Thermal unfolding studies show the disease causing F508del mutation in CFTR thermodynamically destabilizes nucleotide‐binding domain 1

Misfolding and degradation of CFTR is the cause of disease in patients with the most prevalent CFTR mutation, an in‐frame deletion of phenylalanine (F508del), located in the first nucleotide‐binding domain of human CFTR (hNBD1). Studies of (F508del)CFTR cellular folding suggest that both intra‐ and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protein science 2010-10, Vol.19 (10), p.1917-1931
Hauptverfasser: Protasevich, Irina, Yang, Zhengrong, Wang, Chi, Atwell, Shane, Zhao, Xun, Emtage, Spencer, Wetmore, Diana, Hunt, John F., Brouillette, Christie G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1931
container_issue 10
container_start_page 1917
container_title Protein science
container_volume 19
creator Protasevich, Irina
Yang, Zhengrong
Wang, Chi
Atwell, Shane
Zhao, Xun
Emtage, Spencer
Wetmore, Diana
Hunt, John F.
Brouillette, Christie G.
description Misfolding and degradation of CFTR is the cause of disease in patients with the most prevalent CFTR mutation, an in‐frame deletion of phenylalanine (F508del), located in the first nucleotide‐binding domain of human CFTR (hNBD1). Studies of (F508del)CFTR cellular folding suggest that both intra‐ and inter‐domain folding is impaired. (F508del)CFTR is a temperature‐sensitive mutant, that is, lowering growth temperature, improves both export, and plasma membrane residence times. Yet, paradoxically, F508del does not alter the fold of isolated hNBD1 nor did it seem to perturb its unfolding transition in previous isothermal chemical denaturation studies. We therefore studied the in vitro thermal unfolding of matched hNBD1 constructs ±F508del to shed light on the defective folding mechanism and the basis for the thermal instability of (F508del)CFTR. Using primarily differential scanning calorimetry (DSC) and circular dichroism, we show for all hNBD1 pairs studied, that F508del lowers the unfolding transition temperature (Tm) by 6–7°C and that unfolding occurs via a kinetically‐controlled, irreversible transition in isolated monomers. A thermal unfolding mechanism is derived from nonlinear least squares fitting of comprehensive DSC data sets. All data are consistent with a simple three‐state thermal unfolding mechanism for hNBD1 ± F508del: N(±MgATP) ⇄ IT(±MgATP) → AT → (AT)n. The equilibrium unfolding to intermediate, IT, is followed by the rate‐determining, irreversible formation of a partially folded, aggregation‐prone, monomeric state, AT, for which aggregation to (AT)n and further unfolding occur with no detectable heat change. Fitted parameters indicate that F508del thermodynamically destabilizes the native state, N, and accelerates the formation of AT.
doi_str_mv 10.1002/pro.479
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2998726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3282278501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4989-8c816af817802aed0f7eeec7155e662a3a5f5d9e99cfff126fadd5f8601470d33</originalsourceid><addsrcrecordid>eNp1kUFrFDEUx4Modq3iN5CABw9la5KZySQXoSyuCoVKWcFbyCYv3ZRMsiYzlvXUo0c_o5_ErFuLHjw9wvvl997jj9BzSk4pIez1NqfTtpcP0Iy2XM6F5J8fohmRnM5Fw8URelLKNSGkpax5jI4Y4aKnTTND31cbyIMOeIouBevjFS7jZD0UXDbpBo8bwNYX0AWw0VPZA8uOCAsBD9OoR58i9hEvlqvLPZyHZHdRD97oEHbYQhn12gf_rQrjZAKk0Vv4eftj7ePvaTYNuv6nT9Ejp0OBZ3f1GH1avl0t3s_PL959WJydz00rRb3MCMq1E7QXhGmwxPUAYHradcA5043uXGclSGmcc5Rxp63tnOCEtj2xTXOM3hy822k9gDUQx6yD2mY_6LxTSXv1byf6jbpKXxWTUvSMV8HLO0FOX6Z6n7pOU451Z0U7KljXU9lX6tWBMjmVksHdT6BE7SOr76RqZJV88fdC99yfjCpwcgBufIDd_zzq4-XFXvcLaeakqg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1518257197</pqid></control><display><type>article</type><title>Thermal unfolding studies show the disease causing F508del mutation in CFTR thermodynamically destabilizes nucleotide‐binding domain 1</title><source>MEDLINE</source><source>Wiley Online Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Protasevich, Irina ; Yang, Zhengrong ; Wang, Chi ; Atwell, Shane ; Zhao, Xun ; Emtage, Spencer ; Wetmore, Diana ; Hunt, John F. ; Brouillette, Christie G.</creator><creatorcontrib>Protasevich, Irina ; Yang, Zhengrong ; Wang, Chi ; Atwell, Shane ; Zhao, Xun ; Emtage, Spencer ; Wetmore, Diana ; Hunt, John F. ; Brouillette, Christie G.