A Bayesian approach for fast and accurate gene tree reconstruction

Recent sequencing and computing advances have enabled phylogenetic analyses to expand to both entire genomes and large clades, thus requiring more efficient and accurate methods designed specifically for the phylogenomic context. Here, we present SPIMAP, an efficient Bayesian method for reconstructi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology and evolution 2011-01, Vol.28 (1), p.273-290
Hauptverfasser: Rasmussen, Matthew D, Kellis, Manolis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 290
container_issue 1
container_start_page 273
container_title Molecular biology and evolution
container_volume 28
creator Rasmussen, Matthew D
Kellis, Manolis
description Recent sequencing and computing advances have enabled phylogenetic analyses to expand to both entire genomes and large clades, thus requiring more efficient and accurate methods designed specifically for the phylogenomic context. Here, we present SPIMAP, an efficient Bayesian method for reconstructing gene trees in the presence of a known species tree. We observe many improvements in reconstruction accuracy, achieved by modeling multiple aspects of evolution, including gene duplication and loss (DL) rates, speciation times, and correlated substitution rate variation across both species and loci. We have implemented and applied this method on two clades of fully sequenced species, 12 Drosophila and 16 fungal genomes as well as simulated phylogenies and find dramatic improvements in reconstruction accuracy as compared with the most popular existing methods, including those that take the species tree into account. We find that reconstruction inaccuracies of traditional phylogenetic methods overestimate the number of DL events by as much as 2-3-fold, whereas our method achieves significantly higher accuracy. We feel that the results and methods presented here will have many important implications for future investigations of gene evolution.
doi_str_mv 10.1093/molbev/msq189
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3002250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2225002901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-a7f71fb062f71646fe781019e382d9ab8a55781a187536140ed7b86d63f9ae9f3</originalsourceid><addsrcrecordid>eNpdkc1P3DAQxS3UCpaFY6-V1UtP6XrixLEvlQDxUWmlXuBsTZwxBCX2YidI_PcNWkBtTzOaeXrzRj_GvoD4AcLIzRiHlp43Y34CbQ7YCmrZFNCA-cRWoln6Skh9xI5zfhQCqkqpQ3ZUCqVEpc2KnZ_xc3yh3GPguNuliO6B-5i4xzxxDB1H5-aEE_F7CsSnRMQTuRjylGY39TGcsM8eh0ynb3XN7q4uby9uiu3v618XZ9vC1QBTgY1vwLdClUtVlfLUaBBgSOqyM9hqrOtlgqCbWiqoBHVNq1WnpDdIxss1-7n33c3tSJ2jMCUc7C71I6YXG7G3_25C_2Dv47OVQpRlLRaD728GKT7NlCc79tnRMGCgOGerlalNJZbza_btP-VjnFNYvrO6hCVcBa92xV7kUsw5kf-IAsK-srF7NnbPZtF__Tv_h_odhvwD1IKMnA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>821614410</pqid></control><display><type>article</type><title>A Bayesian approach for fast and accurate gene tree reconstruction</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Rasmussen, Matthew D ; Kellis, Manolis</creator><creatorcontrib>Rasmussen, Matthew D ; Kellis, Manolis</creatorcontrib><description>Recent sequencing and computing advances have enabled phylogenetic analyses to expand to both entire genomes and large clades, thus requiring more efficient and accurate methods designed specifically for the phylogenomic context. Here, we present SPIMAP, an efficient Bayesian method for reconstructing gene trees in the presence of a known species tree. We observe many improvements in reconstruction accuracy, achieved by modeling multiple aspects of evolution, including gene duplication and loss (DL) rates, speciation times, and correlated substitution rate variation across both species and loci. We have implemented and applied this method on two clades of fully sequenced species, 12 Drosophila and 16 fungal genomes as well as simulated phylogenies and find dramatic improvements in reconstruction accuracy as compared with the most popular existing methods, including those that take the species tree into account. We find that reconstruction inaccuracies of traditional phylogenetic methods overestimate the number of DL events by as much as 2-3-fold, whereas our method achieves significantly higher accuracy. We feel that the results and methods presented here will have many important implications for future investigations of gene evolution.</description><identifier>ISSN: 0737-4038</identifier><identifier>EISSN: 1537-1719</identifier><identifier>DOI: 10.1093/molbev/msq189</identifier><identifier>PMID: 20660489</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Algorithms ; Animals ; Bayes Theorem ; Bayesian analysis ; Computational Biology - methods ; Drosophila ; Evolution ; Evolution, Molecular ; Evolutionary genetics ; Gene Duplication ; Gene loci ; Genes ; Genes, Fungal ; Genes, Insect ; Genomes ; Genomics ; Humans ; Insects ; Models, Genetic ; Phylogenetics ; Phylogeny ; Speciation ; Taxonomy</subject><ispartof>Molecular biology and evolution, 2011-01, Vol.28 (1), p.273-290</ispartof><rights>Copyright Oxford Publishing Limited(England) Jan 2011</rights><rights>The Author(s) 2010. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-a7f71fb062f71646fe781019e382d9ab8a55781a187536140ed7b86d63f9ae9f3</citedby><cites>FETCH-LOGICAL-c511t-a7f71fb062f71646fe781019e382d9ab8a55781a187536140ed7b86d63f9ae9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3002250/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3002250/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20660489$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rasmussen, Matthew D</creatorcontrib><creatorcontrib>Kellis, Manolis</creatorcontrib><title>A Bayesian approach for fast and accurate gene tree reconstruction</title><title>Molecular biology and evolution</title><addtitle>Mol Biol Evol</addtitle><description>Recent sequencing and computing advances have enabled phylogenetic analyses to expand to both entire genomes and large clades, thus requiring more efficient and accurate methods designed specifically for the phylogenomic context. Here, we present SPIMAP, an efficient Bayesian method for reconstructing gene