Structure and Molecular Assignment of Lactococcal Phage TP901-1 Baseplate

P335 lactococcal phages infect the Gram+ bacterium Lactococcus lactis using a large multiprotein complex located at the distal part of the tail and termed baseplate (BP). The BP harbors the receptor-binding proteins (RBPs), which allow the specific recognition of saccharidic receptors localized on t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2010-12, Vol.285 (50), p.39079-39086
Hauptverfasser: Bebeacua, Cecilia, Bron, Patrick, Lai, Livia, Vegge, Christina Skovgaard, Brøndsted, Lone, Spinelli, Silvia, Campanacci, Valérie, Veesler, David, van Heel, Marin, Cambillau, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39086
container_issue 50
container_start_page 39079
container_title The Journal of biological chemistry
container_volume 285
creator Bebeacua, Cecilia
Bron, Patrick
Lai, Livia
Vegge, Christina Skovgaard
Brøndsted, Lone
Spinelli, Silvia
Campanacci, Valérie
Veesler, David
van Heel, Marin
Cambillau, Christian
description P335 lactococcal phages infect the Gram+ bacterium Lactococcus lactis using a large multiprotein complex located at the distal part of the tail and termed baseplate (BP). The BP harbors the receptor-binding proteins (RBPs), which allow the specific recognition of saccharidic receptors localized on the host cell surface. We report here the electron microscopic structure of the phage TP901-1 wild-type BP as well as those of two mutants bppL− and bppU−, lacking BppL (the RBPs) or both peripheral BP components (BppL and BppU), respectively. We also achieved an electron microscopic reconstruction of a partial BP complex, formed by BppU and BppL. This complex exhibits a tripod shape and is composed of nine BppLs and three BppUs. These structures, combined with light-scattering measurements, led us to propose that the TP901-1 BP harbors six tripods at its periphery, located around the central tube formed by ORF46 (Dit) hexamers, at its proximal end, and a ORF47 (Tal) trimer at its distal extremity. A total of 54 BppLs (18 RBPs) are thus available to mediate host anchoring with a large apparent avidity. TP901-1 BP exhibits an infection-ready conformation and differs strikingly from the lactococcal phage p2 BP, bearing only 6 RBPs, and which needs a conformational change to reach its activated state. The comparison of several Siphoviridae structures uncovers a close organization of their central BP core whereas striking differences occur at the periphery, leading to diverse mechanisms of host recognition.
doi_str_mv 10.1074/jbc.M110.175646
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2998104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820606081</els_id><sourcerecordid>888093104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c596t-ce2222c53e20780573beb40bf95f69a67819743cf2675d652b723323e09faa493</originalsourceid><addsrcrecordid>eNqNkc1LHDEYh0Np0e3Wc286t55G8_1xEazYVlipoEJvIZN5Z43MTrbJjOB_3yxjpT0U-15CyJP3_SUPQh8JPiZY8ZOHxh9fkd1OCcnlG7QgWLOaCfLjLVpgTEltqND76H3OD7gUN2QP7VNsmNKML9DlzZgmP04JKje01VXswU-9S9VZzmE9bGAYq9hVK-fH6KP3rq-u790aqttrg0lNqs8uw7Z3I3xA7zrXZzh4Xpfo7svF7fm3evX96-X52ar2wsix9kBLecGAYqWxUKyBhuOmM6KTxkmliVGc-Y5KJVopaKMoY5QBNp1z3LAlOp37bqdmA60vCZPr7TaFjUtPNrpg_z4Zwr1dx0dLjdEE89Lg03ODFH9OkEe7CdlD37sB4pSt1rp8z3-RihLKtWGvk0QyLVhxs0QnM-lTzDlB95KcYLtzaotTu3NqZ6flxuGfD37hf0sswNEMdC5at04h27sbignDxBCp-S6emQkoYh4DJJt9gMFDGxL40bYx_HP8L7Vzt64</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>816385308</pqid></control><display><type>article</type><title>Structure and Molecular Assignment of Lactococcal Phage TP901-1 Baseplate</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Bebeacua, Cecilia ; Bron, Patrick ; Lai, Livia ; Vegge, Christina Skovgaard ; Brøndsted, Lone ; Spinelli, Silvia ; Campanacci, Valérie ; Veesler, David ; van Heel, Marin ; Cambillau, Christian</creator><creatorcontrib>Bebeacua, Cecilia ; Bron, Patrick ; Lai, Livia ; Vegge, Christina Skovgaard ; Brøndsted, Lone ; Spinelli, Silvia ; Campanacci, Valérie ; Veesler, David ; van Heel, Marin ; Cambillau, Christian</creatorcontrib><description>P335 lactococcal phages infect the Gram+ bacterium Lactococcus lactis using a large multiprotein complex located at the distal part of the tail and