A Bayesian approach for fast and accurate gene tree reconstruction
Recent sequencing and computing advances have enabled phylogenetic analyses to expand to both entire genomes and large clades, thus requiring more efficient and accurate methods designed specifically for the phylogenomic context. Here, we present SPIMAP, an efficient Bayesian method for reconstructi...
Gespeichert in:
Veröffentlicht in: | Molecular biology and evolution 2011-01, Vol.28 (1), p.273-290 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 290 |
---|---|
container_issue | 1 |
container_start_page | 273 |
container_title | Molecular biology and evolution |
container_volume | 28 |
creator | Rasmussen, Matthew D Kellis, Manolis |
description | Recent sequencing and computing advances have enabled phylogenetic analyses to expand to both entire genomes and large clades, thus requiring more efficient and accurate methods designed specifically for the phylogenomic context. Here, we present SPIMAP, an efficient Bayesian method for reconstructing gene trees in the presence of a known species tree. We observe many improvements in reconstruction accuracy, achieved by modeling multiple aspects of evolution, including gene duplication and loss (DL) rates, speciation times, and correlated substitution rate variation across both species and loci. We have implemented and applied this method on two clades of fully sequenced species, 12 Drosophila and 16 fungal genomes as well as simulated phylogenies and find dramatic improvements in reconstruction accuracy as compared with the most popular existing methods, including those that take the species tree into account. We find that reconstruction inaccuracies of traditional phylogenetic methods overestimate the number of DL events by as much as 2-3-fold, whereas our method achieves significantly higher accuracy. We feel that the results and methods presented here will have many important implications for future investigations of gene evolution. |
doi_str_mv | 10.1093/molbev/msq189 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3002250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2225002901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-a7f71fb062f71646fe781019e382d9ab8a55781a187536140ed7b86d63f9ae9f3</originalsourceid><addsrcrecordid>eNpdkc1P3DAQxS3UCpaFY6-V1UtP6XrixLEvlQDxUWmlXuBsTZwxBCX2YidI_PcNWkBtTzOaeXrzRj_GvoD4AcLIzRiHlp43Y34CbQ7YCmrZFNCA-cRWoln6Skh9xI5zfhQCqkqpQ3ZUCqVEpc2KnZ_xc3yh3GPguNuliO6B-5i4xzxxDB1H5-aEE_F7CsSnRMQTuRjylGY39TGcsM8eh0ynb3XN7q4uby9uiu3v618XZ9vC1QBTgY1vwLdClUtVlfLUaBBgSOqyM9hqrOtlgqCbWiqoBHVNq1WnpDdIxss1-7n33c3tSJ2jMCUc7C71I6YXG7G3_25C_2Dv47OVQpRlLRaD728GKT7NlCc79tnRMGCgOGerlalNJZbza_btP-VjnFNYvrO6hCVcBa92xV7kUsw5kf-IAsK-srF7NnbPZtF__Tv_h_odhvwD1IKMnA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>821614410</pqid></control><display><type>article</type><title>A Bayesian approach for fast and accurate gene tree reconstruction</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Rasmussen, Matthew D ; Kellis, Manolis</creator><creatorcontrib>Rasmussen, Matthew D ; Kellis, Manolis</creatorcontrib><description>Recent sequencing and computing advances have enabled phylogenetic analyses to expand to both entire genomes and large clades, thus requiring more efficient and accurate methods designed specifically for the phylogenomic context. Here, we present SPIMAP, an efficient Bayesian method for reconstructing gene trees in the presence of a known species tree. We observe many improvements in reconstruction accuracy, achieved by modeling multiple aspects of evolution, including gene duplication and loss (DL) rates, speciation times, and correlated substitution rate variation across both species and loci. We have implemented and applied this method on two clades of fully sequenced species, 12 Drosophila and 16 fungal genomes as well as simulated phylogenies and find dramatic improvements in reconstruction accuracy as compared with the most popular existing methods, including those that take the species tree into account. We find that reconstruction inaccuracies of traditional phylogenetic methods overestimate the number of DL events by as much as 2-3-fold, whereas our method achieves significantly higher accuracy. We feel that the results and methods presented here will have many important implications for future investigations of gene evolution.</description><identifier>ISSN: 0737-4038</identifier><identifier>EISSN: 1537-1719</identifier><identifier>DOI: 10.1093/molbev/msq189</identifier><identifier>PMID: 20660489</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Algorithms ; Animals ; Bayes Theorem ; Bayesian analysis ; Computational Biology - methods ; Drosophila ; Evolution ; Evolution, Molecular ; Evolutionary genetics ; Gene Duplication ; Gene loci ; Genes ; Genes, Fungal ; Genes, Insect ; Genomes ; Genomics ; Humans ; Insects ; Models, Genetic ; Phylogenetics ; Phylogeny ; Speciation ; Taxonomy</subject><ispartof>Molecular biology and evolution, 2011-01, Vol.28 (1), p.273-290</ispartof><rights>Copyright Oxford Publishing Limited(England) Jan 2011</rights><rights>The Author(s) 2010. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-a7f71fb062f71646fe781019e382d9ab8a55781a187536140ed7b86d63f9ae9f3</citedby><cites>FETCH-LOGICAL-c511t-a7f71fb062f71646fe781019e382d9ab8a55781a187536140ed7b86d63f9ae9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3002250/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3002250/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20660489$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rasmussen, Matthew D</creatorcontrib><creatorcontrib>Kellis, Manolis</creatorcontrib><title>A Bayesian approach for fast and accurate gene tree reconstruction</title><title>Molecular biology and evolution</title><addtitle>Mol Biol Evol</addtitle><description>Recent sequencing and computing advances have enabled phylogenetic analyses to expand to both entire genomes and large clades, thus requiring more efficient and accurate methods designed specifically for the phylogenomic context. Here, we present SPIMAP, an efficient Bayesian method for reconstructing gene trees in the presence