</creatorcontrib><description>Misfolding and degradation of CFTR is the cause of disease in patients with the most prevalent CFTR mutation, an in‐frame deletion of phenylalanine (F508del), located in the first nucleotide‐binding domain of human CFTR (hNBD1). Studies of (F508del)CFTR cellular folding suggest that both intra‐ and inter‐domain folding is impaired. (F508del)CFTR is a temperature‐sensitive mutant, that is, lowering growth temperature, improves both export, and plasma membrane residence times. Yet, paradoxically, F508del does not alter the fold of isolated hNBD1 nor did it seem to perturb its unfolding transition in previous isothermal chemical denaturation studies. We therefore studied the in vitro thermal unfolding of matched hNBD1 constructs ±F508del to shed light on the defective folding mechanism and the basis for the thermal instability of (F508del)CFTR. Using primarily differential scanning calorimetry (DSC) and circular dichroism, we show for all hNBD1 pairs studied, that F508del lowers the unfolding transition temperature (Tm) by 6–7°C and that unfolding occurs via a kinetically‐controlled, irreversible transition in isolated monomers. A thermal unfolding mechanism is derived from nonlinear least squares fitting of comprehensive DSC data sets. All data are consistent with a simple three‐state thermal unfolding mechanism for hNBD1 ± F508del: N(±MgATP) ⇄ IT(±MgATP) → AT → (AT)n. The equilibrium unfolding to intermediate, IT, is followed by the rate‐determining, irreversible formation of a partially folded, aggregation‐prone, monomeric state, AT, for which aggregation to (AT)n and further unfolding occur with no detectable heat change. Fitted parameters indicate that F508del thermodynamically destabilizes the native state, N, and accelerates the formation of AT.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.479</identifier><identifier>PMID: 20687133</identifier><identifier>CODEN: PRCIEI</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>(F508del)NBD1 ; Algorithms ; Binding Sites - genetics ; calorimetry ; Calorimetry, Differential Scanning ; CFTR ; Circular Dichroism ; cystic fibrosis ; Cystic Fibrosis - genetics ; Cystic Fibrosis Transmembrane Conductance Regulator - chemistry ; Cystic Fibrosis Transmembrane Conductance Regulator - genetics ; Cystic Fibrosis Transmembrane Conductance Regulator - metabolism ; Humans ; Kinetics ; Mutation ; NBD1 ; Nucleotides - chemistry ; Nucleotides - metabolism ; Phenylalanine - genetics ; Protein Binding ; Protein Denaturation ; Protein Folding ; Protein Stability ; Protein Structure, Tertiary ; Sequence Deletion ; temperature correction ; thermal denaturation ; Thermodynamics ; Transition Temperature</subject><ispartof>Protein science, 2010-10, Vol.19 (10), p.1917-1931</ispartof><rights>Copyright © 2010 The Protein Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4989-8c816af817802aed0f7eeec7155e662a3a5f5d9e99cfff126fadd5f8601470d33</citedby><cites>FETCH-LOGICAL-c4989-8c816af817802aed0f7eeec7155e662a3a5f5d9e99cfff126fadd5f8601470d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2998726/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2998726/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20687133$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Protasevich, Irina</creatorcontrib><creatorcontrib>Yang, Zhengrong</creatorcontrib><creatorcontrib>Wang, Chi</creatorcontrib><creatorcontrib>Atwell, Shane</creatorcontrib><creatorcontrib>Zhao, Xun</creatorcontrib><creatorcontrib>Emtage, Spencer</creatorcontrib><creatorcontrib>Wetmore, Diana</creatorcontrib><creatorcontrib>Hunt, John F.</creatorcontrib><creatorcontrib>Brouillette, Christie G.</creatorcontrib><title>Thermal unfolding studies show the disease causing F508del mutation in CFTR thermodynamically destabilizes nucleotide‐binding domain 1</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>Misfolding and degradation of CFTR is the cause of disease in patients with the most prevalent CFTR mutation, an in‐frame deletion of phenylalanine (F508del), located in the first nucleotide‐binding domain of human CFTR (hNBD1). Studies of (F508del)CFTR cellular folding suggest that both intra‐ and inter‐domain folding is impaired. (F508del)CFTR is a temperature‐sensitive mutant, that is, lowering growth temperature, improves both export, and plasma membrane residence times. Yet, paradoxically, F508del does not alter the fold of isolated hNBD1 nor did it seem to perturb its unfolding transition in previous isothermal chemical denaturation studies. We therefore studied the in vitro thermal unfolding of matched hNBD1 constructs ±F508del to shed light on the defective folding mechanism and the basis for the thermal instability of (F508del)CFTR. Using primarily differential scanning calorimetry (DSC) and circular dichroism, we show for all hNBD1 pairs studied, that F508del lowers the unfolding transition temperature (Tm) by 6–7°C and that unfolding occurs via a kinetically‐controlled, irreversible transition in isolated monomers. A thermal unfolding mechanism is derived from nonlinear least squares fitting of comprehensive DSC data sets. All data are consistent with a simple three‐state thermal unfolding mechanism for hNBD1 ± F508del: N(±MgATP) ⇄ IT(±MgATP) → AT → (AT)n. The equilibrium unfolding to intermediate, IT, is followed by the rate‐determining, irreversible formation of a partially folded, aggregation‐prone, monomeric state, AT, for which aggregation to (AT)n and further unfolding occur with no detectable heat change. Fitted parameters indicate that F508del thermodynamically destabilizes the native state, N, and accelerates the formation of AT.</description><subject>(F508del)NBD1</subject><subject>Algorithms</subject><subject>Binding Sites - genetics</subject><subject>calorimetry</subject><subject>Calorimetry, Differential Scanning</subject><subject>CFTR</subject><subject>Circular Dichroism</subject><subject>cystic fibrosis</subject><subject>Cystic Fibrosis - genetics</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - chemistry</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - metabolism</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Mutation</subject><subject>NBD1</subject><subject>Nucleotides - chemistry</subject><subject>Nucleotides - metabolism</subject><subject>Phenylalanine - genetics</subject><subject>Protein Binding</subject><subject>Protein Denaturation</subject><subject>Protein Folding</subject><subject>Protein Stability</subject><subject>Protein Structure, Tertiary</subject><subject>Sequence Deletion</subject><subject>temperature correction</subject><subject>thermal denaturation</subject><subject>Thermodynamics</subject><subject>Transition Temperature</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUFrFDEUx4Modq3iN5CABw9la5KZySQXoSyuCoVKWcFbyCYv3ZRMsiYzlvXUo0c_o5_ErFuLHjw9wvvl997jj9BzSk4pIez1NqfTtpcP0Iy2XM6F5J8fohmRnM5Fw8URelLKNSGkpax5jI4Y4aKnTTND31cbyIMOeIouBevjFS7jZD0UXDbpBo8bwNYX0AWw0VPZA8uOCAsBD9OoR58i9hEvlqvLPZyHZHdRD97oEHbYQhn12gf_rQrjZAKk0Vv4eftj7ePvaTYNuv6nT9Ejp0OBZ3f1GH1avl0t3s_PL959WJydz00rRb3MCMq1E7QXhGmwxPUAYHradcA5043uXGclSGmcc5Rxp63tnOCEtj2xTXOM3hy822k9gDUQx6yD2mY_6LxTSXv1byf6jbpKXxWTUvSMV8HLO0FOX6Z6n7pOU451Z0U7KljXU9lX6tWBMjmVksHdT6BE7SOr76RqZJV88fdC99yfjCpwcgBufIDd_zzq4-XFXvcLaeakqg</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Protasevich, Irina</creator><creator>Yang, Zhengrong</creator><creator>Wang, Chi</creator><creator>Atwell, Shane</creator><creator>Zhao, Xun</creator><creator>Emtage, Spencer</creator><creator>Wetmore, Diana</creator><creator>Hunt, John F.</creator><creator>Brouillette, Christie G.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>201010</creationdate><title>Thermal unfolding studies show the disease causing F508del mutation in CFTR thermodynamically destabilizes nucleotide‐binding domain 1</title><author>Protasevich, Irina ; Yang, Zhengrong ; Wang, Chi ; Atwell, Shane ; Zhao, Xun ; Emtage, Spencer ; Wetmore, Diana ; Hunt, John F. ; Brouillette, Christie G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4989-8c816af817802aed0f7eeec7155e662a3a5f5d9e99cfff126fadd5f8601470d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>(F508del)NBD1</topic><topic>Algorithms</topic><topic>Binding Sites - genetics</topic><topic>calorimetry</topic><topic>Calorimetry, Differential Scanning</topic><topic>CFTR</topic><topic>Circular Dichroism</topic><topic>cystic fibrosis</topic><topic>Cystic Fibrosis - genetics</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - chemistry</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - metabolism</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Mutation</topic><topic>NBD1</topic><topic>Nucleotides - chemistry</topic><topic>Nucleotides - metabolism</topic><topic>Phenylalanine - genetics</topic><topic>Protein Binding</topic><topic>Protein Denaturation</topic><topic>Protein Folding</topic><topic>Protein Stability</topic><topic>Protein Structure, Tertiary</topic><topic>Sequence Deletion</topic><topic>temperature correction</topic><topic>thermal denaturation</topic><topic>Thermodynamics</topic><topic>Transition Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Protasevich, Irina</creatorcontrib><creatorcontrib>Yang, Zhengrong</creatorcontrib><creatorcontrib>Wang, Chi</creatorcontrib><creatorcontrib>Atwell, Shane</creatorcontrib><creatorcontrib>Zhao, Xun</creatorcontrib><creatorcontrib>Emtage, Spencer</creatorcontrib><creatorcontrib>Wetmore, Diana</creatorcontrib><creatorcontrib>Hunt, John F.