termed baseplate (BP). The BP harbors the receptor-binding proteins (RBPs), which allow the specific recognition of saccharidic receptors localized on the host cell surface. We report here the electron microscopic structure of the phage TP901-1 wild-type BP as well as those of two mutants bppL− and bppU−, lacking BppL (the RBPs) or both peripheral BP components (BppL and BppU), respectively. We also achieved an electron microscopic reconstruction of a partial BP complex, formed by BppU and BppL. This complex exhibits a tripod shape and is composed of nine BppLs and three BppUs. These structures, combined with light-scattering measurements, led us to propose that the TP901-1 BP harbors six tripods at its periphery, located around the central tube formed by ORF46 (Dit) hexamers, at its proximal end, and a ORF47 (Tal) trimer at its distal extremity. A total of 54 BppLs (18 RBPs) are thus available to mediate host anchoring with a large apparent avidity. TP901-1 BP exhibits an infection-ready conformation and differs strikingly from the lactococcal phage p2 BP, bearing only 6 RBPs, and which needs a conformational change to reach its activated state. The comparison of several Siphoviridae structures uncovers a close organization of their central BP core whereas striking differences occur at the periphery, leading to diverse mechanisms of host recognition.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M110.175646</identifier><identifier>PMID: 20937834</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Avidity ; Bacteriophages - metabolism ; Biophysics ; Biophysics - methods ; Cell surface ; Cloning, Molecular ; Conformation ; Crystallography, X-Ray - methods ; Electron Microscopy (EM) ; hexamers ; Kinetics ; Lactococcus lactis ; Lactococcus lactis - metabolism ; Microscopy, Electron - methods ; Molecular Conformation ; Mutation ; Open Reading Frames ; Phage P2 ; Phages ; Protein Binding ; Protein Conformation ; Protein Structure and Folding ; Siphoviridae ; Siphoviridae - metabolism ; Surface Plasmon Resonance ; Tails ; Viral Protein ; Viral Tail Proteins - chemistry ; Virus Structure ; X-ray Crystallography</subject><ispartof>The Journal of biological chemistry, 2010-12, Vol.285 (50), p.39079-39086</ispartof><rights>2010 © 2010 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2010 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c596t-ce2222c53e20780573beb40bf95f69a67819743cf2675d652b723323e09faa493</citedby><cites>FETCH-LOGICAL-c596t-ce2222c53e20780573beb40bf95f69a67819743cf2675d652b723323e09faa493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2998104/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2998104/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20937834$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bebeacua, Cecilia</creatorcontrib><creatorcontrib>Bron, Patrick</creatorcontrib><creatorcontrib>Lai, Livia</creatorcontrib><creatorcontrib>Vegge, Christina Skovgaard</creatorcontrib><creatorcontrib>Brøndsted, Lone</creatorcontrib><creatorcontrib>Spinelli, Silvia</creatorcontrib><creatorcontrib>Campanacci, Valérie</creatorcontrib><creatorcontrib>Veesler, David</creatorcontrib><creatorcontrib>van Heel, Marin</creatorcontrib><creatorcontrib>Cambillau, Christian</creatorcontrib><title>Structure and Molecular Assignment of Lactococcal Phage TP901-1 Baseplate</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>P335 lactococcal phages infect the Gram+ bacterium Lactococcus lactis using a large multiprotein complex located at the distal part of the tail and termed baseplate (BP). The BP harbors the receptor-binding proteins (RBPs), which allow the specific recognition of saccharidic receptors localized on the host cell surface. We report here the electron microscopic structure of the phage TP901-1 wild-type BP as well as those of two mutants bppL− and bppU−, lacking BppL (the RBPs) or both peripheral BP components (BppL and BppU), respectively. We also achieved an electron microscopic reconstruction of a partial BP complex, formed by BppU and BppL. This complex exhibits a tripod shape and is composed of nine BppLs and three BppUs. These structures, combined with light-scattering measurements, led us to propose that the TP901-1 BP harbors