trees in the presence of a known species tree. We observe many improvements in reconstruction accuracy, achieved by modeling multiple aspects of evolution, including gene duplication and loss (DL) rates, speciation times, and correlated substitution rate variation across both species and loci. We have implemented and applied this method on two clades of fully sequenced species, 12 Drosophila and 16 fungal genomes as well as simulated phylogenies and find dramatic improvements in reconstruction accuracy as compared with the most popular existing methods, including those that take the species tree into account. We find that reconstruction inaccuracies of traditional phylogenetic methods overestimate the number of DL events by as much as 2-3-fold, whereas our method achieves significantly higher accuracy. We feel that the results and methods presented here will have many important implications for future investigations of gene evolution.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Computational Biology - methods</subject><subject>Drosophila</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Evolutionary genetics</subject><subject>Gene Duplication</subject><subject>Gene loci</subject><subject>Genes</subject><subject>Genes, Fungal</subject><subject>Genes, Insect</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Humans</subject><subject>Insects</subject><subject>Models, Genetic</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Speciation</subject><subject>Taxonomy</subject><issn>0737-4038</issn><issn>1537-1719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1P3DAQxS3UCpaFY6-V1UtP6XrixLEvlQDxUWmlXuBsTZwxBCX2YidI_PcNWkBtTzOaeXrzRj_GvoD4AcLIzRiHlp43Y34CbQ7YCmrZFNCA-cRWoln6Skh9xI5zfhQCqkqpQ3ZUCqVEpc2KnZ_xc3yh3GPguNuliO6B-5i4xzxxDB1H5-aEE_F7CsSnRMQTuRjylGY39TGcsM8eh0ynb3XN7q4uby9uiu3v618XZ9vC1QBTgY1vwLdClUtVlfLUaBBgSOqyM9hqrOtlgqCbWiqoBHVNq1WnpDdIxss1-7n33c3tSJ2jMCUc7C71I6YXG7G3_25C_2Dv47OVQpRlLRaD728GKT7NlCc79tnRMGCgOGerlalNJZbza_btP-VjnFNYvrO6hCVcBa92xV7kUsw5kf-IAsK-srF7NnbPZtF__Tv_h_odhvwD1IKMnA</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Rasmussen, Matthew D</creator><creator>Kellis, Manolis</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20110101</creationdate><title>A Bayesian approach for fast and accurate gene tree reconstruction</title><author>Rasmussen, Matthew D ; Kellis, Manolis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-a7f71fb062f71646fe781019e382d9ab8a55781a187536140ed7b86d63f9ae9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Computational Biology - methods</topic><topic>Drosophila</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Evolutionary genetics</topic><topic>Gene Duplication</topic><topic>Gene loci</topic><topic>Genes</topic><topic>Genes, Fungal</topic><topic>Genes, Insect</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Humans</topic><topic>Insects</topic><topic>Models, Genetic</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Speciation</topic><topic>Taxonomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rasmussen, Matthew D</creatorcontrib><creatorcontrib>Kellis, Manolis</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rasmussen, Matthew D</au><au>Kellis, Manolis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian approach for fast and accurate gene tree reconstruction</atitle><jtitle>Molecular biology and evolution</jtitle><addtitle>Mol Biol Evol</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>28</volume><issue>1</issue><spage>273</spage><epage>290</epage><pages>273-290</pages><issn>0737-4038</issn><eissn>1537-1719</eissn><abstract>Recent sequencing and computing advances have enabled phylogenetic analyses to expand to both entire genomes and large clades, thus requiring more efficient and accurate methods designed specifically for the phylogenomic context. Here, we present SPIMAP, an efficient Bayesian method for reconstructing gene trees in the presence of a known species tree. We observe many improvements in reconstruction accuracy, achieved by modeling multiple aspects of evolution, including gene duplication and loss (DL) rates, speciation times, and correlated substitution rate variation across both species and loci. We have implemented and applied this method on two clades of fully sequenced species, 12 Drosophila and 16 fungal genomes as well as simulated phylogenies and find dramatic improvements in reconstruction accuracy as compared with the most popular existing methods, including those that take the species tree into account. We find that reconstruction inaccuracies of traditional phylogenetic methods overestimate the number of DL events by as much as 2-3-fold, whereas our method achieves significantly higher accuracy. We feel that the results and methods presented here will have many important implications for future investigations of gene evolution.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>20660489</pmid><doi>10.1093/molbev/msq189</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0737-4038
ispartof Molecular biology and evolution, 2011-01, Vol.28 (1), p.273-290
issn 0737-4038
1537-1719
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3002250
source Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Algorithms
Animals
Bayes Theorem
Bayesian analysis
Computational Biology - methods
Drosophila
Evolution
Evolution, Molecular
Evolutionary genetics
Gene Duplication
Gene loci
Genes
Genes, Fungal
Genes, Insect
Genomes
Genomics
Humans
Insects
Models, Genetic
Phylogenetics
Phylogeny
Speciation
Taxonomy
title A Bayesian approach for fast and accurate gene tree reconstruction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A03%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20approach%20for%20fast%20and%20accurate%20gene%20tree%20reconstruction&rft.jtitle=Molecular%20biology%20and%20evolution&rft.au=Rasmussen,%20Matthew%20D&rft.date=2011-01-01&rft.volume=28&rft.issue=1&rft.spage=273&rft.epage=290&rft.pages=273-290&rft.issn=0737-4038&rft.eissn=1537-1719&rft_id=info:doi/10.1093/molbev/msq189&rft_dat=%3Cproquest_pubme%3E2225002901%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=821614410&rft_id=info:pmid/20660489&rfr_iscdi=true