A user's guide to channelrhodopsin variants: features, limitations and future developments

Channelrhodopsins (ChRs) are light‐activated channels from algae that provide these organisms with fast sensors to visible light for phototaxis. Since its discovery, channelrhodopsin‐2 (ChR2) has been used as a research tool to depolarize membranes of excitable cells with light. Subsequent chimerage...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental physiology 2011-01, Vol.96 (1), p.19-25
1. Verfasser: Lin, John Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25
container_issue 1
container_start_page 19
container_title Experimental physiology
container_volume 96
creator Lin, John Y.
description Channelrhodopsins (ChRs) are light‐activated channels from algae that provide these organisms with fast sensors to visible light for phototaxis. Since its discovery, channelrhodopsin‐2 (ChR2) has been used as a research tool to depolarize membranes of excitable cells with light. Subsequent chimeragenesis, mutagenesis and bioinformatic approaches have introduced additional ChR variants, such as channelrhodopsin‐2 with H134R mutation (ChR2/H134R), channelrhodopsin‐2 with E123T mutation (ChETA), Volvox carteri channelrhodopsin‐1 (VChR1), Volvox carteri channelrhodopsin‐2 (VChR2), channelrhodopsin‐2 with C128 or D156A mutations (ChR2/C128X/D156A), chimera D (ChD), chimera EF (ChEF) and chimera EF with I170V mutation (I170V). Each of these ChR variuants has unique features and limitations, but there are few resources summarizing and comparing these ChRs in a systematic manner. In this review, the seven following key properties of ChRs that have significant influences on their effectiveness as research tools are examined: conductance, selectivity, kinetics, desensitization, light sensitivity, spectral response and membrane trafficking. Using this information, valuable qualities and deficits of each ChR variant are summarized. Optimal uses and potential future improvements of ChRs as optogenetic tools are also discussed.
doi_str_mv 10.1113/expphysiol.2009.051961
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2995811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2336813771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6774-68ff03c5c064e61db0e117f0bd12bb95b627c26b4368aa5b60bbdd4d9859f0f43</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhoModrv6F8qgF_XCWc-ZSTJJL4RSqhUKeqEg3oTMJNNNmZlMk5nV_ffNsrV-gMWrcDjPeQMPLyFHCCtELN_YH-O43kbnu1UBIFfAUHJ8RBZIucwpZV8fkwVIJnLgFRyQwxivAbAEQZ-SgwJ4kfhyQb6dZnO04ThmV7MzNpt81qz1MNgurL3xY3RDttHB6WGKJ1lr9TQHG19nnevdpCfnh5jpwWTtvFtkxm5s58feJvwZedLqLtrnd--SfHl3_vnsIr_8-P7D2ell3vCqojkXbQtlwxrg1HI0NVjEqoXaYFHXktW8qJqC17TkQus0Ql0bQ40UTLbQ0nJJ3u5zx7nurWnS30F3agyu12GrvHbqz83g1urKb1Qhk58kc0mO7wKCv5ltnFTvYmO7Tg_Wz1FJqJAxJmQiXz1IopAoqkKyKqEv_kKv_RyGJEIJTjkVFIsHIaw4YyjKBL38F4RCUJApaGeB76km-BiDbe8FIKhdZdSvyqhdZdS-Munw6Hd992c_O5KAkz3w3XV2-5-x6vzThUBa3gKOK9Mz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884091234</pqid></control><display><type>article</type><title>A user's guide to channelrhodopsin variants: features, limitations and future developments</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Wiley Online Library (Open Access Collection)</source><creator>Lin, John Y.</creator><creatorcontrib>Lin, John Y.</creatorcontrib><description>Channelrhodopsins (ChRs) are light‐activated channels from algae that provide these organisms with fast sensors to visible light for phototaxis. Since its discovery, channelrhodopsin‐2 (ChR2) has been used as a research tool to depolarize membranes of excitable cells with light. Subsequent chimeragenesis, mutagenesis and bioinformatic approaches have introduced additional ChR variants, such as channelrhodopsin‐2 with H134R mutation (ChR2/H134R), channelrhodopsin‐2 with E123T mutation (ChETA), Volvox carteri channelrhodopsin‐1 (VChR1), Volvox carteri channelrhodopsin‐2 (VChR2), channelrhodopsin‐2 with C128 or D156A mutations (ChR2/C128X/D156A), chimera D (ChD), chimera EF (ChEF) and chimera EF with I170V mutation (I170V). Each of these ChR variuants has unique features and limitations, but there are few resources summarizing and comparing these ChRs in a systematic manner. In this review, the seven following key properties of ChRs that have significant influences on their effectiveness as research tools are examined: conductance, selectivity, kinetics, desensitization, light sensitivity, spectral response and membrane trafficking. Using this information, valuable qualities and deficits of each ChR variant are summarized. Optimal uses and potential future improvements of ChRs as optogenetic tools are also discussed.