Detecting cell-adhesive sites in extracellular matrix using force spectroscopy mapping
The cell microenvironment is composed of extracellular matrix (ECM), which contains specific binding sites that allow the cell to adhere to its surroundings. Cells employ focal adhesion proteins, which must be able to resist a variety of forces to bind to ECM. Current techniques for detecting the sp...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Condensed matter 2010-05, Vol.22 (19), p.194102-194102 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 194102 |
---|---|
container_issue | 19 |
container_start_page | 194102 |
container_title | Journal of physics. Condensed matter |
container_volume | 22 |
creator | Chirasatitsin, Somyot Engler, Adam J |
description | The cell microenvironment is composed of extracellular matrix (ECM), which contains specific binding sites that allow the cell to adhere to its surroundings. Cells employ focal adhesion proteins, which must be able to resist a variety of forces to bind to ECM. Current techniques for detecting the spatial arrangement of these adhesions, however, have limited resolution and those that detect adhesive forces lack sufficient spatial characterization or resolution. Using a unique application of force spectroscopy, we demonstrate here the ability to determine local changes in the adhesive property of a fibronectin substrate down to the resolution of the fibronectin antibody-functionalized tip diameter, ~20 nm. To verify the detection capabilities of force spectroscopy mapping (FSM), changes in loading rate and temperature were used to alter the bond dynamics and change the adhesion force. Microcontact printing was also used to pattern fluorescein isothiocyanate-conjugated fibronectin in order to mimic the discontinuous adhesion domains of native ECM. Fluorescent detection was used to identify the pattern while FSM was used to map cell adhesion sites in registry with the initial fluorescent image. The results show that FSM can be used to detect the adhesion domains at high resolution and may subsequently be applied to native ECM with randomly distributed cell adhesion sites. |
doi_str_mv | 10.1088/0953-8984/22/19/194102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2997741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>856408288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-65f310b2bcea422074d0539d5d51a2f8fe40b1ccd977055302d5e1c53e96d0223</originalsourceid><addsrcrecordid>eNqFkVtLxDAQhYMo7nr5C9I3n-rm2k1eBPEOC76o-BayyVQj3bYmrez-e1NWF0VBCMzD-ebkzAxCRwSfECzlBCvBcqkkn1A6ISo9TjDdQmPCCpIXXD5to_EGGqG9GF8xxlwyvotGlBBB2VSM0eMFdGA7Xz9nFqoqN-4Fon-HLPoOYubrDJZdMIPWVyZkC9MFv8z6OHSUTbCJbJNBaKJt2lXS2zZJB2inNFWEw8-6jx6uLu_Pb_LZ3fXt-dkst1yxLi9EyQie07kFwynFU-6wYMoJJ4ihpSyB4zmx1qnpFAvBMHUCiBUMVOEwpWwfna59236-AGehTmEr3Qa_MGGlG-P1T6X2L_q5eddUJUtOksHxp0Fo3nqInV74OExramj6qKUoOJZUykQWa9KmWWOAcvMLwXq4iR7WrYd1a0o1UXp9k9R49D3jpu3rCAnI14Bv2o36t5luXZl48pv_J8QHHmimIA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856408288</pqid></control><display><type>article</type><title>Detecting cell-adhesive sites in extracellular matrix using force spectroscopy mapping</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Chirasatitsin, Somyot ; Engler, Adam J</creator><creatorcontrib>Chirasatitsin, Somyot ; Engler, Adam J</creatorcontrib><description>The cell microenvironment is composed of extracellular matrix (ECM), which contains specific binding sites that allow the cell to adhere to its surroundings. Cells employ focal adhesion proteins, which must be able to resist a variety of forces to bind to ECM. Current techniques for detecting the spatial arrangement of these adhesions, however, have limited resolution and those that detect adhesive forces lack sufficient spatial characterization or resolution. Using a unique application of force spectroscopy, we demonstrate here the ability to determine local changes in the adhesive property of a fibronectin substrate down to the resolution of the fibronectin antibody-functionalized tip diameter, ~20 nm. To verify the detection capabilities of