The Protein Interaction Network of the Human Transcription Machinery Reveals a Role for the Conserved GTPase RPAP4/GPN1 and Microtubule Assembly in Nuclear Import and Biogenesis of RNA Polymerase II

RNA polymerase II (RNAPII), the 12-subunit enzyme that synthesizes all mRNAs and several non-coding RNAs in eukaryotes, plays a central role in cell function. Although multiple proteins are known to regulate the activity of RNAPII during transcription, little is known about the machinery that contro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular & cellular proteomics 2010-12, Vol.9 (12), p.2827-2839
Hauptverfasser: Forget, Diane, Lacombe, Andrée-Anne, Cloutier, Philippe, Al-Khoury, Racha, Bouchard, Annie, Lavallée-Adam, Mathieu, Faubert, Denis, Jeronimo, Célia, Blanchette, Mathieu, Coulombe, Benoit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2839
container_issue 12
container_start_page 2827
container_title Molecular & cellular proteomics
container_volume 9
creator Forget, Diane
Lacombe, Andrée-Anne
Cloutier, Philippe
Al-Khoury, Racha
Bouchard, Annie
Lavallée-Adam, Mathieu
Faubert, Denis
Jeronimo, Célia
Blanchette, Mathieu
Coulombe, Benoit
description RNA polymerase II (RNAPII), the 12-subunit enzyme that synthesizes all mRNAs and several non-coding RNAs in eukaryotes, plays a central role in cell function. Although multiple proteins are known to regulate the activity of RNAPII during transcription, little is known about the machinery that controls the fate of the enzyme before or after transcription. We used systematic protein affinity purification coupled to mass spectrometry (AP-MS) to characterize the high resolution network of protein interactions of RNAPII in the soluble fraction of human cell extracts. Our analysis revealed that many components of this network participate in RNAPII biogenesis. We show here that RNAPII-associated protein 4 (RPAP4/GPN1) shuttles between the nucleus and the cytoplasm and regulates nuclear import of POLR2A/RPB1 and POLR2B/RPB2, the two largest subunits of RNAPII. RPAP4/GPN1 is a member of a newly discovered GTPase family that contains a unique and highly conserved GPN loop motif that we show is essential, in conjunction with its GTP-binding motifs, for nuclear localization of POLR2A/RPB1 in a process that also requires microtubule assembly. A model for RNAPII biogenesis is presented.
doi_str_mv 10.1074/mcp.M110.003616
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3002788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1535947620311683</els_id><sourcerecordid>864952074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586t-52b02d14ccfce3940ba3ea9dc41d6fe4db1e1015e83b0e7d39c9726dab1e34e3</originalsourceid><addsrcrecordid>eNqFkkuP0zAUhSMEYh6wZoe8Y9Wpndh5bJBKBZ1I0xJV2VuOfTM1JHawk6L-QX7XuO1QwQKx8uu7x8fXJ4reEXxHcEbnvRzu1iSsME5Skr6IrglL2KygOX15mWfpVXTj_TeMY0wy9jq6inHOGKP0OvpV7wBVzo6gDSrNCE7IUVuDNjD-tO47si0aA3I_9cKg2gnjpdPDCVkLudMG3AFtYQ-i80igre0AtdadipbWeHB7UGhVV8ID2laLis5X1YYgYRRaaxlunpop1Cy8h77pDij42EyyA-FQ2Q_WjSf0k7aPYMBrf3S03SxQZbtDH-wG2bJ8E71qgwF4-zzeRvWXz_XyfvbwdVUuFw8zyfJ0nLG4wbEiVMpWQlJQ3IgERKEkJSptgaqGAMGEQZ40GDKVFLLI4lSJsJ9QSG6jj2fZYWp6UBLM6ETHB6d74Q7cCs3_PjF6xx_tnieh91meB4EPzwLO_pjAj7zXXkLXCQN28jxPacHi8LP_JwkrUpYXOJDzMxma6b2D9uKHYH5MCQ8p4ceU8HNKQsX7P59x4X_HIgDFGYDQy70Gx73UYCQo7UCOXFn9T_Enk5PPrw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>815965890</pqid></control><display><type>article</type><title>The Protein Interaction Network of the Human Transcription Machinery Reveals a Role for the Conserved GTPase RPAP4/GPN1 and Microtubule Assembly in Nuclear Import and Biogenesis of RNA Polymerase II</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Forget, Diane ; Lacombe, Andrée-Anne ; Cloutier, Philippe ; Al-Khoury, Racha ; Bouchard, Annie ; Lavallée-Adam, Mathieu ; Faubert, Denis ; Jeronimo, Célia ; Blanchette, Mathieu ; Coulombe, Benoit</creator><creatorcontrib>Forget, Diane ; Lacombe, Andrée-Anne ; Cloutier, Philippe ; Al-Khoury, Racha ; Bouchard, Annie ; Lavallée-Adam, Mathieu ; Faubert, Denis ; Jeronimo, Célia ; Blanchette, Mathieu ; Coulombe, Benoit</creatorcontrib><description>RNA polymerase II (RNAPII), the 12-subunit enzyme that synthesizes all mRNAs and several non-coding RNAs in eukaryotes, plays a central role in cell function. Although multiple proteins are known to regulate the activity of RNAPII during transcription, little is known about the machinery that controls the fate of the enzyme before or after transcription. We used systematic protein affinity purification coupled to mass spectrometry (AP-MS) to characterize the high resolution network of protein interactions of RNAPII in the soluble fraction of human cell extracts. Our analysis revealed that many components of this network participate in RNAPII biogenesis. We show here that RNAPII-associated protein 4 (RPAP4/GPN1) shuttles between the nucleus and the cytoplasm and regulates nuclear import of POLR2A/RPB1 and POLR2B/RPB2, the two largest subunits of RNAPII. RPAP4/GPN1 is a member of a newly discovered GTPase family that contains a unique and highly conserved GPN loop motif that we show is essential, in conjunction with its GTP-binding motifs, for nuclear localization of POLR2A/RPB1 in a process that also requires microtubule assembly. A model for RNAPII biogenesis is presented.</description><identifier>ISSN: 1535-9476</identifier><identifier>EISSN: 1535-9484</identifier><identifier>DOI: 10.1074/mcp.M110.003616</identifier><identifier>PMID: 20855544</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Cell Nucleus - metabolism ; Chromatography, Gel ; Chromatography, Liquid ; Gene Silencing ; GTP-Binding Proteins - genetics ; GTP-Binding Proteins - metabolism ; GTP-Binding Proteins - physiology ; HeLa Cells ; Humans ; Microtubules - metabolism ; Protein Transport ; RNA Polymerase II - biosynthesis ; RNA, Small Interfering ; Tandem Mass Spectrometry ; Transcription, Genetic</subject><ispartof>Molecular &amp; cellular proteomics, 2010-12, Vol.9 (12), p.2827-2839</ispartof><rights>2010 © 2010 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2010 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c586t-52b02d14ccfce3940ba3ea9dc41d6fe4db1e1015e83b0e7d39c9726dab1e34e3</citedby><cites>FETCH-LOGICAL-c586t-52b02d14ccfce3940ba3ea9dc41d6fe4db1e1015e83b0e7d39c9726dab1e34e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3002788/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3002788/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20855544$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Forget, Diane</creatorcontrib><creatorcontrib>Lacombe, Andrée-Anne</creatorcontrib><creatorcontrib>Cloutier, Philippe</creatorcontrib><creatorcontrib>Al-Khoury, Racha</creatorcontrib><creatorcontrib>Bouchard, Annie</creatorcontrib><creatorcontrib>Lavallée-Adam, Mathieu</creatorcontrib><creatorcontrib>Faubert, Denis</creatorcontrib><creatorcontrib>Jeronimo, Célia</creatorcontrib><creatorcontrib>Blanchette, Mathieu</creatorcontrib><creatorcontrib>Coulombe, Benoit</creatorcontrib><title>The Protein Interaction Network of the Human Transcription Machinery Reveals a Role for the Conserved GTPase RPAP4/GPN1 and Microtubule Assembly in Nuclear Import and Biogenesis of RNA Polymerase II</title><title>Molecular &amp; cellular proteomics</title><addtitle>Mol Cell Proteomics</addtitle><description>RNA polymerase II (RNAPII), the 12-subunit enzyme that synthesizes all mRNAs and several non-coding RNAs in eukaryotes, plays a central role in cell function. Although multiple proteins are known to regulate the activity of RNAPII during transcription, little is known about the machinery that controls the fate of the enzyme before or after transcription. We used systematic protein affinity purification coupled to mass spectrometry (AP-MS) to characterize the high resolution network of protein interactions of RNAPII in the soluble