3 Protein - metabolism Tissue Engineering Transforming Growth Factor beta1 - chemistry Transforming Growth Factor beta1 - pharmacology Transforming growth factors |
title | Controlled Delivery of Transforming Growth Factor β1 by Self-Assembling Peptide Hydrogels Induces Chondrogenesis of Bone Marrow Stromal Cells and Modulates Smad2/3 Signaling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A36%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlled%20Delivery%20of%20Transforming%20Growth%20Factor%20%CE%B21%20by%20Self-Assembling%20Peptide%20Hydrogels%20Induces%20Chondrogenesis%20of%20Bone%20Marrow%20Stromal%20Cells%20and%20Modulates%20Smad2/3%20Signaling&rft.jtitle=Tissue%20engineering.%20Part%20A&rft.au=Kopesky,%20Paul%20W.&rft.date=2011-01-01&rft.volume=17&rft.issue=1-2&rft.spage=83&rft.epage=92&rft.pages=83-92&rft.issn=1937-3341&rft.eissn=1937-335X&rft_id=info:doi/10.1089/ten.tea.2010.0198&rft_dat=%3Cgale_pubme%3EA248405470%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=822899959&rft_id=info:pmid/20672992&rft_galeid=A248405470&rfr_iscdi=true |