A user's guide to channelrhodopsin variants: features, limitations and future developments
Channelrhodopsins (ChRs) are light‐activated channels from algae that provide these organisms with fast sensors to visible light for phototaxis. Since its discovery, channelrhodopsin‐2 (ChR2) has been used as a research tool to depolarize membranes of excitable cells with light. Subsequent chimerage...
Gespeichert in:
Veröffentlicht in: | Experimental physiology 2011-01, Vol.96 (1), p.19-25 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25 |
---|---|
container_issue | 1 |
container_start_page | 19 |
container_title | Experimental physiology |
container_volume | 96 |
creator | Lin, John Y. |
description | Channelrhodopsins (ChRs) are light‐activated channels from algae that provide these organisms with fast sensors to visible light for phototaxis. Since its discovery, channelrhodopsin‐2 (ChR2) has been used as a research tool to depolarize membranes of excitable cells with light. Subsequent chimeragenesis, mutagenesis and bioinformatic approaches have introduced additional ChR variants, such as channelrhodopsin‐2 with H134R mutation (ChR2/H134R), channelrhodopsin‐2 with E123T mutation (ChETA), Volvox carteri channelrhodopsin‐1 (VChR1), Volvox carteri channelrhodopsin‐2 (VChR2), channelrhodopsin‐2 with C128 or D156A mutations (ChR2/C128X/D156A), chimera D (ChD), chimera EF (ChEF) and chimera EF with I170V mutation (I170V). Each of these ChR variuants has unique features and limitations, but there are few resources summarizing and comparing these ChRs in a systematic manner. In this review, the seven following key properties of ChRs that have significant influences on their effectiveness as research tools are examined: conductance, selectivity, kinetics, desensitization, light sensitivity, spectral response and membrane trafficking. Using this information, valuable qualities and deficits of each ChR variant are summarized. Optimal uses and potential future improvements of ChRs as optogenetic tools are also discussed. |
doi_str_mv | 10.1113/expphysiol.2009.051961 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2995811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2336813771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6774-68ff03c5c064e61db0e117f0bd12bb95b627c26b4368aa5b60bbdd4d9859f0f43</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhoModrv6F8qgF_XCWc-ZSTJJL4RSqhUKeqEg3oTMJNNNmZlMk5nV_ffNsrV-gMWrcDjPeQMPLyFHCCtELN_YH-O43kbnu1UBIFfAUHJ8RBZIucwpZV8fkwVIJnLgFRyQwxivAbAEQZ-SgwJ4kfhyQb6dZnO04ThmV7MzNpt81qz1MNgurL3xY3RDttHB6WGKJ1lr9TQHG19nnevdpCfnh5jpwWTtvFtkxm5s58feJvwZedLqLtrnd--SfHl3_vnsIr_8-P7D2ell3vCqojkXbQtlwxrg1HI0NVjEqoXaYFHXktW8qJqC17TkQus0Ql0bQ40UTLbQ0nJJ3u5zx7nurWnS30F3agyu12GrvHbqz83g1urKb1Qhk58kc0mO7wKCv5ltnFTvYmO7Tg_Wz1FJqJAxJmQiXz1IopAoqkKyKqEv_kKv_RyGJEIJTjkVFIsHIaw4YyjKBL38F4RCUJApaGeB76km-BiDbe8FIKhdZdSvyqhdZdS-Munw6Hd992c_O5KAkz3w3XV2-5-x6vzThUBa3gKOK9Mz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884091234</pqid></control><display><type>article</type><title>A user's guide to channelrhodopsin variants: features, limitations and future developments</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Wiley Online Library (Open Access Collection)</source><creator>Lin, John Y.</creator><creatorcontrib>Lin, John Y.</creatorcontrib><description>Channelrhodopsins (ChRs) are light‐activated channels from algae that provide these organisms with fast sensors to visible light for phototaxis. Since its discovery, channelrhodopsin‐2 (ChR2) has been used as a research tool to depolarize membranes of excitable cells with light. Subsequent chimeragenesis, mutagenesis and bioinformatic approaches have introduced additional ChR variants, such as channelrhodopsin‐2 with H134R mutation (ChR2/H134R), channelrhodopsin‐2 with E123T mutation (ChETA), Volvox carteri channelrhodopsin‐1 (VChR1), Volvox carteri channelrhodopsin‐2 (VChR2), channelrhodopsin‐2 with C128 or D156A mutations (ChR2/C128X/D156A), chimera D (ChD), chimera EF (ChEF) and chimera EF with I170V mutation (I170V). Each of these ChR variuants has unique features and limitations, but there are few resources summarizing and comparing these ChRs in a systematic manner. In this review, the seven following key properties of ChRs that have significant influences on their effectiveness as research tools are examined: conductance, selectivity, kinetics, desensitization, light sensitivity, spectral response and membrane trafficking. Using this information, valuable qualities and deficits of each ChR variant are summarized. Optimal uses and potential future improvements of ChRs as optogenetic tools are also discussed.