Structure and Molecular Assignment of Lactococcal Phage TP901-1 Baseplate
P335 lactococcal phages infect the Gram+ bacterium Lactococcus lactis using a large multiprotein complex located at the distal part of the tail and termed baseplate (BP). The BP harbors the receptor-binding proteins (RBPs), which allow the specific recognition of saccharidic receptors localized on t...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2010-12, Vol.285 (50), p.39079-39086 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 39086 |
---|---|
container_issue | 50 |
container_start_page | 39079 |
container_title | The Journal of biological chemistry |
container_volume | 285 |
creator | Bebeacua, Cecilia Bron, Patrick Lai, Livia Vegge, Christina Skovgaard Brøndsted, Lone Spinelli, Silvia Campanacci, Valérie Veesler, David van Heel, Marin Cambillau, Christian |
description | P335 lactococcal phages infect the Gram+ bacterium Lactococcus lactis using a large multiprotein complex located at the distal part of the tail and termed baseplate (BP). The BP harbors the receptor-binding proteins (RBPs), which allow the specific recognition of saccharidic receptors localized on the host cell surface. We report here the electron microscopic structure of the phage TP901-1 wild-type BP as well as those of two mutants bppL− and bppU−, lacking BppL (the RBPs) or both peripheral BP components (BppL and BppU), respectively. We also achieved an electron microscopic reconstruction of a partial BP complex, formed by BppU and BppL. This complex exhibits a tripod shape and is composed of nine BppLs and three BppUs. These structures, combined with light-scattering measurements, led us to propose that the TP901-1 BP harbors six tripods at its periphery, located around the central tube formed by ORF46 (Dit) hexamers, at its proximal end, and a ORF47 (Tal) trimer at its distal extremity. A total of 54 BppLs (18 RBPs) are thus available to mediate host anchoring with a large apparent avidity. TP901-1 BP exhibits an infection-ready conformation and differs strikingly from the lactococcal phage p2 BP, bearing only 6 RBPs, and which needs a conformational change to reach its activated state. The comparison of several Siphoviridae structures uncovers a close organization of their central BP core whereas striking differences occur at the periphery, leading to diverse mechanisms of host recognition. |
doi_str_mv | 10.1074/jbc.M110.175646 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2998104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820606081</els_id><sourcerecordid>888093104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c596t-ce2222c53e20780573beb40bf95f69a67819743cf2675d652b723323e09faa493</originalsourceid><addsrcrecordid>eNqNkc1LHDEYh0Np0e3Wc286t55G8_1xEazYVlipoEJvIZN5Z43MTrbJjOB_3yxjpT0U-15CyJP3_SUPQh8JPiZY8ZOHxh9fkd1OCcnlG7QgWLOaCfLjLVpgTEltqND76H3OD7gUN2QP7VNsmNKML9DlzZgmP04JKje01VXswU-9S9VZzmE9bGAYq9hVK-fH6KP3rq-u790aqttrg0lNqs8uw7Z3I3xA7zrXZzh4Xpfo7svF7fm3evX96-X52ar2wsix9kBLecGAYqWxUKyBhuOmM6KTxkmliVGc-Y5KJVopaKMoY5QBNp1z3LAlOp37bqdmA60vCZPr7TaFjUtPNrpg_z4Zwr1dx0dLjdEE89Lg03ODFH9OkEe7CdlD37sB4pSt1rp8z3-RihLKtWGvk0QyLVhxs0QnM-lTzDlB95KcYLtzaotTu3NqZ6flxuGfD37hf0sswNEMdC5at04h27sbignDxBCp-S6emQkoYh4DJJt9gMFDGxL40bYx_HP8L7Vzt64</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>816385308</pqid></control><display><type>article</type><title>Structure and Molecular Assignment of Lactococcal Phage TP901-1 Baseplate</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Bebeacua, Cecilia ; Bron, Patrick ; Lai, Livia ; Vegge, Christina Skovgaard ; Brøndsted, Lone ; Spinelli, Silvia ; Campanacci, Valérie ; Veesler, David ; van Heel, Marin ; Cambillau, Christian</creator><creatorcontrib>Bebeacua, Cecilia ; Bron, Patrick ; Lai, Livia ; Vegge, Christina Skovgaard ; Brøndsted, Lone ; Spinelli, Silvia ; Campanacci, Valérie ; Veesler, David ; van Heel, Marin ; Cambillau, Christian</creatorcontrib><description>P335 lactococcal phages infect the Gram+ bacterium Lactococcus lactis using a large multiprotein complex located at the distal part of the tail and termed baseplate (BP). The BP harbors the receptor-binding proteins (RBPs), which allow the specific recognition