fraction of human cell extracts. Our analysis revealed that many components of this network participate in RNAPII biogenesis. We show here that RNAPII-associated protein 4 (RPAP4/GPN1) shuttles between the nucleus and the cytoplasm and regulates nuclear import of POLR2A/RPB1 and POLR2B/RPB2, the two largest subunits of RNAPII. RPAP4/GPN1 is a member of a newly discovered GTPase family that contains a unique and highly conserved GPN loop motif that we show is essential, in conjunction with its GTP-binding motifs, for nuclear localization of POLR2A/RPB1 in a process that also requires microtubule assembly. A model for RNAPII biogenesis is presented.</description><subject>Cell Nucleus - metabolism</subject><subject>Chromatography, Gel</subject><subject>Chromatography, Liquid</subject><subject>Gene Silencing</subject><subject>GTP-Binding Proteins - genetics</subject><subject>GTP-Binding Proteins - metabolism</subject><subject>GTP-Binding Proteins - physiology</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Microtubules - metabolism</subject><subject>Protein Transport</subject><subject>RNA Polymerase II - biosynthesis</subject><subject>RNA, Small Interfering</subject><subject>Tandem Mass Spectrometry</subject><subject>Transcription, Genetic</subject><issn>1535-9476</issn><issn>1535-9484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkkuP0zAUhSMEYh6wZoe8Y9Wpndh5bJBKBZ1I0xJV2VuOfTM1JHawk6L-QX7XuO1QwQKx8uu7x8fXJ4reEXxHcEbnvRzu1iSsME5Skr6IrglL2KygOX15mWfpVXTj_TeMY0wy9jq6inHOGKP0OvpV7wBVzo6gDSrNCE7IUVuDNjD-tO47si0aA3I_9cKg2gnjpdPDCVkLudMG3AFtYQ-i80igre0AtdadipbWeHB7UGhVV8ID2laLis5X1YYgYRRaaxlunpop1Cy8h77pDij42EyyA-FQ2Q_WjSf0k7aPYMBrf3S03SxQZbtDH-wG2bJ8E71qgwF4-zzeRvWXz_XyfvbwdVUuFw8zyfJ0nLG4wbEiVMpWQlJQ3IgERKEkJSptgaqGAMGEQZ40GDKVFLLI4lSJsJ9QSG6jj2fZYWp6UBLM6ETHB6d74Q7cCs3_PjF6xx_tnieh91meB4EPzwLO_pjAj7zXXkLXCQN28jxPacHi8LP_JwkrUpYXOJDzMxma6b2D9uKHYH5MCQ8p4ceU8HNKQsX7P59x4X_HIgDFGYDQy70Gx73UYCQo7UCOXFn9T_Enk5PPrw</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Forget, Diane</creator><creator>Lacombe, Andrée-Anne</creator><creator>Cloutier, Philippe</creator><creator>Al-Khoury, Racha</creator><creator>Bouchard, Annie</creator><creator>Lavallée-Adam, Mathieu</creator><creator>Faubert, Denis</creator><creator>Jeronimo, Célia</creator><creator>Blanchette, Mathieu</creator><creator>Coulombe, Benoit</creator><general>Elsevier Inc</general><general>The American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>5PM</scope></search><sort><creationdate>20101201</creationdate><title>The Protein Interaction Network of the Human Transcription Machinery Reveals a Role for the Conserved GTPase RPAP4/GPN1 and Microtubule Assembly in Nuclear Import and Biogenesis of RNA Polymerase II</title><author>Forget, Diane ; Lacombe, Andrée-Anne ; Cloutier, Philippe ; Al-Khoury, Racha ; Bouchard, Annie ; Lavallée-Adam, Mathieu ; Faubert, Denis ; Jeronimo, Célia ; Blanchette, Mathieu ; Coulombe, Benoit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586t-52b02d14ccfce3940ba3ea9dc41d6fe4db1e1015e83b0e7d39c9726dab1e34e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Cell Nucleus - metabolism</topic><topic>Chromatography, Gel</topic><topic>Chromatography, Liquid</topic><topic>Gene Silencing</topic><topic>GTP-Binding Proteins - genetics</topic><topic>GTP-Binding Proteins - metabolism</topic><topic>GTP-Binding Proteins - physiology</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Microtubules - metabolism</topic><topic>Protein Transport</topic><topic>RNA Polymerase II - biosynthesis</topic><topic>RNA, Small Interfering</topic><topic>Tandem Mass Spectrometry</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Forget, Diane</creatorcontrib><creatorcontrib>Lacombe, Andrée-Anne</creatorcontrib><creatorcontrib>Cloutier, Philippe</creatorcontrib><creatorcontrib>Al-Khoury, Racha</creatorcontrib><creatorcontrib>Bouchard, Annie</creatorcontrib><creatorcontrib>Lavallée-Adam, Mathieu</creatorcontrib><creatorcontrib>Faubert, Denis</creatorcontrib><creatorcontrib>Jeronimo, Célia</creatorcontrib><creatorcontrib>Blanchette, Mathieu</creatorcontrib><creatorcontrib>Coulombe, Benoit</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular &amp; cellular proteomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Forget, Diane</au><au>Lacombe, Andrée-Anne</au><au>Cloutier, Philippe</au><au>Al-Khoury, Racha</au><au>Bouchard, Annie</au><au>Lavallée-Adam, Mathieu</au><au>Faubert, Denis</au><au>Jeronimo, Célia</au><au>Blanchette, Mathieu</au><au>Coulombe, Benoit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Protein Interaction Network of the Human Transcription Machinery Reveals a Role for the Conserved GTPase RPAP4/GPN1 and Microtubule Assembly in Nuclear Import and Biogenesis of RNA Polymerase II</atitle><jtitle>Molecular &amp; cellular proteomics</jtitle><addtitle>Mol Cell Proteomics</addtitle><date>2010-12-01</date><risdate>2010</risdate><volume>9</volume><issue>12</issue><spage>2827</spage><epage>2839</epage><pages>2827-2839</pages><issn>1535-9476</issn><eissn>1535-9484</eissn><abstract>RNA polymerase II (RNAPII), the 12-subunit enzyme that synthesizes all mRNAs and several non-coding RNAs in eukaryotes, plays a central role in cell function. Although multiple proteins are known to regulate the activity of RNAPII during transcription, little is known about the machinery that controls the fate of the enzyme before or after transcription. We used systematic protein affinity purification coupled to mass spectrometry (AP-MS) to characterize the high resolution network of protein interactions of RNAPII in the soluble fraction of human cell extracts. Our analysis revealed that many components of this network participate in RNAPII biogenesis. We show here that RNAPII-associated protein 4 (RPAP4/GPN1) shuttles between the nucleus and the cytoplasm and regulates nuclear import of POLR2A/RPB1 and POLR2B/RPB2, the two largest subunits of RNAPII. RPAP4/GPN1 is a member of a newly discovered GTPase family that contains a unique and highly conserved GPN loop motif that we show is essential, in conjunction with its GTP-binding motifs, for nuclear localization of POLR2A/RPB1 in a process that also requires microtubule assembly. A model for RNAPII biogenesis is presented.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20855544</pmid><doi>10.1074/mcp.M110.003616</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1535-9476
ispartof Molecular & cellular proteomics, 2010-12, Vol.9 (12), p.2827-2839
issn 1535-9476
1535-9484
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3002788
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Cell Nucleus - metabolism
Chromatography, Gel
Chromatography, Liquid
Gene Silencing
GTP-Binding Proteins - genetics
GTP-Binding Proteins - metabolism
GTP-Binding Proteins - physiology
HeLa Cells
Humans
Microtubules - metabolism
Protein Transport
RNA Polymerase II - biosynthesis
RNA, Small Interfering
Tandem Mass Spectrometry
Transcription, Genetic
title The Protein Interaction Network of the Human Transcription Machinery Reveals a Role for the Conserved GTPase RPAP4/GPN1 and Microtubule Assembly in Nuclear Import and Biogenesis of RNA Polymerase II
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Protein%20Interaction%20Network%20of%20the%20Human%20Transcription%20Machinery%20Reveals%20a%20Role%20for%20the%20Conserved%20GTPase%20RPAP4/GPN1%20and%20Microtubule%20Assembly%20in%20Nuclear%20Import%20and%20Biogenesis%20of%20RNA%20Polymerase%20II&rft.jtitle=Molecular%20&%20cellular%20proteomics&rft.au=Forget,%20Diane&rft.date=2010-12-01&rft.volume=9&rft.issue=12&rft.spage=2827&rft.epage=2839&rft.pages=2827-2839&rft.issn=1535-9476&rft.eissn=1535-9484&rft_id=info:doi/10.1074/mcp.M110.003616&rft_dat=%3Cproquest_pubme%3E864952074%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=815965890&rft_id=info:pmid/20855544&rft_els_id=S1535947620311683&rfr_iscdi=true