of a known species tree. We observe many improvements in reconstruction accuracy, achieved by modeling multiple aspects of evolution, including gene duplication and loss (DL) rates, speciation times, and correlated substitution rate variation across both species and loci. We have implemented and applied this method on two clades of fully sequenced species, 12 Drosophila and 16 fungal genomes as well as simulated phylogenies and find dramatic improvements in reconstruction accuracy as compared with the most popular existing methods, including those that take the species tree into account. We find that reconstruction inaccuracies of traditional phylogenetic methods overestimate the number of DL events by as much as 2-3-fold, whereas our method achieves significantly higher accuracy. We feel that the results and methods presented here will have many important implications for future investigations of gene evolution.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Computational Biology - methods</subject><subject>Drosophila</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Evolutionary genetics</subject><subject>Gene Duplication</subject><subject>Gene loci</subject><subject>Genes</subject><subject>Genes, Fungal</subject><subject>Genes, Insect</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Humans</subject><subject>Insects</subject><subject>Models, Genetic</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Speciation</subject><subject>Taxonomy</subject><issn>0737-4038</issn><issn>1537-1719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1P3DAQxS3UCpaFY6-V1UtP6XrixLEvlQDxUWmlXuBsTZwxBCX2YidI_PcNWkBtTzOaeXrzRj_GvoD4AcLIzRiHlp43Y34CbQ7YCmrZFNCA-cRWoln6Skh9xI5zfhQCqkqpQ3ZUCqVEpc2KnZ_xc3yh3GPguNuliO6B-5i4xzxxDB1H5-aEE_F7CsSnRMQTuRjylGY39TGcsM8eh0ynb3XN7q4uby9uiu3v618XZ9vC1QBTgY1vwLdClUtVlfLUaBBgSOqyM9hqrOtlgqCbWiqoBHVNq1WnpDdIxss1-7n33c3tSJ2jMCUc7C71I6YXG7G3_25C_2Dv47OVQpRlLRaD728GKT7NlCc79tnRMGCgOGerlalNJZbza_btP-VjnFNYvrO6hCVcBa92xV7kUsw5kf-IAsK-srF7NnbPZtF__Tv_h_odhvwD1IKMnA</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Rasmussen, Matthew D</creator><creator>Kellis, Manolis</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20110101</creationdate><title>A Bayesian approach for fast and accurate gene tree reconstruction</title><author>Rasmussen, Matthew D ; Kellis, Manolis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-a7f71fb062f71646fe781019e382d9ab8a55781a187536140ed7b86d63f9ae9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Computational Biology - methods</topic><topic>Drosophila</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Evolutionary genetics</topic><topic>Gene Duplication</topic><topic>Gene loci</topic><topic>Genes</topic><topic>Genes, Fungal</topic><topic>Genes, Insect</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Humans</topic><topic>Insects</topic><topic>Models, Genetic</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Speciation</topic><topic>Taxonomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rasmussen, Matthew D</creatorcontrib><creatorcontrib>Kellis, Manolis</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rasmussen, Matthew D</au><au>Kellis, Manolis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian approach for fast and accurate gene tree reconstruction</atitle><jtitle>Molecular biology and evolution</jtitle><addtitle>Mol Biol Evol</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>28</volume><issue>1</issue><spage>273</spage><epage>290</epage><pages>273-290</pages><issn>0737-4038</issn><eissn>1537-1719</eissn><abstract>Recent sequencing and computing advances have enabled phylogenetic analyses to expand to both entire genomes and large clades, thus requiring more efficient and accurate methods designed specifically for the phylogenomic context. Here, we present SPIMAP, an efficient Bayesian method for reconstructing gene trees in the presence of a known species tree. We observe many improvements in reconstruction accuracy, achieved by modeling multiple aspects of evolution, including gene duplication and loss (DL) rates, speciation times, and correlated substitution rate variation across both species and loci. We have implemented and applied this method on two clades of fully sequenced species, 12 Drosophila and 16 fungal genomes as well as simulated phylogenies and find dramatic improvements in reconstruction accuracy as compared with the most popular existing methods, including those that take the species tree into account. We find that reconstruction inaccuracies of traditional phylogenetic methods overestimate the number of DL events by as much as 2-3-fold, whereas our method achieves significantly higher accuracy. We feel that the results and methods presented here will have many important implications for future investigations of gene evolution.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>20660489</pmid><doi>10.1093/molbev/msq189</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0737-4038 |
ispartof | Molecular biology and evolution, 2011-01, Vol.28 (1), p.273-290 |
issn | 0737-4038 1537-1719 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3002250 |
source | Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Algorithms Animals Bayes Theorem Bayesian analysis Computational Biology - methods Drosophila Evolution Evolution, Molecular Evolutionary genetics Gene Duplication Gene loci Genes Genes, Fungal Genes, Insect Genomes Genomics Humans Insects Models, Genetic Phylogenetics Phylogeny Speciation Taxonomy |
title | A Bayesian approach for fast and accurate gene tree reconstruction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A03%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20approach%20for%20fast%20and%20accurate%20gene%20tree%20reconstruction&rft.jtitle=Molecular%20biology%20and%20evolution&rft.au=Rasmussen,%20Matthew%20D&rft.date=2011-01-01&rft.volume=28&rft.issue=1&rft.spage=273&rft.epage=290&rft.pages=273-290&rft.issn=0737-4038&rft.eissn=1537-1719&rft_id=info:doi/10.1093/molbev/msq189&rft_dat=%3Cproquest_pubme%3E2225002901%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=821614410&rft_id=info:pmid/20660489&rfr_iscdi=true |