of saccharidic receptors localized on the host cell surface. We report here the electron microscopic structure of the phage TP901-1 wild-type BP as well as those of two mutants bppL− and bppU−, lacking BppL (the RBPs) or both peripheral BP components (BppL and BppU), respectively. We also achieved an electron microscopic reconstruction of a partial BP complex, formed by BppU and BppL. This complex exhibits a tripod shape and is composed of nine BppLs and three BppUs. These structures, combined with light-scattering measurements, led us to propose that the TP901-1 BP harbors six tripods at its periphery, located around the central tube formed by ORF46 (Dit) hexamers, at its proximal end, and a ORF47 (Tal) trimer at its distal extremity. A total of 54 BppLs (18 RBPs) are thus available to mediate host anchoring with a large apparent avidity. TP901-1 BP exhibits an infection-ready conformation and differs strikingly from the lactococcal phage p2 BP, bearing only 6 RBPs, and which needs a conformational change to reach its activated state. The comparison of several Siphoviridae structures uncovers a close organization of their central BP core whereas striking differences occur at the periphery, leading to diverse mechanisms of host recognition.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M110.175646</identifier><identifier>PMID: 20937834</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Avidity ; Bacteriophages - metabolism ; Biophysics ; Biophysics - methods ; Cell surface ; Cloning, Molecular ; Conformation ; Crystallography, X-Ray - methods ; Electron Microscopy (EM) ; hexamers ; Kinetics ; Lactococcus lactis ; Lactococcus lactis - metabolism ; Microscopy, Electron - methods ; Molecular Conformation ; Mutation ; Open Reading Frames ; Phage P2 ; Phages ; Protein Binding ; Protein Conformation ; Protein Structure and Folding ; Siphoviridae ; Siphoviridae - metabolism ; Surface Plasmon Resonance ; Tails ; Viral Protein ; Viral Tail Proteins - chemistry ; Virus Structure ; X-ray Crystallography</subject><ispartof>The Journal of biological chemistry, 2010-12, Vol.285 (50), p.39079-39086</ispartof><rights>2010 © 2010 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2010 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c596t-ce2222c53e20780573beb40bf95f69a67819743cf2675d652b723323e09faa493</citedby><cites>FETCH-LOGICAL-c596t-ce2222c53e20780573beb40bf95f69a67819743cf2675d652b723323e09faa493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2998104/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2998104/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20937834$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bebeacua, Cecilia</creatorcontrib><creatorcontrib>Bron, Patrick</creatorcontrib><creatorcontrib>Lai, Livia</creatorcontrib><creatorcontrib>Vegge, Christina Skovgaard</creatorcontrib><creatorcontrib>Brøndsted, Lone</creatorcontrib><creatorcontrib>Spinelli, Silvia</creatorcontrib><creatorcontrib>Campanacci, Valérie</creatorcontrib><creatorcontrib>Veesler, David</creatorcontrib><creatorcontrib>van Heel, Marin</creatorcontrib><creatorcontrib>Cambillau, Christian</creatorcontrib><title>Structure and Molecular Assignment of Lactococcal Phage TP901-1 Baseplate</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>P335 lactococcal phages infect the Gram+ bacterium Lactococcus lactis using a large multiprotein complex located at the distal part of the tail and termed baseplate (BP). The BP harbors the receptor-binding proteins (RBPs), which allow the specific recognition of saccharidic receptors localized on the host cell surface. We report here the electron microscopic structure of the phage TP901-1 wild-type BP as well as those of two mutants bppL− and bppU−, lacking BppL (the RBPs) or both peripheral BP components (BppL and BppU), respectively. We also achieved an electron microscopic reconstruction of a partial BP complex, formed by BppU and BppL. This complex exhibits a tripod shape and is composed of nine BppLs and three BppUs. These structures, combined with light-scattering measurements, led us to propose that the TP901-1 BP harbors six tripods at its periphery, located around the central tube formed by ORF46 (Dit) hexamers, at its proximal end, and a ORF47 (Tal) trimer at its distal extremity. A total of 54 BppLs (18 RBPs) are thus available to mediate host anchoring with a large apparent avidity. TP901-1 BP exhibits an infection-ready conformation and differs strikingly from the lactococcal phage p2 BP, bearing only 6 RBPs, and which needs a conformational change to reach its activated state. The comparison of several Siphoviridae structures uncovers a close organization of their central BP core whereas striking differences occur at the periphery, leading to diverse mechanisms of host recognition.