six tripods at its periphery, located around the central tube formed by ORF46 (Dit) hexamers, at its proximal end, and a ORF47 (Tal) trimer at its distal extremity. A total of 54 BppLs (18 RBPs) are thus available to mediate host anchoring with a large apparent avidity. TP901-1 BP exhibits an infection-ready conformation and differs strikingly from the lactococcal phage p2 BP, bearing only 6 RBPs, and which needs a conformational change to reach its activated state. The comparison of several Siphoviridae structures uncovers a close organization of their central BP core whereas striking differences occur at the periphery, leading to diverse mechanisms of host recognition.</description><subject>Avidity</subject><subject>Bacteriophages - metabolism</subject><subject>Biophysics</subject><subject>Biophysics - methods</subject><subject>Cell surface</subject><subject>Cloning, Molecular</subject><subject>Conformation</subject><subject>Crystallography, X-Ray - methods</subject><subject>Electron Microscopy (EM)</subject><subject>hexamers</subject><subject>Kinetics</subject><subject>Lactococcus lactis</subject><subject>Lactococcus lactis - metabolism</subject><subject>Microscopy, Electron - methods</subject><subject>Molecular Conformation</subject><subject>Mutation</subject><subject>Open Reading Frames</subject><subject>Phage P2</subject><subject>Phages</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Structure and Folding</subject><subject>Siphoviridae</subject><subject>Siphoviridae - metabolism</subject><subject>Surface Plasmon Resonance</subject><subject>Tails</subject><subject>Viral Protein</subject><subject>Viral Tail Proteins - chemistry</subject><subject>Virus Structure</subject><subject>X-ray Crystallography</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1LHDEYh0Np0e3Wc286t55G8_1xEazYVlipoEJvIZN5Z43MTrbJjOB_3yxjpT0U-15CyJP3_SUPQh8JPiZY8ZOHxh9fkd1OCcnlG7QgWLOaCfLjLVpgTEltqND76H3OD7gUN2QP7VNsmNKML9DlzZgmP04JKje01VXswU-9S9VZzmE9bGAYq9hVK-fH6KP3rq-u790aqttrg0lNqs8uw7Z3I3xA7zrXZzh4Xpfo7svF7fm3evX96-X52ar2wsix9kBLecGAYqWxUKyBhuOmM6KTxkmliVGc-Y5KJVopaKMoY5QBNp1z3LAlOp37bqdmA60vCZPr7TaFjUtPNrpg_z4Zwr1dx0dLjdEE89Lg03ODFH9OkEe7CdlD37sB4pSt1rp8z3-RihLKtWGvk0QyLVhxs0QnM-lTzDlB95KcYLtzaotTu3NqZ6flxuGfD37hf0sswNEMdC5at04h27sbignDxBCp-S6emQkoYh4DJJt9gMFDGxL40bYx_HP8L7Vzt64</recordid><startdate>20101210</startdate><enddate>20101210</enddate><creator>Bebeacua, Cecilia</creator><creator>Bron, Patrick</creator><creator>Lai, Livia</creator><creator>Vegge, Christina Skovgaard</creator><creator>Brøndsted, Lone</creator><creator>Spinelli, Silvia</creator><creator>Campanacci, Valérie</creator><creator>Veesler, David</creator><creator>van Heel, Marin</creator><creator>Cambillau, Christian</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QL</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>5PM</scope></search><sort><creationdate>20101210</creationdate><title>Structure and Molecular Assignment of Lactococcal Phage TP901-1 Baseplate</title><author>Bebeacua, Cecilia ; Bron, Patrick ; Lai, Livia ; Vegge, Christina Skovgaard ; Brøndsted, Lone ; Spinelli, Silvia ; Campanacci, Valérie ; Veesler, David ; van Heel, Marin ; Cambillau, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c596t-ce2222c53e20780573beb40bf95f69a67819743cf2675d652b723323e09faa493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Avidity</topic><topic>Bacteriophages - metabolism</topic><topic>Biophysics</topic><topic>Biophysics - methods</topic><topic>Cell surface</topic><topic>Cloning, Molecular</topic><topic>Conformation</topic><topic>Crystallography, X-Ray - methods</topic><topic>Electron Microscopy (EM)</topic><topic>hexamers</topic><topic>Kinetics</topic><topic>Lactococcus lactis</topic><topic>Lactococcus lactis - metabolism</topic><topic>Microscopy, Electron - methods</topic><topic>Molecular Conformation</topic><topic>Mutation</topic><topic>Open Reading Frames</topic><topic>Phage P2</topic><topic>Phages</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Structure and Folding</topic><topic>Siphoviridae</topic><topic>Siphoviridae - metabolism</topic><topic>Surface Plasmon Resonance</topic><topic>Tails</topic><topic>Viral Protein</topic><topic>Viral Tail Proteins - chemistry</topic><topic>Virus