force spectroscopy mapping (FSM), changes in loading rate and temperature were used to alter the bond dynamics and change the adhesion force. Microcontact printing was also used to pattern fluorescein isothiocyanate-conjugated fibronectin in order to mimic the discontinuous adhesion domains of native ECM. Fluorescent detection was used to identify the pattern while FSM was used to map cell adhesion sites in registry with the initial fluorescent image. The results show that FSM can be used to detect the adhesion domains at high resolution and may subsequently be applied to native ECM with randomly distributed cell adhesion sites.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/22/19/194102</identifier><identifier>PMID: 21152375</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Cell Adhesion - physiology ; Extracellular Matrix - physiology ; Extracellular Matrix Proteins - physiology ; Focal Adhesions - physiology ; Microscopy, Atomic Force - methods</subject><ispartof>Journal of physics. Condensed matter, 2010-05, Vol.22 (19), p.194102-194102</ispartof><rights>2010 IOP Publishing Ltd Printed in the UK & the USA 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-65f310b2bcea422074d0539d5d51a2f8fe40b1ccd977055302d5e1c53e96d0223</citedby><cites>FETCH-LOGICAL-c493t-65f310b2bcea422074d0539d5d51a2f8fe40b1ccd977055302d5e1c53e96d0223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0953-8984/22/19/194102/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,778,782,883,27911,27912,53817,53897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21152375$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chirasatitsin, Somyot</creatorcontrib><creatorcontrib>Engler, Adam J</creatorcontrib><title>Detecting cell-adhesive sites in extracellular matrix using force spectroscopy mapping</title><title>Journal of physics. Condensed matter</title><addtitle>J Phys Condens Matter</addtitle><description>The cell microenvironment is composed of extracellular matrix (ECM), which contains specific binding sites that allow the cell to adhere to its surroundings. Cells employ focal adhesion proteins, which must be able to resist a variety of forces to bind to ECM. Current techniques for detecting the spatial arrangement of these adhesions, however, have limited resolution and those that detect adhesive forces lack sufficient spatial characterization or resolution. Using a unique application of force spectroscopy, we demonstrate here the ability to determine local changes in the adhesive property of a fibronectin substrate down to the resolution of the fibronectin antibody-functionalized tip diameter, ~20 nm. To verify the detection capabilities of force spectroscopy mapping (FSM), changes in loading rate and temperature were used to alter the bond dynamics and change the adhesion force. Microcontact printing was also used to pattern fluorescein isothiocyanate-conjugated fibronectin in order to mimic the discontinuous adhesion domains of native ECM. Fluorescent detection was used to identify the pattern while FSM was used to map cell adhesion sites in registry with the initial fluorescent image. The results show that FSM can be used to detect the adhesion domains at high resolution and may subsequently be applied to native ECM with randomly distributed cell adhesion sites.</description><subject>Cell Adhesion - physiology</subject><subject>Extracellular Matrix - physiology</subject><subject>Extracellular Matrix Proteins - physiology</subject><subject>Focal Adhesions - physiology</subject><subject>Microscopy, Atomic Force - methods</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkVtLxDAQhYMo7nr5C9I3n-rm2k1eBPEOC76o-BayyVQj3bYmrez-e1NWF0VBCMzD-ebkzAxCRwSfECzlBCvBcqkkn1A6ISo9TjDdQmPCCpIXXD5to_EGGqG9GF8xxlwyvotGlBBB2VSM0eMFdGA7Xz9nFqoqN-4Fon-HLPoOYubrDJZdMIPWVyZkC9MFv8z6OHSUTbCJbJNBaKJt2lXS2zZJB2inNFWEw8-6jx6uLu_Pb_LZ3fXt-dkst1yxLi9EyQie07kFwynFU-6wYMoJJ4ihpSyB4zmx1qnpFAvBMHUCiBUMVOEwpWwfna59236-AGehTmEr3Qa_MGGlG-P1T6X2L_q5eddUJUtOksHxp0Fo3nqInV74OExramj6qKUoOJZUykQWa9KmWWOAcvMLwXq4iR7WrYd1a0o1UXp9k9R49D3jpu3rCAnI14Bv2o36t5luXZl48pv_J8QHHmimIA</recordid><startdate>20100519</startdate><enddate>20100519</enddate><creator>Chirasatitsin, Somyot</creator><creator>Engler, Adam