</description><subject>Avidity</subject><subject>Bacteriophages - metabolism</subject><subject>Biophysics</subject><subject>Biophysics - methods</subject><subject>Cell surface</subject><subject>Cloning, Molecular</subject><subject>Conformation</subject><subject>Crystallography, X-Ray - methods</subject><subject>Electron Microscopy (EM)</subject><subject>hexamers</subject><subject>Kinetics</subject><subject>Lactococcus lactis</subject><subject>Lactococcus lactis - metabolism</subject><subject>Microscopy, Electron - methods</subject><subject>Molecular Conformation</subject><subject>Mutation</subject><subject>Open Reading Frames</subject><subject>Phage P2</subject><subject>Phages</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Structure and Folding</subject><subject>Siphoviridae</subject><subject>Siphoviridae - metabolism</subject><subject>Surface Plasmon Resonance</subject><subject>Tails</subject><subject>Viral Protein</subject><subject>Viral Tail Proteins - chemistry</subject><subject>Virus Structure</subject><subject>X-ray Crystallography</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1LHDEYh0Np0e3Wc286t55G8_1xEazYVlipoEJvIZN5Z43MTrbJjOB_3yxjpT0U-15CyJP3_SUPQh8JPiZY8ZOHxh9fkd1OCcnlG7QgWLOaCfLjLVpgTEltqND76H3OD7gUN2QP7VNsmNKML9DlzZgmP04JKje01VXswU-9S9VZzmE9bGAYq9hVK-fH6KP3rq-u790aqttrg0lNqs8uw7Z3I3xA7zrXZzh4Xpfo7svF7fm3evX96-X52ar2wsix9kBLecGAYqWxUKyBhuOmM6KTxkmliVGc-Y5KJVopaKMoY5QBNp1z3LAlOp37bqdmA60vCZPr7TaFjUtPNrpg_z4Zwr1dx0dLjdEE89Lg03ODFH9OkEe7CdlD37sB4pSt1rp8z3-RihLKtWGvk0QyLVhxs0QnM-lTzDlB95KcYLtzaotTu3NqZ6flxuGfD37hf0sswNEMdC5at04h27sbignDxBCp-S6emQkoYh4DJJt9gMFDGxL40bYx_HP8L7Vzt64</recordid><startdate>20101210</startdate><enddate>20101210</enddate><creator>Bebeacua, Cecilia</creator><creator>Bron, Patrick</creator><creator>Lai, Livia</creator><creator>Vegge, Christina Skovgaard</creator><creator>Brøndsted, Lone</creator><creator>Spinelli, Silvia</creator><creator>Campanacci, Valérie</creator><creator>Veesler, David</creator><creator>van Heel, Marin</creator><creator>Cambillau, Christian</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QL</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>5PM</scope></search><sort><creationdate>20101210</creationdate><title>Structure and Molecular Assignment of Lactococcal Phage TP901-1 Baseplate</title><author>Bebeacua, Cecilia ; Bron, Patrick ; Lai, Livia ; Vegge, Christina Skovgaard ; Brøndsted, Lone ; Spinelli, Silvia ; Campanacci, Valérie ; Veesler, David ; van Heel, Marin ; Cambillau, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c596t-ce2222c53e20780573beb40bf95f69a67819743cf2675d652b723323e09faa493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Avidity</topic><topic>Bacteriophages - metabolism</topic><topic>Biophysics</topic><topic>Biophysics - methods</topic><topic>Cell surface</topic><topic>Cloning, Molecular</topic><topic>Conformation</topic><topic>Crystallography, X-Ray - methods</topic><topic>Electron Microscopy (EM)</topic><topic>hexamers</topic><topic>Kinetics</topic><topic>Lactococcus lactis</topic><topic>Lactococcus lactis - metabolism</topic><topic>Microscopy, Electron - methods</topic><topic>Molecular Conformation</topic><topic>Mutation</topic><topic>Open Reading Frames</topic><topic>Phage P2</topic><topic>Phages</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Structure and Folding</topic><topic>Siphoviridae</topic><topic>Siphoviridae - metabolism</topic><topic>Surface Plasmon Resonance</topic><topic>Tails</topic><topic>Viral Protein</topic><topic>Viral Tail Proteins - chemistry</topic><topic>Virus Structure</topic><topic>X-ray Crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bebeacua, Cecilia</creatorcontrib><creatorcontrib>Bron, Patrick</creatorcontrib><creatorcontrib>Lai, Livia</creatorcontrib><creatorcontrib>Vegge, Christina Skovgaard</creatorcontrib><creatorcontrib>Brøndsted, Lone</creatorcontrib><creatorcontrib>Spinelli, Silvia</creatorcontrib><creatorcontrib>Campanacci, Valérie</creatorcontrib><creatorcontrib>Veesler, David</creatorcontrib><creatorcontrib>van Heel, Marin</creatorcontrib><creatorcontrib>Cambillau, Christian</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bebeacua, Cecilia</au><au>Bron, Patrick</au><au>Lai, Livia</au><au>Vegge, Christina Skovgaard</au><au>Brøndsted, Lone</au><au>Spinelli, Silvia</au><au>Campanacci, Valérie</au><au>Veesler, David</au><au>van Heel, Marin</au><au>Cambillau, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and Molecular Assignment of Lactococcal Phage TP901-1 Baseplate</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2010-12-10</date><risdate>2010</risdate><volume>285</volume><issue>50</issue><spage>39079</spage><epage>39086</epage><pages>39079-39086</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>P335 lactococcal phages infect the Gram+ bacterium Lactococcus lactis using a large multiprotein complex located at the distal part of the tail and termed baseplate (BP). The BP harbors the receptor-binding proteins (RBPs), which allow the specific recognition of saccharidic receptors localized on the host cell surface. We report here the electron microscopic structure of the phage TP901-1 wild-type BP as well as those of two mutants bppL− and bppU−, lacking BppL (the RBPs) or both peripheral BP components (BppL and BppU), respectively. We also achieved an electron microscopic reconstruction of a partial BP complex, formed by BppU and BppL. This complex exhibits a tripod shape and is composed of nine BppLs and three BppUs. These structures, combined with light-scattering measurements, led us to propose that the TP901-1 BP harbors six tripods at its periphery, located around the central tube formed by ORF46 (Dit) hexamers, at its proximal end, and a ORF47 (Tal) trimer at its distal extremity. A total of 54 BppLs (18 RBPs) are thus available to mediate host anchoring with a large apparent avidity. TP901-1 BP exhibits an infection-ready conformation and differs strikingly from the lactococcal phage p2 BP, bearing only 6 RBPs, and which needs a conformational change to reach its activated state. The comparison of several Siphoviridae structures uncovers a close organization of their central BP core whereas striking differences occur at the periphery, leading to diverse mechanisms of host recognition.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20937834</pmid><doi>10.1074/jbc.M110.175646</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2010-12, Vol.285 (50), p.39079-39086 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2998104 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Avidity Bacteriophages - metabolism Biophysics Biophysics - methods Cell surface Cloning, Molecular Conformation Crystallography, X-Ray - methods Electron Microscopy (EM) hexamers Kinetics Lactococcus lactis Lactococcus lactis - metabolism Microscopy, Electron - methods Molecular Conformation Mutation Open Reading Frames Phage P2 Phages Protein Binding Protein Conformation Protein Structure and Folding Siphoviridae Siphoviridae - metabolism Surface Plasmon Resonance Tails Viral Protein Viral Tail Proteins - chemistry Virus Structure X-ray Crystallography |
title | Structure and Molecular Assignment of Lactococcal Phage TP901-1 Baseplate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A39%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20Molecular%20Assignment%20of%20Lactococcal%20Phage%20TP901-1%20Baseplate&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Bebeacua,%20Cecilia&rft.date=2010-12-10&rft.volume=285&rft.issue=50&rft.spage=39079&rft.epage=39086&rft.pages=39079-39086&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M110.175646&rft_dat=%3Cproquest_pubme%3E888093104%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=816385308&rft_id=info:pmid/20937834&rft_els_id=S0021925820606081&rfr_iscdi=true |