Structure</topic><topic>X-ray Crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bebeacua, Cecilia</creatorcontrib><creatorcontrib>Bron, Patrick</creatorcontrib><creatorcontrib>Lai, Livia</creatorcontrib><creatorcontrib>Vegge, Christina Skovgaard</creatorcontrib><creatorcontrib>Brøndsted, Lone</creatorcontrib><creatorcontrib>Spinelli, Silvia</creatorcontrib><creatorcontrib>Campanacci, Valérie</creatorcontrib><creatorcontrib>Veesler, David</creatorcontrib><creatorcontrib>van Heel, Marin</creatorcontrib><creatorcontrib>Cambillau, Christian</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bebeacua, Cecilia</au><au>Bron, Patrick</au><au>Lai, Livia</au><au>Vegge, Christina Skovgaard</au><au>Brøndsted, Lone</au><au>Spinelli, Silvia</au><au>Campanacci, Valérie</au><au>Veesler, David</au><au>van Heel, Marin</au><au>Cambillau, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and Molecular Assignment of Lactococcal Phage TP901-1 Baseplate</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2010-12-10</date><risdate>2010</risdate><volume>285</volume><issue>50</issue><spage>39079</spage><epage>39086</epage><pages>39079-39086</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>P335 lactococcal phages infect the Gram+ bacterium Lactococcus lactis using a large multiprotein complex located at the distal part of the tail and termed baseplate (BP). The BP harbors the receptor-binding proteins (RBPs), which allow the specific recognition of saccharidic receptors localized on the host cell surface. We report here the electron microscopic structure of the phage TP901-1 wild-type BP as well as those of two mutants bppL− and bppU−, lacking BppL (the RBPs) or both peripheral BP components (BppL and BppU), respectively. We also achieved an electron microscopic reconstruction of a partial BP complex, formed by BppU and BppL. This complex exhibits a tripod shape and is composed of nine BppLs and three BppUs. These structures, combined with light-scattering measurements, led us to propose that the TP901-1 BP harbors six tripods at its periphery, located around the central tube formed by ORF46 (Dit) hexamers, at its proximal end, and a ORF47 (Tal) trimer at its distal extremity. A total of 54 BppLs (18 RBPs) are thus available to mediate host anchoring with a large apparent avidity. TP901-1 BP exhibits an infection-ready conformation and differs strikingly from the lactococcal phage p2 BP, bearing only 6 RBPs, and which needs a conformational change to reach its activated state. The comparison of several Siphoviridae structures uncovers a close organization of their central BP core whereas striking differences occur at the periphery, leading to diverse mechanisms of host recognition.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20937834</pmid><doi>10.1074/jbc.M110.175646</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2010-12, Vol.285 (50), p.39079-39086
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2998104
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Avidity
Bacteriophages - metabolism
Biophysics
Biophysics - methods
Cell surface
Cloning, Molecular
Conformation
Crystallography, X-Ray - methods
Electron Microscopy (EM)
hexamers
Kinetics
Lactococcus lactis
Lactococcus lactis - metabolism
Microscopy, Electron - methods
Molecular Conformation
Mutation
Open Reading Frames
Phage P2
Phages
Protein Binding
Protein Conformation
Protein Structure and Folding
Siphoviridae
Siphoviridae - metabolism
Surface Plasmon Resonance
Tails
Viral Protein
Viral Tail Proteins - chemistry
Virus Structure
X-ray Crystallography
title Structure and Molecular Assignment of Lactococcal Phage TP901-1 Baseplate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A39%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20Molecular%20Assignment%20of%20Lactococcal%20Phage%20TP901-1%20Baseplate&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Bebeacua,%20Cecilia&rft.date=2010-12-10&rft.volume=285&rft.issue=50&rft.spage=39079&rft.epage=39086&rft.pages=39079-39086&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M110.175646&rft_dat=%3Cproquest_pubme%3E888093104%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=816385308&rft_id=info:pmid/20937834&rft_els_id=S0021925820606081&rfr_iscdi=true