</description><identifier>ISSN: 0958-0670</identifier><identifier>EISSN: 1469-445X</identifier><identifier>DOI: 10.1113/expphysiol.2009.051961</identifier><identifier>PMID: 20621963</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; Ligand-Gated Ion Channels - physiology ; Light ; Membrane Potentials - physiology ; Membranes - physiology ; Mutation ; Rhodopsin - physiology ; Volvox carteri</subject><ispartof>Experimental physiology, 2011-01, Vol.96 (1), p.19-25</ispartof><rights>2010 The Author. Journal compilation © 2010 The Physiological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6774-68ff03c5c064e61db0e117f0bd12bb95b627c26b4368aa5b60bbdd4d9859f0f43</citedby><cites>FETCH-LOGICAL-c6774-68ff03c5c064e61db0e117f0bd12bb95b627c26b4368aa5b60bbdd4d9859f0f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1113%2Fexpphysiol.2009.051961$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1113%2Fexpphysiol.2009.051961$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20621963$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, John Y.</creatorcontrib><title>A user's guide to channelrhodopsin variants: features, limitations and future developments</title><title>Experimental physiology</title><addtitle>Exp Physiol</addtitle><description>Channelrhodopsins (ChRs) are light‐activated channels from algae that provide these organisms with fast sensors to visible light for phototaxis. Since its discovery, channelrhodopsin‐2 (ChR2) has been used as a research tool to depolarize membranes of excitable cells with light. Subsequent chimeragenesis, mutagenesis and bioinformatic approaches have introduced additional ChR variants, such as channelrhodopsin‐2 with H134R mutation (ChR2/H134R), channelrhodopsin‐2 with E123T mutation (ChETA), Volvox carteri channelrhodopsin‐1 (VChR1), Volvox carteri channelrhodopsin‐2 (VChR2), channelrhodopsin‐2 with C128 or D156A mutations (ChR2/C128X/D156A), chimera D (ChD), chimera EF (ChEF) and chimera EF with I170V mutation (I170V). Each of these ChR variuants has unique features and limitations, but there are few resources summarizing and comparing these ChRs in a systematic manner. In this review, the seven following key properties of ChRs that have significant influences on their effectiveness as research tools are examined: conductance, selectivity, kinetics, desensitization, light sensitivity, spectral response and membrane trafficking. Using this information, valuable qualities and deficits of each ChR variant are summarized. Optimal uses and potential future improvements of ChRs as optogenetic tools are also discussed.</description><subject>Animals</subject><subject>Ligand-Gated Ion Channels - physiology</subject><subject>Light</subject><subject>Membrane Potentials - physiology</subject><subject>Membranes - physiology</subject><subject>Mutation</subject><subject>Rhodopsin - physiology</subject><subject>Volvox carteri</subject><issn>0958-0670</issn><issn>1469-445X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkl1rFDEUhoModrv6F8qgF_XCWc-ZSTJJL4RSqhUKeqEg3oTMJNNNmZlMk5nV_ffNsrV-gMWrcDjPeQMPLyFHCCtELN_YH-O43kbnu1UBIFfAUHJ8RBZIucwpZV8fkwVIJnLgFRyQwxivAbAEQZ-SgwJ4kfhyQb6dZnO04ThmV7MzNpt81qz1MNgurL3xY3RDttHB6WGKJ1lr9TQHG19nnevdpCfnh5jpwWTtvFtkxm5s58feJvwZedLqLtrnd--SfHl3_vnsIr_8-P7D2ell3vCqojkXbQtlwxrg1HI0NVjEqoXaYFHXktW8qJqC17TkQus0Ql0bQ40UTLbQ0nJJ3u5zx7nurWnS30F3agyu12GrvHbqz83g1urKb1Qhk58kc0mO7wKCv5ltnFTvYmO7Tg_Wz1FJqJAxJmQiXz1IopAoqkKyKqEv_kKv_RyGJEIJTjkVFIsHIaw4YyjKBL38F4RCUJApaGeB76km-BiDbe8FIKhdZdSvyqhdZdS-Munw6Hd992c_O5KAkz3w3XV2-5-x6vzThUBa3gKOK9Mz</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Lin, John Y.