</creatorcontrib><creatorcontrib>Brouillette, Christie G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Protasevich, Irina</au><au>Yang, Zhengrong</au><au>Wang, Chi</au><au>Atwell, Shane</au><au>Zhao, Xun</au><au>Emtage, Spencer</au><au>Wetmore, Diana</au><au>Hunt, John F.</au><au>Brouillette, Christie G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal unfolding studies show the disease causing F508del mutation in CFTR thermodynamically destabilizes nucleotide‐binding domain 1</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2010-10</date><risdate>2010</risdate><volume>19</volume><issue>10</issue><spage>1917</spage><epage>1931</epage><pages>1917-1931</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><coden>PRCIEI</coden><abstract>Misfolding and degradation of CFTR is the cause of disease in patients with the most prevalent CFTR mutation, an in‐frame deletion of phenylalanine (F508del), located in the first nucleotide‐binding domain of human CFTR (hNBD1). Studies of (F508del)CFTR cellular folding suggest that both intra‐ and inter‐domain folding is impaired. (F508del)CFTR is a temperature‐sensitive mutant, that is, lowering growth temperature, improves both export, and plasma membrane residence times. Yet, paradoxically, F508del does not alter the fold of isolated hNBD1 nor did it seem to perturb its unfolding transition in previous isothermal chemical denaturation studies. We therefore studied the in vitro thermal unfolding of matched hNBD1 constructs ±F508del to shed light on the defective folding mechanism and the basis for the thermal instability of (F508del)CFTR. Using primarily differential scanning calorimetry (DSC) and circular dichroism, we show for all hNBD1 pairs studied, that F508del lowers the unfolding transition temperature (Tm) by 6–7°C and that unfolding occurs via a kinetically‐controlled, irreversible transition in isolated monomers. A thermal unfolding mechanism is derived from nonlinear least squares fitting of comprehensive DSC data sets. All data are consistent with a simple three‐state thermal unfolding mechanism for hNBD1 ± F508del: N(±MgATP) ⇄ IT(±MgATP) → AT → (AT)n. The equilibrium unfolding to intermediate, IT, is followed by the rate‐determining, irreversible formation of a partially folded, aggregation‐prone, monomeric state, AT, for which aggregation to (AT)n and further unfolding occur with no detectable heat change. Fitted parameters indicate that F508del thermodynamically destabilizes the native state, N, and accelerates the formation of AT.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>20687133</pmid><doi>10.1002/pro.479</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0961-8368
ispartof Protein science, 2010-10, Vol.19 (10), p.1917-1931
issn 0961-8368
1469-896X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2998726
source MEDLINE; Wiley Online Library; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects (F508del)NBD1
Algorithms
Binding Sites - genetics
calorimetry
Calorimetry, Differential Scanning
CFTR
Circular Dichroism
cystic fibrosis
Cystic Fibrosis - genetics
Cystic Fibrosis Transmembrane Conductance Regulator - chemistry
Cystic Fibrosis Transmembrane Conductance Regulator - genetics
Cystic Fibrosis Transmembrane Conductance Regulator - metabolism
Humans
Kinetics
Mutation
NBD1
Nucleotides - chemistry
Nucleotides - metabolism
Phenylalanine - genetics
Protein Binding
Protein Denaturation
Protein Folding
Protein Stability
Protein Structure, Tertiary
Sequence Deletion
temperature correction
thermal denaturation
Thermodynamics
Transition Temperature
title Thermal unfolding studies show the disease causing F508del mutation in CFTR thermodynamically destabilizes nucleotide‐binding domain 1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T13%3A45%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20unfolding%20studies%20show%20the%20disease%20causing%20F508del%20mutation%20in%20CFTR%20thermodynamically%20destabilizes%20nucleotide%E2%80%90binding%20domain%201&rft.jtitle=Protein%20science&rft.au=Protasevich,%20Irina&rft.date=2010-10&rft.volume=19&rft.issue=10&rft.spage=1917&rft.epage=1931&rft.pages=1917-1931&rft.issn=0961-8368&rft.eissn=1469-896X&rft.coden=PRCIEI&rft_id=info:doi/10.1002/pro.479&rft_dat=%3Cproquest_pubme%3E3282278501%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1518257197&rft_id=info:pmid/20687133&rfr_iscdi=true