</description><identifier>ISSN: 0958-0670</identifier><identifier>EISSN: 1469-445X</identifier><identifier>DOI: 10.1113/expphysiol.2009.051961</identifier><identifier>PMID: 20621963</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; Ligand-Gated Ion Channels - physiology ; Light ; Membrane Potentials - physiology ; Membranes - physiology ; Mutation ; Rhodopsin - physiology ; Volvox carteri</subject><ispartof>Experimental physiology, 2011-01, Vol.96 (1), p.19-25</ispartof><rights>2010 The Author. Journal compilation © 2010 The Physiological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6774-68ff03c5c064e61db0e117f0bd12bb95b627c26b4368aa5b60bbdd4d9859f0f43</citedby><cites>FETCH-LOGICAL-c6774-68ff03c5c064e61db0e117f0bd12bb95b627c26b4368aa5b60bbdd4d9859f0f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1113%2Fexpphysiol.2009.051961$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1113%2Fexpphysiol.2009.051961$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20621963$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, John Y.</creatorcontrib><title>A user's guide to channelrhodopsin variants: features, limitations and future developments</title><title>Experimental physiology</title><addtitle>Exp Physiol</addtitle><description>Channelrhodopsins (ChRs) are light‐activated channels from algae that provide these organisms with fast sensors to visible light for phototaxis. Since its discovery, channelrhodopsin‐2 (ChR2) has been used as a research tool to depolarize membranes of excitable cells with light. Subsequent chimeragenesis, mutagenesis and bioinformatic approaches have introduced additional ChR variants, such as channelrhodopsin‐2 with H134R mutation (ChR2/H134R), channelrhodopsin‐2 with E123T mutation (ChETA), Volvox carteri channelrhodopsin‐1 (VChR1), Volvox carteri channelrhodopsin‐2 (VChR2), channelrhodopsin‐2 with C128 or D156A mutations (ChR2/C128X/D156A), chimera D (ChD), chimera EF (ChEF) and chimera EF with I170V mutation (I170V). Each of these ChR variuants has unique features and limitations, but there are few resources summarizing and comparing these ChRs in a systematic manner. In this review, the seven following key properties of ChRs that have significant influences on their effectiveness as research tools are examined: conductance, selectivity, kinetics, desensitization, light sensitivity, spectral response and membrane trafficking. Using this information, valuable qualities and deficits of each ChR variant are summarized. Optimal uses and potential future improvements of ChRs as optogenetic tools are also discussed.</description><subject>Animals</subject><subject>Ligand-Gated Ion Channels - physiology</subject><subject>Light</subject><subject>Membrane Potentials - physiology</subject><subject>Membranes - physiology</subject><subject>Mutation</subject><subject>Rhodopsin - physiology</subject><subject>Volvox carteri</subject><issn>0958-0670</issn><issn>1469-445X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkl1rFDEUhoModrv6F8qgF_XCWc-ZSTJJL4RSqhUKeqEg3oTMJNNNmZlMk5nV_ffNsrV-gMWrcDjPeQMPLyFHCCtELN_YH-O43kbnu1UBIFfAUHJ8RBZIucwpZV8fkwVIJnLgFRyQwxivAbAEQZ-SgwJ4kfhyQb6dZnO04ThmV7MzNpt81qz1MNgurL3xY3RDttHB6WGKJ1lr9TQHG19nnevdpCfnh5jpwWTtvFtkxm5s58feJvwZedLqLtrnd--SfHl3_vnsIr_8-P7D2ell3vCqojkXbQtlwxrg1HI0NVjEqoXaYFHXktW8qJqC17TkQus0Ql0bQ40UTLbQ0nJJ3u5zx7nurWnS30F3agyu12GrvHbqz83g1urKb1Qhk58kc0mO7wKCv5ltnFTvYmO7Tg_Wz1FJqJAxJmQiXz1IopAoqkKyKqEv_kKv_RyGJEIJTjkVFIsHIaw4YyjKBL38F4RCUJApaGeB76km-BiDbe8FIKhdZdSvyqhdZdS-Munw6Hd992c_O5KAkz3w3XV2-5-x6vzThUBa3gKOK9Mz</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Lin, John Y.