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7TS</scope><scope>M7N</scope><scope>5PM</scope></search><sort><creationdate>201101</creationdate><title>A user's guide to channelrhodopsin variants: features, limitations and future developments</title><author>Lin, John Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6774-68ff03c5c064e61db0e117f0bd12bb95b627c26b4368aa5b60bbdd4d9859f0f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Ligand-Gated Ion Channels - physiology</topic><topic>Light</topic><topic>Membrane Potentials - physiology</topic><topic>Membranes - physiology</topic><topic>Mutation</topic><topic>Rhodopsin - physiology</topic><topic>Volvox carteri</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, John Y.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Experimental physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, John Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A user's guide to channelrhodopsin variants: features, limitations and future developments</atitle><jtitle>Experimental physiology</jtitle><addtitle>Exp Physiol</addtitle><date>2011-01</date><risdate>2011</risdate><volume>96</volume><issue>1</issue><spage>19</spage><epage>25</epage><pages>19-25</pages><issn>0958-0670</issn><eissn>1469-445X</eissn><abstract>Channelrhodopsins (ChRs) are light‐activated channels from algae that provide these organisms with fast sensors to visible light for phototaxis. Since its discovery, channelrhodopsin‐2 (ChR2) has been used as a research tool to depolarize membranes of excitable cells with light. Subsequent chimeragenesis, mutagenesis and bioinformatic approaches have introduced additional ChR variants, such as channelrhodopsin‐2 with H134R mutation (ChR2/H134R), channelrhodopsin‐2 with E123T mutation (ChETA), Volvox carteri channelrhodopsin‐1 (VChR1), Volvox carteri channelrhodopsin‐2 (VChR2), channelrhodopsin‐2 with C128 or D156A mutations (ChR2/C128X/D156A), chimera D (ChD), chimera EF (ChEF) and chimera EF with I170V mutation (I170V). Each of these ChR variuants has unique features and limitations, but there are few resources summarizing and comparing these ChRs in a systematic manner. In this review, the seven following key properties of ChRs that have significant influences on their effectiveness as research tools are examined: conductance, selectivity, kinetics, desensitization, light sensitivity, spectral response and membrane trafficking. Using this information, valuable qualities and deficits of each ChR variant are summarized. Optimal uses and potential future improvements of ChRs as optogenetic tools are also discussed.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>20621963</pmid><doi>10.1113/expphysiol.2009.051961</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0958-0670 |
ispartof | Experimental physiology, 2011-01, Vol.96 (1), p.19-25 |
issn | 0958-0670 1469-445X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2995811 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE; Wiley Online Library (Open Access Collection) |
subjects | Animals Ligand-Gated Ion Channels - physiology Light Membrane Potentials - physiology Membranes - physiology Mutation Rhodopsin - physiology Volvox carteri |
title | A user's guide to channelrhodopsin variants: features, limitations and future developments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A52%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20user's%20guide%20to%20channelrhodopsin%20variants:%20features,%20limitations%20and%20future%20developments&rft.jtitle=Experimental%20physiology&rft.au=Lin,%20John%20Y.&rft.date=2011-01&rft.volume=96&rft.issue=1&rft.spage=19&rft.epage=25&rft.pages=19-25&rft.issn=0958-0670&rft.eissn=1469-445X&rft_id=info:doi/10.1113/expphysiol.2009.051961&rft_dat=%3Cproquest_pubme%3E2336813771%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884091234&rft_id=info:pmid/20621963&rfr_iscdi=true |