J</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100519</creationdate><title>Detecting cell-adhesive sites in extracellular matrix using force spectroscopy mapping</title><author>Chirasatitsin, Somyot ; Engler, Adam J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-65f310b2bcea422074d0539d5d51a2f8fe40b1ccd977055302d5e1c53e96d0223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Cell Adhesion - physiology</topic><topic>Extracellular Matrix - physiology</topic><topic>Extracellular Matrix Proteins - physiology</topic><topic>Focal Adhesions - physiology</topic><topic>Microscopy, Atomic Force - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chirasatitsin, Somyot</creatorcontrib><creatorcontrib>Engler, Adam J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chirasatitsin, Somyot</au><au>Engler, Adam J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting cell-adhesive sites in extracellular matrix using force spectroscopy mapping</atitle><jtitle>Journal of physics. Condensed matter</jtitle><addtitle>J Phys Condens Matter</addtitle><date>2010-05-19</date><risdate>2010</risdate><volume>22</volume><issue>19</issue><spage>194102</spage><epage>194102</epage><pages>194102-194102</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><abstract>The cell microenvironment is composed of extracellular matrix (ECM), which contains specific binding sites that allow the cell to adhere to its surroundings. Cells employ focal adhesion proteins, which must be able to resist a variety of forces to bind to ECM. Current techniques for detecting the spatial arrangement of these adhesions, however, have limited resolution and those that detect adhesive forces lack sufficient spatial characterization or resolution. Using a unique application of force spectroscopy, we demonstrate here the ability to determine local changes in the adhesive property of a fibronectin substrate down to the resolution of the fibronectin antibody-functionalized tip diameter, ~20 nm. To verify the detection capabilities of force spectroscopy mapping (FSM), changes in loading rate and temperature were used to alter the bond dynamics and change the adhesion force. Microcontact printing was also used to pattern fluorescein isothiocyanate-conjugated fibronectin in order to mimic the discontinuous adhesion domains of native ECM. Fluorescent detection was used to identify the pattern while FSM was used to map cell adhesion sites in registry with the initial fluorescent image. The results show that FSM can be used to detect the adhesion domains at high resolution and may subsequently be applied to native ECM with randomly distributed cell adhesion sites.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>21152375</pmid><doi>10.1088/0953-8984/22/19/194102</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-8984 |
ispartof | Journal of physics. Condensed matter, 2010-05, Vol.22 (19), p.194102-194102 |
issn | 0953-8984 1361-648X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2997741 |
source | MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Cell Adhesion - physiology Extracellular Matrix - physiology Extracellular Matrix Proteins - physiology Focal Adhesions - physiology Microscopy, Atomic Force - methods |
title | Detecting cell-adhesive sites in extracellular matrix using force spectroscopy mapping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A35%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20cell-adhesive%20sites%20in%20extracellular%20matrix%20using%20force%20spectroscopy%20mapping&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Chirasatitsin,%20Somyot&rft.date=2010-05-19&rft.volume=22&rft.issue=19&rft.spage=194102&rft.epage=194102&rft.pages=194102-194102&rft.issn=0953-8984&rft.eissn=1361-648X&rft_id=info:doi/10.1088/0953-8984/22/19/194102&rft_dat=%3Cproquest_pubme%3E856408288%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856408288&rft_id=info:pmid/21152375&rfr_iscdi=true |