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7TS</scope><scope>M7N</scope><scope>5PM</scope></search><sort><creationdate>201101</creationdate><title>A user's guide to channelrhodopsin variants: features, limitations and future developments</title><author>Lin, John Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6774-68ff03c5c064e61db0e117f0bd12bb95b627c26b4368aa5b60bbdd4d9859f0f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Ligand-Gated Ion Channels - physiology</topic><topic>Light</topic><topic>Membrane Potentials - physiology</topic><topic>Membranes - physiology</topic><topic>Mutation</topic><topic>Rhodopsin - physiology</topic><topic>Volvox carteri</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, John Y.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Experimental physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, John Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A user's guide to channelrhodopsin variants: features, limitations and future developments</atitle><jtitle>Experimental physiology</jtitle><addtitle>Exp Physiol</addtitle><date>2011-01</date><risdate>2011</risdate><volume>96</volume><issue>1</issue><spage>19</spage><epage>25</epage><pages>19-25</pages><issn>0958-0670</issn><eissn>1469-445X</eissn><abstract>Channelrhodopsins (ChRs) are light‐activated channels from algae that provide these organisms with fast sensors to visible light for phototaxis. Since its discovery, channelrhodopsin‐2 (ChR2) has been used as a research tool to depolarize membranes of excitable cells with light. Subsequent chimeragenesis, mutagenesis and bioinformatic approaches have introduced additional ChR variants, such as channelrhodopsin‐2 with H134R mutation (ChR2/H134R), channelrhodopsin‐2 with E123T mutation (ChETA), Volvox carteri channelrhodopsin‐1 (VChR1), Volvox carteri channelrhodopsin‐2 (VChR2), channelrhodopsin‐2 with C128 or D156A mutations (ChR2/C128X/D156A), chimera D (ChD), chimera EF (ChEF) and chimera EF with I170V mutation (I170V). Each of these ChR variuants has unique features and limitations, but there are few resources summarizing and comparing these ChRs in a systematic manner. In this review, the seven following key properties of ChRs that have significant influences on their effectiveness as research tools are examined: conductance, selectivity, kinetics, desensitization, light sensitivity, spectral response and membrane trafficking. Using this information, valuable qualities and deficits of each ChR variant are summarized. Optimal uses and potential future improvements of ChRs as optogenetic tools are also discussed.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>20621963</pmid><doi>10.1113/expphysiol.2009.051961</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0958-0670
ispartof Experimental physiology, 2011-01, Vol.96 (1), p.19-25
issn 0958-0670
1469-445X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2995811
source Wiley Online Library - AutoHoldings Journals; MEDLINE; Wiley Online Library (Open Access Collection)
subjects Animals
Ligand-Gated Ion Channels - physiology
Light
Membrane Potentials - physiology
Membranes - physiology
Mutation
Rhodopsin - physiology
Volvox carteri
title A user's guide to channelrhodopsin variants: features, limitations and future developments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A52%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20user's%20guide%20to%20channelrhodopsin%20variants:%20features,%20limitations%20and%20future%20developments&rft.jtitle=Experimental%20physiology&rft.au=Lin,%20John%20Y.&rft.date=2011-01&rft.volume=96&rft.issue=1&rft.spage=19&rft.epage=25&rft.pages=19-25&rft.issn=0958-0670&rft.eissn=1469-445X&rft_id=info:doi/10.1113/expphysiol.2009.051961&rft_dat=%3Cproquest_pubme%3E2336813771%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884091234&rft_id=info:pmid/20621963&rfr_iscdi=true